

nazario tantalo

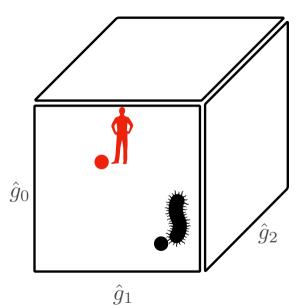
nazario.tantalo@roma2.infn.it

Lattice 2022, Bonn

Matching QC+ED to Nature

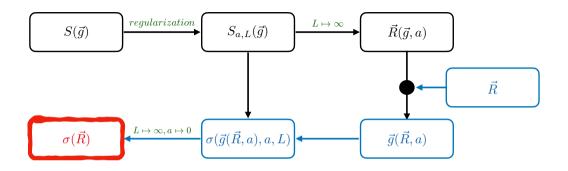
◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

• the first step of any QFT calculation, aiming at phenomenological predictions, is the matching of the theory to Nature



▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

- a renormalizable theory depending upon N parameters can describe \mathbb{R}^N Universes
- and we can choose the one that we want!



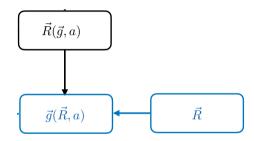
<□▶ <□▶ < □▶ < □▶ < □▶ = □ - つへ⊙

- \vec{g} are the N bare couplings
- \vec{R} are N experimental inputs
- σ is the prediction

• this algorithm, a.k.a. renormalization, can be implemented on the lattice as it is

$$\vec{R}(\vec{g},a) = \vec{R} \quad \mapsto \quad \vec{g}(\vec{R},a)$$

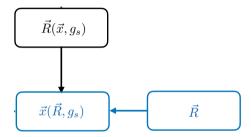
 $\lim_{a\mapsto 0}\sigma(\vec{g}(\vec{R},a),a)=\sigma(\vec{R})$



<□▶ <□▶ < □▶ < □▶ < □▶ = □ - つへ⊙

- in practice we usually prefer to fix g_s and solve for a

$$\begin{split} \vec{g} &= (g_s, e, a \vec{m}) ,\\ \vec{x} &= (a, e, a \vec{m}) \\ \vec{R}(\vec{x}, g_s) &= \vec{R} \quad \mapsto \quad \vec{x}(\vec{R}, g_s) \\ \lim_{g_s \mapsto 0} \sigma(\vec{x}(\vec{R}, g_s), g_s) &= \sigma(\vec{R}) \end{split}$$



<□▶ <□▶ < □▶ < □▶ < □▶ = □ - つへ⊙

• at the (sub)percent level of precision the hadronic universe is described by QCD+QED

 $\vec{g} = (g_s, e, a\vec{m})$

- we need to fix n_f masses and $2\ {\rm gauge}\ {\rm couplings}\ {\rm in}\ {\rm terms}\ {\rm of}\ {\rm an}\ {\rm equal}\ {\rm number}\ {\rm of}\ {\rm experimental}\ {\rm inputs}$

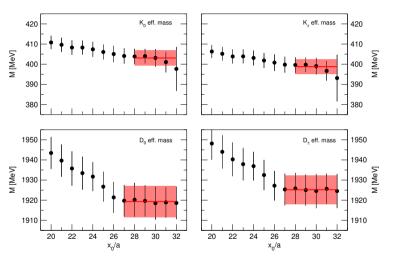
these must include a dimensional quantity!!

$$\sigma\left(\hat{g}_s(\mu), \hat{\alpha}(\mu), \hat{m}_f(\mu); \mu\right) = \sigma\left(\underbrace{\Lambda, \frac{M^i}{\Lambda}}_{\vec{R}}\right), \qquad i = 1, \cdots, n_f + 1$$

• the fact that the bare strong coupling g_s vanishes in the continuum doesn't mean that we don't need an input to tune it or to fix the lattice spacing

- this is the well known mechanism of dimensional transmutation: $g_s
ightarrow \Lambda_{QCD}$

$$n_f = 4 \ , \quad \vec{R} = \left(\frac{M_{\pi^+}^2}{M_{K^0}^2} \ , \ \frac{M_{D^+}^2}{M_{K^0}^2} \ , \ \frac{M_{D_s}^2}{M_{K^0}^2} \ , \ M_{K^0} \ , \ \underbrace{\frac{M_{K^+}^2 - M_{K^0}^2}{M_{K^0}^2} \ , \ \frac{M_{D^+}^2 - M_{D^0}^2}{M_{K^0}^2}}_{\vec{R}_{IB} \ \mapsto \ e, \ m_u - m_d} \right)$$



- full QCD+QED_C, $\hat{\alpha} \simeq 1/137$
- no gauge-fixing

• unphysical quark masses $m_d = m_s$

 \vdash \leftarrow \equiv

æ

- we could discuss forever on the best choice for the input parameters...
- i'm pretty sure we all agree that the inputs should be
 - precisely measured experimental observables
 - precisely computable on the lattice
 - under theoretical control w.r.t. quark-mass, volume dependence, excited-states contaminations, induced cutoff effects

- we could discuss forever on the best choice for the input parameters...
- i'm pretty sure we all agree that the inputs should be
 - precisely measured experimental observables
 - precisely computable on the lattice
 - under theoretical control w.r.t. quark-mass, volume dependence, excited-states contaminations, induced cutoff effects

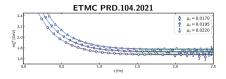
$$n_f = 4 \;, \quad \vec{R} = \left(\frac{M_{\pi^+}^2}{M_{K^0}^2} \;,\; \frac{M_{D^+}^2}{M_{K^0}^2} \;,\; \frac{M_{D_s}^2}{M_{K^0}^2} \;,\; \frac{M_{K^+}^2 - M_{K^0}^2}{M_{K^0}^2} \;,\; \frac{M_{D^+}^2 - M_{D^0}^2}{M_{K^0}^2}\right)$$

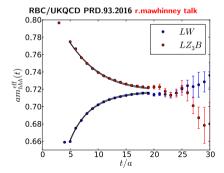
◆□ > ◆□ > ◆豆 > ◆豆 > ・豆 - のへで

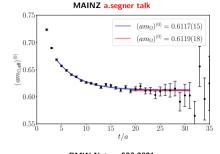
so Momega?

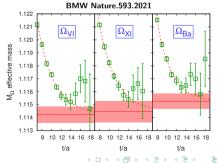
$$n_f = 4 , \quad \vec{R} = \left(\frac{M_{\pi^+}^2}{M_{\Omega}^2} , \frac{M_{K^0}^2}{M_{\Omega}^2} , \frac{M_{D_s}^2}{M_{\Omega}^2} , M_{\Omega} , \frac{M_{K^+}^2 - M_{K^0}^2}{M_{\Omega}^2} , \frac{M_{D^+}^2 - M_{D^0}^2}{M_{\Omega}^2} \right)$$

<□> <@> < E> < E> E のQC





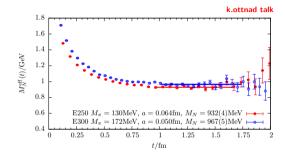




• excited states contamination is (will become) a serious issue

$$m_{\pi}^{eff}(t) = m_{\pi} + c \, e^{-2m_{\pi}t} + \cdots$$

$$\mapsto m_{\pi} + c \, e^{-\frac{2\pi}{L}t} + \cdots$$

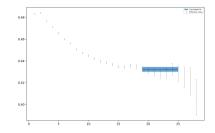


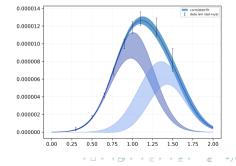
▲ロト ▲母 ト ▲ 臣 ト ▲ 臣 - のへで

spectral densities techniques might become a useful tool...

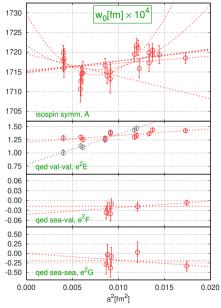
$$C(t) = \int_{e_0}^{\infty} dE \,\rho(E) \, e^{-Et}$$

$$\mapsto \int_{e_0}^{\infty} dE \,\rho(E) \,\delta_{\sigma}(E - E_{\star})$$





æ



イロト イロト イヨト イヨト

what about theory scales?

once you know their "physical" values ...

- the so-called theory scales (w_0 , $\sqrt{t_0}$, M_{qq} , ...) are quantities that cannot be directly measured in experiments but can be computed very precisely on the lattice
- renormalized couplings can also be viewed as theory scales and/or viceversa
- having matched the theory to Nature, by using experimental inputs, these quantities can be computed as any other observable

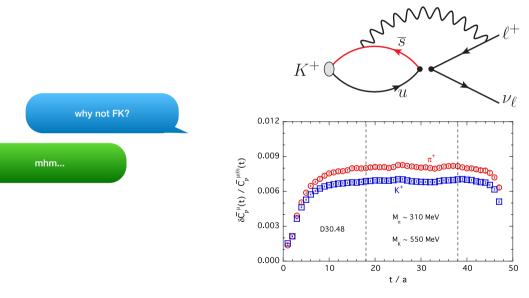
 $\vec{x} = (a, e, a\vec{m})$

$$\vec{R}^{exp} \mapsto \vec{x}(\vec{R}^{exp}, g_s) \mapsto \sigma, w_0, M_{ss}, \hat{\alpha}(\mu), \hat{m}_c(\mu) \cdots$$

• this has to be done, once in history at least, then

$$w_0, M_{ss}, \cdots \mapsto \vec{x}(\vec{R}^{exp}, g_s) \mapsto \sigma$$

• i'll come back to theory scales and to the BMW plot later...



<□> <0</p>

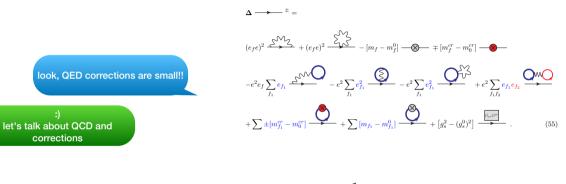
- leptonic decay rates are cumbersome on the lattice because of the $\log(L)$ divergences appearing at intermediate stages of the calculations
- the infrared-safe measurable quantity is the sum of virtual and real photons contributions

- moreover, we have to give up V_{ud} or V_{us}

$$\mathcal{F}_{\pi}(E_{\gamma}) = \sqrt{\frac{\Gamma\left[\pi^{+} \mapsto \mu^{+} \nu_{\mu}(\gamma), E_{\gamma}\right]}{\frac{G_{F}^{2}}{8\pi} |V_{ud}|^{2} M_{\pi^{+}}^{exp} (M_{\mu}^{exp})^{2} \left[1 - \left(\frac{M_{\mu}^{exp}}{M_{\pi^{+}}^{exp}}\right)^{2}\right]}}$$

look, QED corrections are small!!

<□ > < @ > < E > < E > E のQ@



$$\alpha = \frac{1}{137.035999084(21)}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◇◇◇

- even if we neglect $O(\alpha^2),$ QCD and QCD+QED are two different theories

< ロ > < 回 > < 三 > < 三 > < 三 > の < で</p>

$$\begin{split} \vec{x} &= (a, a \vec{m}) \\ \vec{R}(g_s, \vec{x}, \alpha) &= \vec{R} \quad \mapsto \quad \vec{x}^R \equiv \vec{x}(g_s, \vec{R}, \alpha) \\ \vec{R}(g_s, \vec{x}, 0) &= \vec{R} \quad \mapsto \quad \vec{x}_0^R \equiv \vec{x}(g_s, \vec{R}, 0) \end{split}$$

n.t. @lattice2013

• a (trivial?) statement: QCD and QCD+QED are two different theories

electromagnetic currents generate divergent contributions that redefine the vacuum energy, c_1 , the quark masses, c_m^f , the quark critical masses (if chirality is broken), c_{cr}^f , and the strong coupling constant (the lattice spacing), c_q

$$\vec{x} = (a, a\vec{m})$$

$$\vec{R}(g_s, \vec{x}, \alpha) = \vec{R} \quad \mapsto \quad \vec{x}^R \equiv \vec{x}(g_s, \vec{R}, \alpha)$$

 $\vec{R}(g_s, \vec{x}, 0) = \vec{R} \quad \mapsto \quad \vec{x}_0^R \equiv \vec{x}(g_s, \vec{R}, 0)$

<□ > < @ > < E > < E > E のQ@

- in QCD+QED, in order to match the theory and to do predictions, we only need $ec{x}^R$

< ロ > < 回 > < 三 > < 三 > < 三 > の < で</p>

$$\vec{R}(g_s, \vec{x}^R, \alpha) = \vec{R}(g_s, \vec{x}^R, 0) + \alpha \frac{\partial \vec{R}}{\partial \alpha}(g_s, \vec{x}^R, 0) = \vec{R}$$

$$\sigma(\vec{R},\alpha) = \lim_{g_s \mapsto 0} \left\{ \sigma(g_s, \vec{x}^R, 0) + \alpha \frac{\partial \sigma}{\partial \alpha}(g_s, \vec{x}^R, 0) \right\}$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

- if we want to take the continuum limit of the two terms separately, i.e. match/define QCD, we need \vec{x}_0^R

$$\sigma(\vec{R},\alpha) = \lim_{g_s \mapsto 0} \left\{ \sigma(g_s, \vec{x}^R, 0) + \alpha \frac{\partial \sigma}{\partial \alpha}(g_s, \vec{x}^R, 0) \right\} , \qquad \lim_{g_s \mapsto 0} \sigma(g_s, \vec{x}^R, 0) = \infty$$

 $\vec{x}^R = \vec{x}_0^R + \Delta \vec{x}^R$

$$\sigma(\vec{R},0) = \lim_{g_s \mapsto 0} \sigma(g_s, \vec{x}_0^R, 0) , \qquad \Delta \sigma(\vec{R}, \alpha) = \lim_{g_s \mapsto 0} \left\{ \Delta x_i^R \frac{\partial}{\partial x_i} + \alpha \frac{\partial}{\partial \alpha} \right\} \sigma(g_s, \vec{x}_0^R, 0)$$

$$\Delta \sigma(\vec{R}, \alpha) = \sigma(\vec{R}, \alpha) - \sigma(\vec{R}, 0) = \left. \alpha \frac{\partial \sigma(\vec{R}, \alpha)}{\partial \alpha} \right|_{\vec{R}, \alpha = 0}$$

- we don't need to use the same inputs to match QCD+QED and to define QCD

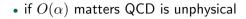
$$ec{R}(g_s, ec{x}, lpha) = ec{R} \; \mapsto \; ec{x}^R \; , \qquad \qquad ec{S}(g_s, ec{x}, 0) = ec{S} \; \mapsto \; ec{x}_0^S$$

$$\left\{\Delta x_i^S \frac{\partial}{\partial x_i} + \alpha \frac{\partial}{\partial \alpha}\right\} \vec{R}(g_s, \vec{x}_0^S, 0) = \mathbf{R} - \vec{R}(g_s, \vec{x}_0^S, 0) \qquad \mapsto \qquad \Delta \vec{x}^S = \vec{x}^R - \vec{x}_0^S$$

$$\sigma(\vec{R},0) + \Delta\sigma(\vec{R},\alpha) = \sigma(\vec{S},0) + \Delta\sigma(\vec{S},\alpha) = \sigma$$

$$\sigma(\vec{R},0) - \sigma(\vec{S},0) = O(\alpha)$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで



- QCD can be defined by matching it directly to Nature
- or by using a convenient prescription
- QCD results coming from different prescriptions differ

$$\sigma(\vec{R} + \vec{\varepsilon}, 0) - \sigma(\vec{R}, 0) = \varepsilon^i \frac{\partial}{\partial R^i} \sigma(\vec{R}, 0)$$

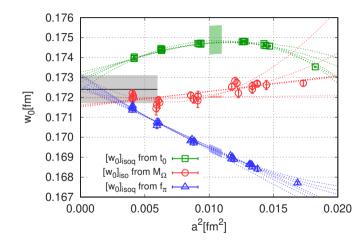
at least in principle . . .

• in practice . . .

BMW Nature.593.2021

$$\vec{R} = \left(\frac{M_{\pi^0}^2}{M_{\Omega}^2}, \ \frac{M_{K^0}^2 + M_{K^+}^2 - M_{\pi^+}^2}{2M_{\Omega}^2}, \ \frac{\hat{m}_c(\mu)}{\hat{m}_s(\mu)} = 11.85, \ M_{\Omega}, \ \frac{M_{K^+}^2 - M_{K^0}^2}{M_{\Omega}^2}\right), \quad \alpha = \frac{1}{137.035999084(21)}$$

▲ロト ▲園 ▶ ▲ 国 ▶ ▲ 国 ● のへで

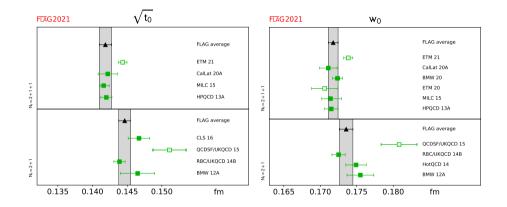


$$\begin{split} M_{\pi} &= M_{\pi^0} \\ M_{ss} &= 689.89(28)(40)[49] MeV \\ M_{\Omega} \\ \\ M_{\pi} &= 134.8(3) \ MeV \\ M_K &= 494.2(3) \ MeV \end{split}$$

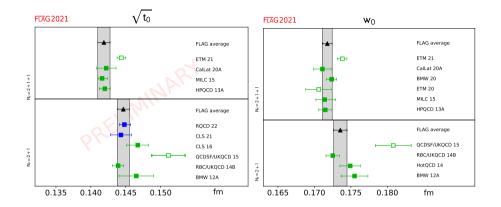
 $t_0 = 0.1416 \binom{+8}{-5} fm$

 $f_{\pi} = 130.50(14) \ MeV$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・



<□> <@> < E> < E> E のQC



- CLS21 $f_{K+\pi}$, arXiv:2112.06696, RQCD s.collins talk
- different inputs, e.g. CalLat+RBC/UKQCD M_{Ω} , CLS $f_{K+\pi}$, ETMC+HPQCD+MILC f_{π} , RQCD M_{Ξ} ,

 $M_{\pi}^{iso} = M_{\pi^0} \;, \qquad M_{\Omega}^{iso} = M_{\Omega} \;, \qquad f_{\pi}^{iso} = 130.4(3) \; MeV \;, \qquad M_K^{iso} \in [494.2, 497.6] \; MeV$

• maybe, for these quantities, the charm-quenching effect is presently more relevant than QED scheme ambiguities

see TUMQCD j.weber talk

• the matching of the $n_f = 2 + 1$ and $n_f = 2 + 1 + 1$ QCDs is a problem that can be addressed by using the same strategy we have been discussing so far

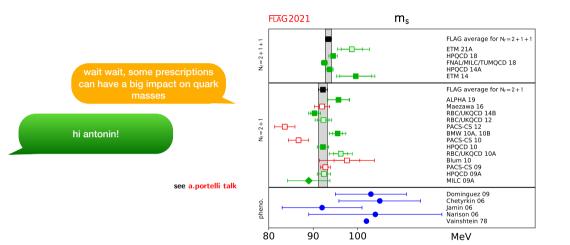
- although many (not very) different prescriptions have been used
- and some dedicated investigations have been done

RM123+SOTON PRD.100.2019

BMW Nature.593.2021

RBC-UKQCD c.lehner talk

• no significant differences have been observed yet



the GRS schemes

gasser et al. EPJ.C32.2003, RM123 PRD.87.2013

$$\hat{m}_{ud}(\mu)|_{QCD} = \left. \frac{\hat{m}_u(\mu) + \hat{m}_d(\mu)}{2} \right|_{QCD + QED}$$

$$\hat{m}_s(\mu)|_{QCD} = \hat{m}_s(\mu)|_{QCD+QED}$$

 $\hat{m}_c(\mu)|_{QCD} = \hat{m}_c(\mu)|_{QCD+QED}$

$$\hat{g}_s(\mu)|_{QCD} = \hat{g}_s(\mu)|_{QCD+QED}$$

wait wait, some prescriptions can have a big impact on quark masses

hi antonin!

see a.portelli talk

FLAG < 2021

RM123+SOTON PRD.100.2019

$$M_{\pi}^{GRS} = M_{\pi^0} \left(1 + \varepsilon_{\pi^0} \right) = 135.0(2) \ MeV$$

$$M_K^{GRS} = M_{K^0} (1 + \varepsilon_{K^0}) = 494.6(1) \ MeV$$

$$M_{D_s}^{GRS} = M_{D_s} \left(1 + \varepsilon_{D_s} \right) = 1966.7(1.5) \ MeV$$

$$f_{\pi}^{GRS} = \mathcal{F}_{\pi}(E_{\gamma}^{max}) \left(1 + \varepsilon_{f_{\pi}}\right) = 130.65(12) \ MeV$$

wait wait, some prescriptions can have a big impact on quark masses

hi antonin!

see a.portelli talk

- the past is the past...
- in the future, can we agree on this?

$$QCD^{2+1}$$
, $\vec{R} = \left(\frac{M_{\pi^0}^2}{M_{\Omega}^2}, \frac{M_{K^0}^2}{M_{\Omega}^2}, M_{\Omega}\right)$

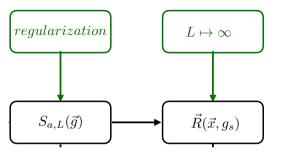
• maybe you prefer this?

$$QCD^{2+1}$$
, $\vec{R} = \left(\frac{M_{\pi^0}^2}{f_{\pi}^2}, \frac{M_{K^0}^2}{f_{\pi}^2}, f_{\pi}\right)$, $f_{\pi} = 130.56 \ MeV$

• GRS?

backup

・ロト・西ト・市・・市・ うらの

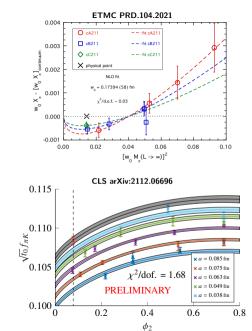


- in QCD+QED hadron masses are affected by large finite volume effects
- the leading ones are universal and can be removed

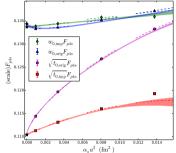
davoudi-savage PRD.90.2014, BMW Science.347.2015 lucini et al. JHEP.02.2016

$$\frac{M(\vec{x}, g_s, L)}{M(\vec{x}, g_s, \infty)} = 1 + \alpha \left(\frac{q^2 \xi(1)}{LM(\vec{x}, g_s, \infty)} + \frac{q^2 \xi(2)}{\left[LM(\vec{x}, g_s, \infty)\right]^2} + O(L^{-n}, \alpha^2) \right)$$

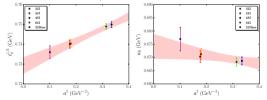
<□> <@> < E> < E> E のQC



MILC PRD.93.2016



RBC/UKQCD PRD.93.2016

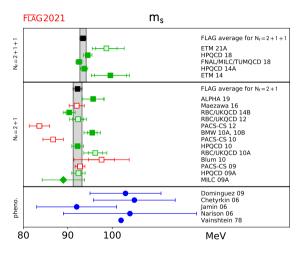


▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - の Q ()

			Dublication chination continuenta station continuenta station fittioe in on exterion	Dhysical and abolation		
Collaboration	Ref.	N_{f}	Puro Composition Prini	na la	$\sqrt{t_0}$ [fm]	w_0 [fm]
ETM 21	[53]	2+1+1	P ★ ★ ★	f_{π}	0.14436(61)	0.17383(63)
CalLat 20A	[31]	2+1+1	A ★ ★ ★	m_{Ω}	0.1422(14)	0.1709(11)
BMW 20	[3]	1 + 1 + 1 +	1 A ★ ★ ★	m_{Ω}		0.17236(29)(63)[70]
ETM 20	[1037]	2+1+1	C ★ ★ ★	f_{π}		0.1706(18)
MILC 15	[67]	2+1+1	A ★ ★ ★	$F_{p4s}(f_{\pi})^{\#}$	0.1416(+8/-5)	0.1714(+15/-12)
HPQCD 13A	[68]	2+1+1	A ★ O ★	f_{π}	0.1420(8)	0.1715(9)
CLS 16	[69]	2+1	A 🔿 ★ ★	f_{π}, f_K	0.1467(14)(7)	
QCDSF/UKQCD 15B	[70]	2+1	Ροοο	$m_P^{SU(3)}$	0.1511(22)(6)(5)(3)	0.1808(23)(5)(6)(4)
RBC/UKQCD 14B	[32]	2+1	$A \star \star \star$	m_{Ω}	0.14389(81)	0.17250(91)
HotQCD 14	[71]	2+1	A ★ ★ ★	$r_1(f_{\pi})^{\#}$		0.1749(14)
BMW 12A	[<mark>39</mark>]	2+1	$A \star \star \star$	m_{Ω}	0.1465(21)(13)	0.1755(18)(4)

$$M_{\pi}^{isoQCD} = M_{\pi^0} , \qquad M_{\Omega}^{isoQCD} = M_{\Omega} , \qquad f_{\pi}^{isoQCD} = 130.4(3) \ MeV ,$$

$$M_K^{isoQCD} \in [494.2, 497.6] \ MeV , \qquad M_{ss}, \qquad \cdots$$



ETM21A	$M_K = 494.2 \ M_{\odot}$	eV			
ALPHA19	$M_K = 494.2 \ M$	IeV			
HPQCD18	$M_{\eta_s} = 0.6885($	(22) GeV			
FNAL/MILC/	TUMQCD18	$M_K = 494.5\ MeV$			
$RBCUKQCD14B \qquad M_K = 495.7 \ MeV$					
BMW10 4	194.2 MeV				

the GRS schemes... by implementing it once in history

$$\mu = \left\{ \left(\frac{\sqrt{\tau}}{a}\right)_{GF}, \ \left(\frac{2\pi |\vec{n}|}{L}\right)_{RI-MOM}, \ \left(\frac{1}{L}\right)_{SF}, \ \cdots \right\}$$

 $\hat{g}_s^{QCD}(a\mu, g_s)$

 $\mu = 2 \ GeV$

1

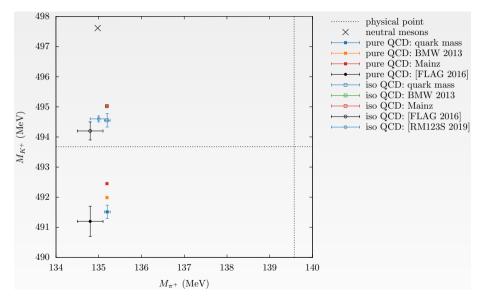
 g_s

see a.portelli talk

$$a \mapsto \hat{g}_s^{QCD}(a\mu, g_s^*) = \hat{g}^* , \qquad g_s^*(a\mu, \hat{g}^*)$$

$$\mapsto \hat{g}_s^{QCD}([a\mu]^\star, g_s) = \hat{g}^\star , \quad a = \frac{[a\mu] (g_s, g_s)}{\mu}$$

a.portelli talk



◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへで