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Matching QC+ED to Nature



• the first step of any QFT calculation, aiming at phenomenological predictions, is the
matching of the theory to Nature



• a renormalizable theory depending upon N
parameters can describe RN Universes

• and we can choose the one that we want!

• a QFT depending on  couplings 
can describe  Universes and we 
have to choose the one that we 
want

N
RN

ĝ0

ĝ1

ĝ2



S(~g) Sa,L(~g)
L 7! 1

~R(~g, a)
regularization

L 7! 1, a 7! 0

~R

~g(~R, a)�(~g(~R, a), a, L)�(~R)

• ~g are the N bare couplings

• ~R are N experimental inputs

• σ is the prediction



• this algorithm, a.k.a. renormalization, can be
implemented on the lattice as it is

~R(~g, a) = ~R 7→ ~g(~R, a)

lim
a7→0

σ(~g(~R, a), a) = σ(~R)

S(~g) Sa,L(~g)

L 7! 1

~R(~g, a)

regularization

L 7! 1, a 7! 0

~R~g(~R, a)�(~g(~R, a), a, L)�(~R)



• in practice we usually prefer to fix gs and solve for a

~g = (gs, e, a~m) ,

~x = (a, e, a~m)

~R(~x, gs) = ~R 7→ ~x(~R, gs)

lim
gs 7→0

σ(~x(~R, gs), gs) = σ(~R)

S(~g) Sa,L(~g)

L 7! 1regularization

~R�(~R)

~R(~x, gs)

~x(~R, gs)�(~x(~R, gs), gs, L)

L 7! 1, gs 7! 0



• at the (sub)percent level of precision the hadronic universe is described by QCD+QED

~g = (gs, e, a~m)

• we need to fix nf masses and 2 gauge couplings in terms of an equal number of
experimental inputs



• these must include a dimensional quantity!!

σ (ĝs(µ), α̂(µ), m̂f (µ);µ) = σ

(
Λ,
M i

Λ

)

︸ ︷︷ ︸
~R

, i = 1, · · · , nf + 1

• the fact that the bare strong coupling gs vanishes in the continuum doesn’t mean that we
don’t need an input to tune it or to fix the lattice spacing

• this is the well known mechanism of dimensional transmutation: gs → ΛQCD



pseudoscalar meson masses?

hi simplicio!

why not FK?

mhm...

so Momega?

nf = 4 , ~R =
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RC? in preparation, j.lücke talk
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• full QCD+QEDC , α̂ ' 1/137

• no gauge–fixing

• unphysical quark masses md = ms



• we could discuss forever on the best choice for the input parameters. . .

• i’m pretty sure we all agree that the inputs should be

• precisely measured experimental observables

• precisely computable on the lattice

• under theoretical control w.r.t. quark–mass, volume dependence, excited–states
contaminations, induced cutoff effects
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FIG. 13. The same as in Fig. 12 but for the case of ⌦� using the cB211.072.64 ensemble for the three values of µs given the
in the figure legend.

We analyze in a similar way the e↵ective mass defined by the ⌦ correlator given in Eq. (57). In Fig. 13 we show an
example of the e↵ective mass me↵

⌦ for the cB211.072.64 ensemble at µs = 0.017, 0.0195 and 0.022. As can be seen, we
obtain accurate results that allow us to perform a fit including up to the second excited state. We fix the maximum
time for these fits to be tmax/a = 34. The convergence of the e↵ective mass for ⌦� as we vary tlow is demonstrated
when using one-, two- and three-state fits. In a similar manner, the convergence of the first excited energy E1

⌦ is
demonstrated by varying tlow. We employ the criterion described above to choose the value of m⌦ from the one-state
fit at each µs. We note that for all the three values of µs we find the same tlow. The masses extracted are given in
Table XVII, where we also quote the reduced-�2, �̄2 ⌘ �2/d.o.f., of the various fits.

The analysis of the two-point correlator for the ⇤c proceeds in an analogous manner. We illustrate the results for
the cB211.072.64 ensemble in Fig. 14 for two di↵erent values of the charm mass parameter µc. From the study of the
⌦� mass we find that there is strong correlation among the data for the three values of µs as demonstrated in Fig. 16
and, thus, for ⇤c we opt to use two di↵erent values of µc in the interpolation. Since ⇤c is heavier and decays faster, a
three-state fit is not possible and we limit ourselves to comparing one- and two-state fits. The masses extracted, the

RBC/UKQCD PRD.93.2016 r.mawhinney talk
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our lattices are sufficiently large and the masses of these states sufficiently heavy that including

these terms has no statistically significant influence on the fitted Ω mass. Using multiple source

types and double-exponential fits to common masses allows us to reduce the statistical error on the

Ω baryon mass mhhh, as well as to also fit the mass of the first excited state in the positive parity

channel m′hhh. Figure 16 plots the effectiveΩ-baryon mass on each ensemble.

FIG. 16. The effective mass of the Omega baryon obtained using both our wall (LW) and Z3 box source

(LZ3B) on the 32Ifine (top left), 48I (top right), and 64I (bottom) ensembles. The correlation functions are

simultaneously fit to a two-exponential fit form, and the effective mass determined from the fit function (ob-

tained by applying the same technique as used to extract the effective mass from the raw data) is overlayed

with the data.

In Figure 17 we plot the dependence of our fitted ground and excited state energies on the lower

temporal bound of the fit. The upper bound of the fit window is fixed at 20, 16, and 19 on the

32Ifine, 48I, and 64I ensembles, respectively. We observe excellent stability for bounds above

MAINZ a.segner talk

Correlators for ⌦ at m⇡ = 215 MeV, a = 0.076 fm
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2-state-fit-ansatz8: (am)⌦,e↵ = am⌦ + ce��Mt

8Del Debbio et al. 2007, JHEP 02, p. 056.
9 / 11

BMW Nature.593.2021

P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
3
7
1
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Figure 1: The e�ective mass of the three operators used
for the omega mass determination on the coarsest ensem-
ble. The green data points show the e�ective masses
calculated directly from the correlation function of the
respective operators. The red band indicates the ground
state mass as extracted with a multistate fit (for details
see main text). The red dotted line indicates the e�ective
mass of that multistate fit.
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and Di j = DiDj . (2)

The omega baryon, however, comes in multiple staggered tastes which become degenerate only in
the continuum limit. The operators shown above couple to more then one of these tastes. In [7] an
additional flavour degree of freedom is used to construct an operator which solely couples to one
taste of the omega baryon. This operator reads

OBa =
⇥
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� (x)

⌘

where the Greek indices refer to the additional flavour degree of freedom. We applied Wuppertal
smearing [8], but with a kernel that includes only two-hop terms, to all three operators. For the gauge
field appearing in this kernel we applied multiple steps of stout smearing [9] in three dimensions.
For details, see [1].

We have compared the performance of the three operators mentioned above on the coarsest
ensemble for which we generated about 3000 extra configuration that where used only to compare
the three operators with an increased precision. In figure 1 the extracted mass is shown for all
three operators. As it can be seen, even on this ensemble the three values agree within errors.
Furthermore, the di�erence between the largest and the smallest value is of the same size than the
typical statistical and systematic error on the masses extracted on other ensembles. We conclude
that it is therefore justified to use the VI operator to extract the mass of the omega baryon.

Due to the presence of excited states in the correlation functions of the interpolating operators,
a simple one-state ansatz does not allow for a controlled extraction of the ground state mass.

3



• excited states contamination is (will become) a
serious issue

meff
π (t) = mπ + c e−2mπt + · · ·

7→ mπ + c e−
2π
L
t + · · ·

k.ottnad talk

Introduction Setup details MN analysis NME analysis Summary and outlook

MN analysis
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physical result‰2/Ndof = 1.801, p = 0.055

Statistical error of MN lattice data typically at a few per mille.

Chiral, continuum and finite volume extrapolation from ‰PT-inspired fit model up to O(M3
fi)

mN (Mfi,a,L) = m̊N +BM2
fi +CM3

fi +Da2 +E
M3

fi

(MfiL)
e≠MfiL

.
Phys. Lett. B 649, 390 (2007)

with m̊N , B, C , D and E free parameters of the fit.

Physical result MN = 947(10)MeV dominated by scale setting error.

In agreement with experimental value æ Xcheck for scale setting.

Large corrections for individual data points ...

4/13



• spectral densities techniques might become a
useful tool. . .

C(t) =

∫ ∞

e0

dE ρ(E) e−Et

7→
∫ ∞

e0

dE ρ(E) δσ(E − E?)

j.bulava, a.lupo talks, RC∗ data



is this the only possibility for R?

hi simplicio!

that was just an example, i only 
used stable pseudoscalar meson 

masses 

what about theory scales?

once you know their "physical" 
values ...
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Figure 5: The continuum approach of the components in equations (12) and some representative global fits.
The red points are the values of the components of Y measured on the various configurations. These points
have already been extrapolated using the global fit with linear a2 dependence to the physical point. For some
fits these extrapolations yield significant di�erent points. In that case, the points are shown in grey.

4. Conclusion

We have determined thew0 scale in the continuum limit in full 2+1+1 flavour QCD+QED. This
result can be used to precisely set the scale in subsequent lattice calculation. The method described
here for the scale setting with the omega mass was also used in the high precision determination of
the anomalous magnetic moment published in [1].
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• the so–called theory scales (w0,
√
t0, Mqq, . . . ) are quantities that cannot be directly

measured in experiments but can be computed very precisely on the lattice

• renormalized couplings can also be viewed as theory scales and/or viceversa

• having matched the theory to Nature, by using experimental inputs, these quantities can
be computed as any other observable

~x = (a, e, a~m)

~Rexp 7→ ~x(~Rexp, gs) 7→ σ, w0, Mss, α̂(µ), m̂c(µ) · · ·

• this has to be done, once in history at least, then

w0, Mss, · · · 7→ ~x(~Rexp, gs) 7→ σ

• i’ll come back to theory scales and to the BMW plot later. . .



is this the only possibility for R?

hi simplicio!

that was just an example, i only 
used stable pseudoscalar meson 

masses 

why not FK?

mhm...

RM123+SOTON PRD.100.2019, m.di carlo talk

δCP
PðtÞ ¼ 4παem

X

f¼f1;f2

δmcrit
f ·

X

x⃗;y

h0jTfJρWð0Þiq̄fðyÞγ5qfðyÞϕ
†
Pðx⃗;−tÞgj0i

pρ
P

MP
; ð34Þ

δCS
PðtÞ ¼ −4παem

X

f¼f1;f2

mf
Zf

m

Zð0Þ
m

·
X

x⃗;y

h0jTfJρWð0Þ½q̄fðyÞqfðyÞ%ϕ
†
Pðx⃗;−tÞgj0i

pρ
P

MP
; ð35Þ

whereΔem
μν ðy1; y2Þ is the photon propagator, JρWðxÞ is the local version of the hadronic (V − A) weak current renormalized in

QCD only,3

JρWðxÞ ¼ q̄f2ðxÞγ
ρ½Zð0Þ

V − Zð0Þ
A γ5%qf1ðxÞ; ð36Þ

jemμ is the (lattice) conserved e.m. current,4

jemμ ðyÞ ¼
X

f

ef
1

2
½q̄fðyÞðγμ − iτ3γ5ÞUμðyÞqfðyþ aμ̂Þ þ q̄fðyþ aμ̂Þðγμ þ iτ3γ5ÞU†

μðyÞqfðyÞ%; ð37Þ

and Tem
μ is the tadpole operator

Tem
μ ðyÞ ¼

X

f

e2f
1

2
½q̄fðyÞðγμ − iτ3γ5ÞUμðyÞqfðyþ aμ̂Þ − q̄fðyþ aμ̂Þðγμ þ iτ3γ5ÞU†

μðyÞqfðyÞ%: ð38Þ

In Eqs. (32)–(35), ϕ†
Pðx⃗;−tÞ ¼ iq̄f1ðx⃗;−tÞγ5qf2ðx⃗;−tÞ is

the interpolating field for a P meson composed by two
valence quarks f1 and f2 with charges e1e and e2e. The
Wilson r-parameters rf1 and rf2 are always chosen to be
opposite rf1 ¼ −rf2 (see Appendix A). We have also
chosen to place the weak current at the origin and to
create the P meson at a negative time −t, where t and T − t
are sufficiently large to suppress the contributions from
heavier states and from the backward propagating P meson
(this latter condition may be convenient but is not neces-
sary). In Eq. (35), Zð0Þ

m is the mass RC in pure QCD, which
for our maximally twisted-mass setup is given by

Zð0Þ
m ¼ 1=Zð0Þ

P , where Zð0Þ
P is the RC of the pseudoscalar

density determined in Ref. [28]. The quantity Zf
m is related

to the e.m. correction to the mass RC,

ZQCDþQED
m ¼

!
1 −

αem
4π

Zf
m

"
Zð0Þ
m þOðαmemαns Þ

× ðm > 1; n ≥ 0Þ ð39Þ

and can be written in the form

Zf
m ¼ Zf

QEDZ
fact
m ; ð40Þ

where Zf
QED is the pure QED contribution at leading order

in αem, given in the MS scheme at a renormalization scale μ
by [30,31]

Zf
QEDðMS; μÞ ¼ e2fð6 logðaμÞ − 22.5954Þ; ð41Þ

where ef is the fractional charge of the quark qf and Zfact
m

takes into account all the corrections of order Oðαns Þ with
n ≥ 1.

(a) (b) (c)

FIG. 5. Connected diagrams contributing atOðαemÞ to theKþ → lþνl decay amplitude corresponding to photon exchanges involving
the final-state lepton.

3In our maximally twisted-mass setup, in which the Wilson r
parameters rf1 and rf2 are always chosen to be opposite rf1 ¼
−rf2 (see Appendix A), the vector (axial) weak current in the
physical basis renormalizes multiplicatively with the RC ZA (ZV )
of the axial (vector) current for Wilson-like fermions, i.e., Zð0Þ

V ¼
ZA and Zð0Þ

A ¼ ZV (see Appendix D).
4The use of the conserved e.m. current guarantees the absence

of additional contact terms in the product jemμ ðy1Þjemν ðy2Þ.
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IV. RENORMALIZATION OF THE EFFECTIVE
HAMILTONIAN AND CHIRALITY MIXING

In this section, we provide the basic formalism to derive
the e.m. corrections to the RCs nonperturbatively; further
details of the calculation will be presented in a forthcoming
publication [29]. This procedure relates the bare lattice
operators to those in the RI′-MOM (and similar) renorm-
alization schemes up to orderOðαemÞ and to all orders in αs.
We also improve the precision of the matching of the weak
operator O1 [see Eq. (24)] renormalized in the RI’-MOM
scheme to that in the W regularization by calculating the
coefficient of the term proportional to αemαs logðM2

W=μ
2Þ

in the matching coefficient. Using the two-loop anomalous
dimension thus determined, we can evolve the operator to
the renormalization scale of MW . Following this calcula-
tion, the error due to renormalization is reduced from order
Oðαemαsð1=aÞÞ to order OðαemαsðMWÞÞ.
The effective Hamiltonian, including the perturbative

electroweak matching with the Standard Model [18], can be
written in the form

HW ¼ GFffiffiffi
2

p V$
q1q2

"
1þ αem

π
log

#
MZ

MW

$%
OW-reg

1 ðMWÞ; ð62Þ

where the term proportional to the logarithm has been
already included in Eq. (29) and OW-reg

1 ðMWÞ is the
operator renormalized in the W-regularization scheme,
which is used to regularize the photon propagator. Since
the W-boson mass is too large to be simulated on the lattice,
a matching of the lattice weak operator O1 to the
W-regularization scheme is necessary. In addition, for
lattice formulations which break chiral symmetry, like
the one used in the present study, the lattice weak operator
O1 mixes with other four-fermion operators of different
chirality.

A. The renormalized weak operator in the
W-regularization scheme

In order to obtain the operator renormalized in the
W-regularization scheme, we start by renormalizing the
lattice four-fermion operator O1 defined in Eq. (24) in
the RI′-MOM scheme [35], obtaining ORI0

1 ðμÞ, and then
perturbatively match the operator ORI0

1 ðμÞ to the one in the
W regularization [11],

OW-reg
1 ðMWÞ ¼ ZW-RI0

#
MW

μ
; αsðμÞ; αem

$
ORI’

1 ðμÞ: ð63Þ

The coefficient ZW-RI0ðMW=μ; αsðμÞ;αemÞ can be computed
by first evolving the operator in the RI’scheme to the scale
MW and then matching it to the corresponding operator in
the W scheme. The coefficient can therefore be written as
the product of a matching coefficient and an evolution
operator

ZW-RI’

#
MW

μ
; αsðμÞ;αem

$

¼ ZW-RI’ð1; αsðMWÞ; αemÞURI’ðMW; μ; αemÞ: ð64Þ

Below we will only consider terms of first order in αem and,
therefore we will consistently neglect the running of αem.
We note that the original bare lattice operators and

OW-reg
1 ðMWÞ are gauge invariant, and thus the correspond-

ing matching coefficients are gauge invariant. This is not
the case for ORI’

1 ðμÞ that instead depends not only on the
external states chosen to define the renormalization con-
ditions, but also on the gauge. Consequently, the matching
coefficient ZW-RI’ðMW

μ ; αsðμÞ; αemÞ and the evolution oper-
ator URI’ðMW; μ;αemÞ are in general gauge dependent.
However, at the order of perturbation theory to which
we are working, the evolution operator turns out to be both
scheme and gauge independent.
In the following, we discuss in turn the matching

coefficient, ZW-RI’ð1;αsðMWÞ; αemÞ, the evolution operator
URI’ðMW; μ; αemÞ, and the definition of the renormalized
operatorORI’

1 ðμÞ, which will be obtained nonperturbatively.

FIG. 8. Results for the ratio δC̄μ
PðtÞ=C̄

μð0Þ
P ðtÞ, given by Eq. (55),

for Kμ2 and πμ2 decays obtained from the gauge ensembles
B55.32 (top panel) and D30.48 (bottom panel). The vertical
dashed lines indicate the time region used for the extraction of the
ratio δAμ

P=A
ð0Þ
P . Errors are statistical only.
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• leptonic decay rates are cumbersome on the lattice because of the log(L) divergences
appearing at intermediate stages of the calculations

• the infrared–safe measurable quantity is the sum of virtual and real photons contributions

• moreover, we have to give up Vud or Vus

Fπ(Eγ) =

√√√√√√
Γ [π+ 7→ µ+νµ(γ), Eγ ]

G2
F

8π |Vud|2M
exp
π+ (M exp

µ )2

[
1−

(
Mexp
µ

Mexp

π+

)2
]
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A concrete example of application of the formulae given in eqs. (52) and (53) is represented by the

correction to the S±
f quark propagators worked out below

�
±

=

(efe)2 + (efe)2 � [mf � m0
f ] ⌥ [mcr

f � mcr
0 ]

�e2ef

X

f1

ef1 � e2
X

f1

e2
f1

� e2
X

f1

e2
f1

+ e2
X

f1f2

ef1ef2

+
X

f1

±[mcr
f1

� mcr
0 ] +

X

f1

[mf1
� m0

f1
] +

⇥
g2

s � (g0
s)2
⇤ Gµ�G

µ�

. (55)

Here quarks propagators of di↵erent flavours have been drawn with di↵erent colors and di↵erent lines.

The formulae above have been explicitly displayed not only because they represent the building blocks of
the derivation of the LIB corrections to the hadron masses discussed in the following, but also for illustrating
the implications of the electro–quenched approximation (see eq. (35) above). This approximation is not
required in the calculation of the pion mass splitting because the quark disconnected diagrams containing
sea quark loops are exactly canceled in the di↵erence of �M⇡+ and �M⇡0 (see eq. (66) below). This does
not happen in the case of the kaon mass di↵erence, see eq. (69). Quark disconnected diagrams are noisy
and di�cult to calculate and, for this reason, we have derived the numerical results for MK+ �MK0 within
the electro–quenched approximation. The perturbative expansion of the electro–quenched theory, i.e. the
theory corresponding to the action Se=0

sea for the sea quarks, is obtained in practice by setting gs = g0
s and

rf [U, A,~g0] = 1 . (56)

In the electro-quenched approximation all quark disconnected contributions are absent. It follows that in
this theory eq. (55) simply becomes

�
±

= (efe)2

2
6664 +

3
7775� [mf � m0

f ] ⌥ [mcr
f � mcr

0 ] .

(57)

5.1 LIB corrections to hadron correlators

In order to extract the mass of a given hadron H, by including electromagnetic interactions and QCD
isospin breaking corrections, we start by considering in the full theory the two-point correlator of an

16

α =
1

137.035999084(21)



• even if we neglect O(α2), QCD and QCD+QED are two different theories



~x = (a, a~m)

~R(gs, ~x, α) = ~R 7→ ~xR ≡ ~x(gs, ~R, α)

~R(gs, ~x, 0) = ~R 7→ ~xR0 ≡ ~x(gs, ~R, 0)



n.t. @lattice2013

QCD vs. QCD+QED

BMW arXiv:1306.2287, A.Portelli talk
4

X �MX �QEDMX �QCDMX

N �0.68(39)(36) 1.59(30)(35) �2.28(25)(7)

� �7.84(87)(72) 0.08(12)(34) �7.67(79)(105)

� �7.16(76)(47) �1.29(15)(8) �5.87(76)(43)

TABLE I. Isospin breaking mass di�erences in MeV for mem-
bers of the baryon octet. The first error is statistical and the
second is systematic. As discussed in the text, we guesstimate
the QED quenching uncertainties on the e.m. contributions to
be O(10%). Propagating the uncertainty in �QEDM2

K yields
an O(4%) error on the �m contributions. The quenching un-
certainties on the total splittings can then be obtained by
adding those of the e.m. and �m contributions in quadrature.
These guesstimates are not included in the results.

of by the p-value.

The �m corrections that we do not include in the sea
are NLO in isospin breaking and can safely be neglected.
The neglected O(�) sea-quark contributions break fla-
vor SU(3). Moreover, large-Nc counting indicates that
they are O(1/Nc). Combining the two suppression fac-
tors yields an estimate (M� � MN )/(NcMN ) � 0.09. A
smaller estimate is obtained by supposing that these cor-
rections are typical quenching e�ects [18] that are SU(3)-
suppressed, or by using [19] the NLO �PT results of [10].
However, in the absence of direct quantitative evidence,
it is safer to assume that the e.m. contributions to the
splittings carry an O(10%) QED quenching uncertainty.

Final results and discussion. Combining the methods
described above, we obtain our final results for the total
octet baryon isospin splittings �MN , �M� and �M� de-
fined above. These results, together with those obtained
for the e.m. and �m contributions, are summarized in
Table I. We also plot them in Fig. 2, together with the
experimental values for the full splittings. Our results
are compatible with experiment.

Concerning the separation into �m and e.m. contribu-
tions, there exist very few determinations of these quan-
tities up to now. In the review [20], hadron e.m. split-
tings were estimated using a variety of models and Cot-
tingham’s formula for the nucleon. These estimates are
compatible with our results within � 1.5 �. The e.m. nu-
cleon splitting has recently been re-evaluated with Cot-
tingham’s formula in [21], yielding a result which is in
agreement with ours. �MN has also been studied with
sum rules in [22].

Besides the entirely quenched, pioneering work of [23],
ours is the only one in which the baryon octet isosplit-
tings are fully computed. The only other lattice calcula-
tion of the full nucleon splitting is presented in [24][25].
Like ours, it implements QED only for valence quarks.
While their �QCDMN agrees very well with ours, agree-
ment is less good for the e.m. contribution and total split-
ting, which they find to be 0.38(7) MeV and �2.1(7) MeV,
respectively. That study was performed in rather small

�9
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�3

�2

�1

0

1

2

�MN �M� �M�

(M
eV

)

total
QCD
QED
exp.

FIG. 2. Summary of our results for the isospin mass splittings
of the octet baryons. Also shown are the individual contri-
butions to these splittings from the mass di�erence mu � md

(QCD) and from e.m. (QED). The bands indicate the size
of the splittings and contributions. On the points, the er-
ror bars are the statistical and total uncertainties (statistical
and systematic combine in quadrature). For comparison, the
experimental values for the total splittings are also displayed.

volumes with a limited set of simulation parameters,
making an estimate of systematic errors di�cult. The
few other lattice calculations consider only the �m con-
tributions to the baryon splittings, in Nf=2 [7, 26] and
Nf=2+1 [27–29] simulations. The results of [26–29] rely
on imprecise phenomenological input to fix mu/md or
(mu �md). They use the estimate for �QEDM2

K of [30],
directly in [26, 28] and indirectly, through MILC’s re-
sults for mu/md [31], in [27]. In [29], the two values of
mu/md from [30, 32] are used as an input. The most
recent calculation [7] actually determines �QEDM2

K in
quenched QED, as we do here for Nf=2+1. �QCDMN

is computed in [7, 26, 27] while all three QCD splittings
are obtained in [28, 29]. Agreement with our results are
typically good. In all of these calculations, the range of
parameters explored is smaller than in ours, making it
more di�cult to control the physical limit.

The computation presented here is an encouraging step
toward a precise determination of octet baryon splittings,
which would constitute an ab initio confirmation that the
proton cannot decay weakly.

L.L. thanks Heiri Leutwyler for enlightening discus-
sions. Computations were performed using the PRACE
Research Infrastructure resource JUGEEN based in Ger-
many at FZ Jülich, with further HPC resources pro-
vided by GENCI-[IDRIS/CCRT] (grant 52275) and FZ
Jülich, as well as using clusters at Wuppertal and
CPT. This work was supported in part by the OCEVU
Excellence Laboratory, by CNRS grants GDR n02921
and PICS n04707, by EU grants FP7/2007-2013/ERC
n0208740, MRTN-CT-2006-035482 (FLAVIAnet) and by
DFG grants FO 502/2, SFB-TR 55.
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• a (trivial?) statement: QCD and QCD+QED are two di↵erent theories

(ef e)
2 �! [mf � m

0
f ]

J
µ

(x)Jµ(0) �! c1(x)1 +
X

f

h
c
f
m(x)mf + c

f
cr(x)

i
 ̄f f + cgs (x)Gµ⌫G

µ⌫
+ · · ·

electromagnetic currents generate divergent contributions that redefine the vacuum energy, c1, the quark masses, cf
m,

the quark critical masses (if chirality is broken), cf
cr , and the strong coupling constant (the lattice spacing), cg

• physics is QCD+QED: the PACS-CS collaboration, used

n
M
⇡+ , M

K+ , M
K0 , M

⌦�
o

�!
n

m̂u, m̂d, m̂s, a
o

and, of course, the mass of the up and the mass of the down are di↵erent: that’s it!

• on the other hand, it is interesting (and useful in practice) to define di↵erences as MQED+QCD
p � MQCD

p : how?

~x = (a, a~m)

~R(gs, ~x, α) = ~R 7→ ~xR ≡ ~x(gs, ~R, α)

~R(gs, ~x, 0) = ~R 7→ ~xR0 ≡ ~x(gs, ~R, 0)



• in QCD+QED, in order to match the theory and to do predictions, we only need ~xR



~R(gs, ~x
R, α) = ~R(gs, ~x

R, 0) + α
∂ ~R

∂α
(gs, ~x

R, 0) = ~R

σ(~R, α) = lim
gs 7→0

{
σ(gs, ~x

R, 0) + α
∂σ

∂α
(gs, ~x

R, 0)

}



• if we want to take the continuum limit of the two terms separately, i.e. match/define
QCD, we need ~xR0



σ(~R, α) = lim
gs 7→0

{
σ(gs, ~x

R, 0) + α
∂σ

∂α
(gs, ~x

R, 0)

}
, lim

gs 7→0
σ(gs, ~x

R, 0) =∞

~xR = ~xR0 + ∆~xR

σ(~R, 0) = lim
gs 7→0

σ(gs, ~x
R
0 , 0) , ∆σ(~R, α) = lim

gs 7→0

{
∆xRi

∂

∂xi
+ α

∂

∂α

}
σ(gs, ~x

R
0 , 0)

∆σ(~R, α) = σ(~R, α)− σ(~R, 0) = α
∂σ(~R, α)

∂α

∣∣∣∣∣
~R,α=0



• we don’t need to use the same inputs to match QCD+QED and to define QCD



~R(gs, ~x, α) = ~R 7→ ~xR , ~S(gs, ~x, 0) = ~S 7→ ~xS0

{
∆xSi

∂

∂xi
+ α

∂

∂α

}
~R(gs, ~x

S
0 , 0) = R− ~R(gs, ~x

S
0 , 0) 7→ ∆~xS = ~xR − ~xS0

σ(~R, 0) + ∆σ(~R, α) = σ(~S, 0) + ∆σ(~S, α) = σ

σ(~R, 0)− σ(~S, 0) = O(α)



i'm lost :(

me too :) :) :)



i'm lost :(

me too :) :) :)

• if O(α) matters QCD is unphysical

• QCD can be defined by matching it directly to Nature

• or by using a convenient prescription

• QCD results coming from different prescriptions differ

σ(~R+ ~ε, 0)− σ(~R, 0) = εi
∂

∂Ri
σ(~R, 0)

at least in principle . . .



• in practice . . .
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~R =

(
M2
π0

M2
Ω

,
M2
K0 +M2

K+ −M2
π+

2M2
Ω

,
m̂c(µ)

m̂s(µ)
= 11.85, MΩ,

M2
K+ −M2

K0

M2
Ω

)
, α =

1

137.035999084(21)
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Figure 23: Continuum extrapolation of the isospin-symmetric value of w0 using three di↵erent inputs: t0
from the lattice work [100], M⌦ from experiment [74] and f⇡ from a combination of chiral perturbation
theory and experiment [74]. The dashed lines are quadratic and cubic functions of a2 in case of t0, and
linear and quadratic otherwise. The colored shaded regions around a2 = 0.010 fm2 correspond to the
uncertainty in the input quantity. The horizontal grey shaded region is our final w0 determination from
Equation (167). Note, there is a di↵erence in the definition of the isospin-symmetric point in the di↵erent
inputs.

symmetric value [w0]iso = [w0]⇤. To obtain [w0]isoq we also need a pion and kaon mass that is purified
from isospin-breaking e↵ects. For these we take M⇡ = 134.8(3) MeV and MK = 494.2(3) MeV [9].

The fit procedure is similar to the Type-I fits that we performed before for w0M⌦. The physical point
is given by the f⇡, M⇡ and MK values above. Since we work with the isospin-symmetric component,
only the A, B and C coe�cients of Equation (144) are kept. We apply both linear and quadratic fits
in a2, with the usual cuts in the lattice spacing. Figure 23 shows representative fits from this analysis,
with good fit qualities. The continuum extrapolated values are consistent with our [w0]⇤ from Equation
(167). However the spread between the di↵erent continuum extrapolations is smaller, since the curvature
of w0f⇡ in a2 is smaller than in w0M⌦.

Another way to determine w0 is to take the t0-scale, also defined from the Wilson-flow, as input.
This determination basically computes the w0/t0 ratio. For the physical value of t0 we use [t0]isoq =
0.1416

�
+8
�5

�
fm from [100], which has a precision of about 0.5%. The same analysis is carried out as

before, with the di↵erence that now we also include cubic fits in a2, since the data shows a very strong
curvature and the linear fits have a bad quality. Figure 23 shows representative fits, giving continuum
values consistent with using M⌦ as input, Equation (167).

Finally we show here a method to determine [w0]iso, which is also based on M⌦ as an input parameter,
but uses the idea of a t-shift in the Wilson flow [104]. The main reason for this analysis is to determine
whether the strong quadratic upward trend in w0 for small lattice spacings, see top panel of Figure 20,
is a genuine cuto↵ e↵ect? Indeed, the Wilson flow is known to have a transient for small flow times.
Although the a↵ected region shrinks as one approaches the continuum limit, the e↵ect might be sizable
particularly if we want to reach an accuracy on the few per-mil level.

The t-shift in the Wilson-flow replaces ht2E(t)i with ht2E(t + sa2)i, which is essentially applying the
flow on a smeared gauge field (pre-smearing). It can be interpreted as an improved operator for the energy
density. Obviously, in the continuum limit flows with or without t-shifts are the same. We measured a
combination, w0 · t0(s1)/t0(s2), which obviously gives back w0 in the continuum limit. Clearly, this

71

Mπ = Mπ0

Mss = 689.89(28)(40)[49]MeV

MΩ

Mπ = 134.8(3) MeV

MK = 494.2(3) MeV

t0 = 0.1416(+8
−5) fm

fπ = 130.50(14) MeV
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• CLS21 fK+π , arXiv:2112.06696, RQCD s.collins talk

• different inputs, e.g. CalLat+RBC/UKQCD MΩ, CLS fK+π , ETMC+HPQCD+MILC fπ , RQCD MΞ,

M iso
π = Mπ0 , M iso

Ω = MΩ , f isoπ = 130.4(3) MeV , M iso
K ∈ [494.2, 497.6] MeV



• maybe, for these quantities, the charm–quenching effect is presently more relevant than
QED scheme ambiguities

see TUMQCD j.weber talk

• the matching of the nf = 2 + 1 and nf = 2 + 1 + 1 QCDs is a problem that can be
addressed by using the same strategy we have been discussing so far



• although many (not very) different prescriptions have been used

• and some dedicated investigations have been done
RM123+SOTON PRD.100.2019

BMW Nature.593.2021

RBC-UKQCD c.lehner talk

• no significant differences have been observed yet
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wait wait, some prescriptions 
can have a big impact on quark 

masses

hi antonin!

we must choice the scheme 
that minimizes corrections on 

quark masses
see a.portelli talk

the GRS schemes
gasser et al. EPJ.C32.2003, RM123 PRD.87.2013

m̂ud(µ)|QCD =
m̂u(µ) + m̂d(µ)

2

∣∣∣∣
QCD+QED

m̂s(µ)|QCD = m̂s(µ)|QCD+QED

m̂c(µ)|QCD = m̂c(µ)|QCD+QED

ĝs(µ)|QCD = ĝs(µ)|QCD+QED



wait wait, some prescriptions 
can have a big impact on quark 

masses

hi antonin!

we must choice the scheme 
that minimizes corrections on 

quark masses
see a.portelli talk

FLAG < 2021

RM123+SOTON PRD.100.2019

MGRS
π = Mπ0 (1 + επ0) = 135.0(2) MeV

MGRS
K = MK0 (1 + εK0) = 494.6(1) MeV

MGRS
Ds = MDs (1 + εDs) = 1966.7(1.5) MeV

fGRSπ = Fπ(Emaxγ ) (1 + εfπ) = 130.65(12) MeV



• the past is the past. . .

• in the future, can we agree on this?

QCD2+1 , ~R =

(
M2
π0

M2
Ω

,
M2
K0

M2
Ω

, MΩ

)

• maybe you prefer this?

QCD2+1 , ~R =

(
M2
π0

f2
π

,
M2
K0

f2
π

, fπ

)
, fπ = 130.56 MeV

• GRS?



backup



S(~g) Sa,L(~g)

L 7! 1regularization

~R�(~R)

~R(~x, gs)

~x(~R, gs)�(~x(~R, gs), gs, L)

L 7! 1, gs 7! 0

• in QCD+QED hadron masses are affected by large finite
volume effects

• the leading ones are universal and can be removed

davoudi-savage PRD.90.2014, BMW Science.347.2015

lucini et al. JHEP.02.2016

M(~x, gs, L)

M(~x, gs,∞)
= 1 + α

(
q2ξ(1)

LM(~x, gs,∞)
+

q2ξ(2)

[LM(~x, gs,∞)]2
+O(L−n, α2)

)



concerning cutoff effects in gradient–flow scales see e.g. a.ramos talkETMC PRD.104.2021
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Figure 6: Fit of Equation (5) to the data for F0-c = F0

⇣
5c"4

c

⌘ (1/5)
(left) and detail with the resulting continuum

curve subtracted to better visualise the very small residual lattice artefacts (right).

scale 0�(V = 1.726) 0⌫ (V = 1.778) 0⇠ (V = 1.836)

F0 0.09471(39) 0.08161(30) 0.06941(26)
p
C0 0.09217(41) 0.08002(34) 0.06844(29)

C0/F0 0.08960(47) 0.07834(41) 0.06737(35)

Table 3: Values of the lattice spacing 0 (in fm)
corresponding to the three GF scalesF0,

p
C0, C0/F0

and to the corresponding relative scales given in the
right panel of Figure 3.

For details we again refer to Ref. [16], where di�erent cuts in the data and variations of the higher
order terms are used to obtain estimates of systematic errors. Repeating the fits for the scales F0,
C0 and C0/F0, we obtain

F0 = 0.17383 (57)stat+fit (26)syst [63] fm , (6)
p
C0 = 0.14436 (54)stat+fit (30)syst [61] fm , (7)

C0/F0 = 0.11969 (52)stat+fit (33)syst [62] fm , (8)

with errors added in quadrature and given in square brackets, resulting in an improvement in
precision by a factor of about 2.5 compared to the determination from 5c .
The values of the lattice spacing 0 corresponding to Equations (6) to (8) are given in Table 3.
These three determinations of 0 di�er by O(02

) e�ects, which can be parameterised in their
ratios by a function linear in 02, as shown in Fig. 7. In particular, we get: 0(

p
C0)/0(F0) '

1�0.09 (2) 02
(F0)/F2

0 and 0(C0/F0)/0(F0) ' 1�0.18 (2) 02
(F0)/F2

0, consistent with 02-scaling.

5. The ratio 5 / 5c

Finally, we employ the lattice spacing determined via F0/0 and fixed by -c to interpolate our data
for 5 / 5c to a reference kaon mass (" ref

 )
2 = (" iso

 )
2
+ ("2

c � "
iso
c )

2
/2. This interpolated data

for 5 / 5c is shown in Figure 8. We further apply finite size corrections as detailed in Ref. [16] and
the data using the Ansatz

5 
5c

(! ! 1) = '0

"
1 +

5
4
blog(b) + '1b + '2b

2
+
02

F2
0

⇣ e⇡0 + e⇡1b
⌘#

. (9)
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Figure 2: The chiral extrapolation on the left shows the measured data of
p
C0 5c normalized by the fit

function at the symmetric point. The solid line is the NLO jPT prediction, which does not depend on
any NLO parameters and only logarithmically on the LO parameter �. No systematic deviation from this
continuum formula can be detected. On the right, the continuum extrapolation of the same data, normalized
by the fit-function evaluated for 0 = 0, is shown.
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Figure 3: Chiral and Continuum Extrapolation of
p
C0 5c .

to be a linear function in 02 to leading order of the Symanzik expansion. Again, no deviation due
to higher order terms is detected.

These considerations confirm the fit function given in eq. (7), from which we extract the central
value and statistical uncertainty of

p
C0 5c . This central fit is displayed in fig. 3. It takes into

account the data of the ensembles with 0 < 0.085 fm. The stability when applying other cuts to the
data is considered later.

The combined chiral and continuum extrapolation is now evaluated at qphys
2 to determine

p
C0 5c at the physical point. Together with the values [19, 20]

5 isoQCD
c = 130.56(02) (13) (02) MeV, 5 isoQCD

 = 157.2(2) (2) (4) MeV (12)

in isospin symmetric pure QCD we are able to extract
q
Cphys
0 =

p
C0 5c 

5 isoQCD
c 

= 0.1443(7) fm (jPT fit, 0 < 0.08 fm) (13)

5

MILC PRD.93.2016

FIG. 10. Continuum extrapolations for the original (
p

t0,orig and w0,orig) and improved (
p

t0,imp

and w0,imp) gradient-flow scale times Fp4s plotted for physical quark-mass ensembles only. All fits

to the original, unimproved scales include the chiral expansion to NNLO, 1/m2
c NLO charm-quark

corrections, the wider set of priors, all four lattice spacings, and all but the three lightest m0
s

ensembles. For
p

t0,origFp4s the fit is quadratic in a2. For w0,origFp4s the fit is linear in a2 and

↵sa
2. For the improved scales the plotted lines are from the central fits discussed in this section.

The continuum-extrapolation points are shown in black with error bars representing the statistical

error only.

w0 and w0,imp suggests that the dominant lattice artifacts in w0 may not arise at tree level.

Alternatively, the lattice artifacts from Fp4s may be dominating the continuum extrapolation,

making it di�cult to resolve the di↵erences between w0,orig and w0,imp.
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FIG. 26. t1/20 (left) and w0 (right) data corrected to the physical up/down and strange sea quark masses as a

function of the square of the lattice spacing. The curve shows the continuum extrapolation for the Iwasaki

action with the ChPTFV ansatz. Here we have not shown the 32ID data point as it has a different gauge

action.

5. Unrenormalized physical quark masses

The quark masses in bare lattice units on the 32I reference ensemble are given in Table XV. In

physical units, and including the residual mass, the unrenormalized physical quark masses are

given in Table XIX. Combining these results we obtain the following:

munrenorm.
ud = 2.198(11)MeV ,

munrenorm.
s = 60.62(24)MeV ,

(75)

where the errors are statistical.
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p
t0 [fm] w0 [fm]

ETM 21 [53] 2+1+1 P F F F f⇡ 0.14436(61) 0.17383(63)
CalLat 20A [31] 2+1+1 A F F F m⌦ 0.1422(14) 0.1709(11)
BMW 20 [3] 1+1+1+1 A F F F m⌦ 0.17236(29)(63)[70]
ETM 20 [1037] 2+1+1 C F F F f⇡ 0.1706(18)

MILC 15 [67] 2+1+1 A F F F Fp4s(f⇡)# 0.1416(+8/-5) 0.1714(+15/-12)
HPQCD 13A [68] 2+1+1 A F � F f⇡ 0.1420(8) 0.1715(9)

CLS 16 [69] 2+1 A � F F f⇡, fK 0.1467(14)(7)

QCDSF/UKQCD 15B [70] 2+1 P � � � m
SU(3)
P 0.1511(22)(6)(5)(3) 0.1808(23)(5)(6)(4)

RBC/UKQCD 14B [32] 2+1 A F F F m⌦ 0.14389(81) 0.17250(91)

HotQCD 14 [71] 2+1 A F F F r1(f⇡)# 0.1749(14)
BMW 12A [39] 2+1 A F F F m⌦ 0.1465(21)(13) 0.1755(18)(4)

Table 76: Results for gradient flow scales at the physical point, cf. Eq. (466). Note that BMW
20 [3] take IB and QED corrections into account. Some additional results for ratios of scales
are:
ETM 21 [53]: t0/w0 = 0.11969(62) fm.
# These scales are not physical scales and have been determined from f⇡.

BMW 20 [3] presents a result for w0 in the context of their staggered fermion calculation
of the muon anomalous magnetic moment. It is the first computation that takes QED and
isospin-breaking corrections into account. The simulations are performed by using staggered
fermions with stout gauge field smearing with six lattice spacings and several pion masses
around the physical point with M⇡ between 110 and 140 MeV. Volumes are around L = 6 fm.
At the largest lattice spacing, it is demonstrated how the e↵ective masses of the ⌦ correlator
almost reach the plateau value extracted from a four-state fit (two states per parity). Within
the range where the data is fitted, the deviation of data points from the estimated plateau is
less than a percent. Isospin-breaking corrections are computed by Taylor expansion around
isoQCD with QED treated as QEDL. Finite volume e↵ects in QED are taken from the
1/L, 1/L2 universal corrections and O(1/L3) e↵ects are neglected. The results for M⌦w0 are
extrapolated to the continuum by a fit with a2 and a4 terms.

ETM 20 [1037] presents in their proceedings contribution a preliminary analysis of their
Nf = 2 + 1 + 1 Wilson twisted-mass fermion simulations at maximal twist (i.e., automatic
O(a) improved), at three lattice spacings and pion masses at the physical point. Their
determination of w0 = 0.1706(18) fm from f⇡ using an analysis in terms of M⇡ is the value
quoted above. They obtain the consistent value w0 = 0.1703(18) fm from an analysis in terms
of the renormalized light quark mass.

MILC 15 [67] sets the physical scale using the fictitious pseudoscalar decay constant
Fp4s=153.90(9)(+21/ � 28) MeV with degenerate valence quarks of mass mv = 0.4ms and
physical sea-quark masses [62]. (Fp4s has strong dependence on the valence-quark mass and
is determined from f⇡.) They use a definition of the flow scales where the tree-level lattice
artefacts up to O(a4/t2) are divided out. Charm-quark mass mistunings are between 1% and

14

M isoQCD
π = Mπ0 , M isoQCD

Ω = MΩ , f isoQCDπ = 130.4(3) MeV ,

M isoQCD
K ∈ [494.2, 497.6] MeV , Mss, · · ·
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wait wait, some prescriptions 
can have a big impact on quark 

masses

hi antonin!

we must choice the scheme 
that minimizes corrections on 

quark masses
see a.portelli talk

the GRS schemes. . . by implementing it once in history

µ = 2 GeV

µ =

{(√
τ

a

)

GF

,

(
2π|~n|
L

)

RI−MOM

,

(
1

L

)

SF

, · · ·
}

ĝQCDs (aµ, gs)

a 7→ ĝQCDs (aµ, g?s) = ĝ? , g?s(aµ, ĝ
?)

gs 7→ ĝQCDs ([aµ]?, gs) = ĝ? , a =
[aµ]?(gs, ĝ

?
s)

µ
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Pion/kaon plane landcape

Open symbols: iso QCD / Full symbols: pure QCD 
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neutral mesons
pure QCD: quark mass
pure QCD: BMW 2013
pure QCD: Mainz
pure QCD: [FLAG 2016]
iso QCD: quark mass
iso QCD: BMW 2013
iso QCD: Mainz
iso QCD: [FLAG 2016]
iso QCD: [RM123S 2019]

[RM123S 2019]: equivalent to quark mass scheme (electro-quenched GRS) 
[FLAG 2016]: equivalent to quark mass scheme (pheno estimate)


