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QUDA
• “QCD on CUDA” – http://lattice.github.com/quda (open source, BSD license)

• Effort started at Boston University in 2008, now in wide use as the GPU backend 

for BQCD, Chroma**, CPS**, MILC**, TIFR, etc.

• Provides solvers for major fermionic discretizations, pure gauge algorithms, etc.

• Maximize performance


– Mixed-precision methods

– Autotuning for high performance on all CUDA-capable architectures

– Multigrid solvers for optimal convergence

– NVSHMEM for improving strong scaling


• Portable: HIP (merged), SYCL (in review) and OpenMP (in development)

• A research tool for how to reach the exascale (and beyond)


– Optimally mapping the problem to hierarchical processors and node topologies

**ECP benchmarks apps
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QUDA

• “QCD on CUDA” – http://lattice.github.com/quda (C++14, open source, BSD license) 
• Effort started at Boston University in 2008, now in wide use as the GPU backend for 

BQCD, Chroma, CPS, MILC, TIFR, etc. 
• Various solvers for all major fermionic discretizations, with multi-GPU support 
• Maximize performance 

– Mixed-precision methods (runtime specification of precision for maximum flexibility) 
– Exploit physical symmetries to minimize memory traffic 
– Autotuning for high performance on all CUDA-capable architectures 
– Domain-decomposed (Schwarz) preconditioners for strong scaling 
– Eigenvector and deflated solvers (Lanczos, EigCG, GMRES-DR) 
– Multi-RHS solvers 
– Multigrid solvers for optimal convergence 

• A research tool for how to reach the exascale (and beyond)
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ANNOUNCING H100

HIGHEST AI AND HPC PERFORMANCE 
4PF FP8 (6X)| 2PF FP16 (3X)| 1PF TF32 (3X)| 60TF FP64 (3X)

3TB/s (1.5X), 80GB HBM3 memory 

TRANSFORMER MODEL OPTIMIZATIONS
6X faster on largest transformer models 

HIGHEST UTILIZATION EFFICIENCY AND SECURITY
7 Fully isolated & secured instances, guaranteed QoS 

2nd Gen MIG | Confidential Computing 

FASTEST, SCALABLE INTERCONNECT 
900 GB/s GPU-2-GPU connectivity (1.5X)

up to 256 GPUs with NVLink Switch | 128GB/s PCIe Gen5 

Unprecedented Performance, Scalability, and Security for Every Data Center

Custom 4N TSMC Process  |  80 billion transistors  
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MAPPING THE DIRAC OPERATOR TO GPUS

• Finite difference operator in LQCD is known as Dslash


• Assign a single space-time point to each thread

V = XYZT threads, e.g., V = 244 => 3.3x106 threads


• Looping over direction each thread must

– Load the neighboring spinor (24 numbers x8)

– Load the color matrix connecting the sites (18 numbers x8)

– Do the computation

– Save the result (24 numbers) 


• Each thread has (Wilson Dslash) 0.92 naive arithmetic intensity


• QUDA reduces memory traffic

Exact SU(3) matrix compression (18 => 12 or 8 real numbers)

Use 16-bit fixed-point representation with mixed-precision solver

review basic details of the LQCD application and of NVIDIA
GPU hardware. We then briefly consider some related work
in Section IV before turning to a general description of the
QUDA library in Section V. Our parallelization of the quark
interaction matrix is described in VI, and we present and
discuss our performance data for the parallelized solver in
Section VII. We finish with conclusions and a discussion of
future work in Section VIII.

II. LATTICE QCD
The necessity for a lattice discretized formulation of QCD

arises due to the failure of perturbative approaches commonly
used for calculations in other quantum field theories, such as
electrodynamics. Quarks, the fundamental particles that are at
the heart of QCD, are described by the Dirac operator acting
in the presence of a local SU(3) symmetry. On the lattice,
the Dirac operator becomes a large sparse matrix, M , and the
calculation of quark physics is essentially reduced to many
solutions to systems of linear equations given by

Mx = b. (1)

The form of M on which we focus in this work is the
Sheikholeslami-Wohlert [6] (colloquially known as Wilson-
clover) form, which is a central difference discretization of the
Dirac operator. When acting in a vector space that is the tensor
product of a 4-dimensional discretized Euclidean spacetime,
spin space, and color space it is given by

Mx,x0 = �1
2

4⇤

µ=1

�
P�µ ⇤ Uµ

x �x+µ̂,x0 + P+µ ⇤ Uµ†
x�µ̂ �x�µ̂,x0

⇥

+ (4 + m + Ax)�x,x0

⌅ �1
2
Dx,x0 + (4 + m + Ax)�x,x0 . (2)

Here �x,y is the Kronecker delta; P±µ are 4 ⇥ 4 matrix
projectors in spin space; U is the QCD gauge field which
is a field of special unitary 3⇥ 3 (i.e., SU(3)) matrices acting
in color space that live between the spacetime sites (and hence
are referred to as link matrices); Ax is the 12⇥12 clover matrix
field acting in both spin and color space,1 corresponding to
a first order discretization correction; and m is the quark
mass parameter. The indices x and x0 are spacetime indices
(the spin and color indices have been suppressed for brevity).
This matrix acts on a vector consisting of a complex-valued
12-component color-spinor (or just spinor) for each point in
spacetime. We refer to the complete lattice vector as a spinor
field.

Since M is a large sparse matrix, an iterative Krylov
solver is typically used to obtain solutions to (1), requiring
many repeated evaluations of the sparse matrix-vector product.
The matrix is non-Hermitian, so either Conjugate Gradients
[7] on the normal equations (CGNE or CGNR) is used, or
more commonly, the system is solved directly using a non-
symmetric method, e.g., BiCGstab [8]. Even-odd (also known

1Each clover matrix has a Hermitian block diagonal, anti-Hermitian block
off-diagonal structure, and can be fully described by 72 real numbers.

Fig. 1. The nearest neighbor stencil part of the lattice Dirac operator D,
as defined in (2), in the µ� ⇥ plane. The color-spinor fields are located on
the sites. The SU(3) color matrices Uµ

x are associated with the links. The
nearest neighbor nature of the stencil suggests a natural even-odd (red-black)
coloring for the sites.

as red-black) preconditioning is used to accelerate the solution
finding process, where the nearest neighbor property of the
Dx,x0 matrix (see Fig. 1) is exploited to solve the Schur com-
plement system [9]. This has no effect on the overall efficiency
since the fields are reordered such that all components of
a given parity are contiguous. The quark mass controls the
condition number of the matrix, and hence the convergence of
such iterative solvers. Unfortunately, physical quark masses
correspond to nearly indefinite matrices. Given that current
leading lattice volumes are 323 ⇥ 256, for > 108 degrees of
freedom in total, this represents an extremely computationally
demanding task.

III. GRAPHICS PROCESSING UNITS

In the context of general-purpose computing, a GPU is
effectively an independent parallel processor with its own
locally-attached memory, herein referred to as device memory.
The GPU relies on the host, however, to schedule blocks of
code (or kernels) for execution, as well as for I/O. Data is
exchanged between the GPU and the host via explicit memory
copies, which take place over the PCI-Express bus. The low-
level details of the data transfers, as well as management of
the execution environment, are handled by the GPU device
driver and the runtime system.

It follows that a GPU cluster embodies an inherently het-
erogeneous architecture. Each node consists of one or more
processors (the CPU) that is optimized for serial or moderately
parallel code and attached to a relatively large amount of
memory capable of tens of GB/s of sustained bandwidth. At
the same time, each node incorporates one or more processors
(the GPU) optimized for highly parallel code attached to a
relatively small amount of very fast memory, capable of 150
GB/s or more of sustained bandwidth. The challenge we face is
that these two powerful subsystems are connected by a narrow
communications channel, the PCI-E bus, which sustains at
most 6 GB/s and often less. As a consequence, it is critical
to avoid unnecessary transfers between the GPU and the host.

Dx,x0 =
x x
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IEEE FLOATING-POINT NUMBERS

FP32

32-bits per real


24-bit mantissa => Precision 


8-bit exponent => Range  

ϵ ∼ 5 × 10−8

∈ [1 × 10−38, 3 × 1038]

struct float32_t {

  unsigned int mantissa : 23;

  unsigned int exponent :  8;

  unsigned int sign     :  1;

};

FP64

64-bits per real


53-bit mantissa => Precision 


8-bit exponent => Range  

ϵ ∼ 1 × 10−16

∈ [2 × 10−208, 2 × 10308]
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QUDA “HALF” PRECISION

Gauge Field


Element range  

No need to store exponent 

Store the matrix elements in 16-bit fixed-point


Fermion fields

No a priori bound on the elements range

For each site vector store max element to set range


Perform computation in FP32


16-bit local precision  with global FP32 range 


cf IEEE FP16: 

∈ [−1,1]

ϵ ∼ 3 × 10−5

ϵ ∼ 5 × 10−4

struct vector3 {

  int16_t v[6];

  float max;

};

struct matrix {

  int16_t v[18];

};

Staggered fermion

3x3 Link matrix
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SINGLE GPU PERFORMANCE
HISQ stencil (Chroma, A100-80)

NVIDIA A100,  
CUDA 11.1,  
GCC 11.5

~2350 GB/s

~2400 GB/s
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SINGLE GPU PERFORMANCE
Wilson-clover stencil (Chroma, A100-80)

NVIDIA A100,  
CUDA 11.1,  
GCC 11.5

~2400 GB/s
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MIXED PRECISION
Using your bits wisely
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MILC/QUDA HISQ CG, mass = 0.001 => ~106κ MILC/QUDA HISQ CG solver 

Tesla V100,  
CUDA 10.1,  
GCC 7.3,  
QUDA 1.0
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MIXED-PRECISION CG

1x10-12

1x10-10

1x10-8

1x10-6

0.0001

0.01

1
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double
double-single
double-half

double-half alt

1x10-11

1x10-10

1x10-9

12500 13000 13500 14000 14500 15000 15500

double
double-single
double-half

double-half alt

double-half

• Reliable update: periodic 

replacement of the residual with 
true residual in high precision


• Maintain solution vectors in  
high precision


• Including the partial accumulator


• When true residual is injected,  
re-project the direction vector


• Use Polak-Ribière formula 


double-half alt

• Residual replacement strategy of van 

der Worst and Ye 
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NEED FOR MORE PRECISION

Mixed-precision solvers have their limits

Can break down once we can longer represent the linear system


 


Explicit orthogonolization can become unstable 

Co-linearity break down (multi-shift solver)


Performance is dictated by memory bandwidth

=> Can we increase precision without increasing the memory traffic? 

λmin

λmax
= κ−1 < ϵ
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MORE PRECISION AT CONSTANT BITS

struct vector3_half {

  int16_t v[6];

  float max;

};

ϵ ∼ 3 × 10−5

struct spinor3_fp32 {

  float v[6];

};

ϵ ∼ 1 × 10−7

struct spinor_20 {

  int20_t v[6];

  uint8_t exponent;

};

ϵ ≳ 3 × 10−6

struct spinor_30 {

  int30_t v[6];

  uint8_t exponent;

};

ϵ ≳ 2 × 10−9

128 bits

192 bits
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  template <> struct spinor_packed<30> {

    static constexpr unsigned int bitwidth = 30;

    static constexpr float scale = get_scale<bitwidth>();


    unsigned int a_re : bitwidth;

    unsigned int exponent0: 2;


    unsigned int a_im : bitwidth;

    unsigned int exponent1: 2;


    unsigned int b_re : bitwidth;

    unsigned int exponent2: 2;


    unsigned int b_im : bitwidth;

    unsigned int exponent3: 2;


    unsigned int c_re : bitwidth;

    unsigned int dummy0: 2;


    unsigned int c_im : bitwidth;

    unsigned int dummy1: 2;


    spinor_packed() = default;

    template <typename spinor> __host__ __device__ spinor_packed(const spinor &in) { pack(in); }


   template <typename spinor>  __host__ __device__ inline void pack(const spinor &in)

    {

      // find the max                                                                                                                                                                                      

      float max[2] = {fabsf(in[0].real()), fabsf(in[0].imag())};

      for (int i = 1; i < 3; i++) {

        max[0] = fmaxf(max[0], fabsf(in[i].real()));

        max[1] = fmaxf(max[1], fabsf(in[i].imag()));

      }

      max[0] = fmaxf(max[0], max[1]);


      // ensures correct max covers all values if input vector is higher precision                                                                                                                         

      if (sizeof(in[0].real()) > sizeof(float)) 

        max[0] += max[0] * std::numeric_limits<float>::epsilon();


      // compute rounded up exponent for rescaling                                                                                                                                                         

      float_structure fs;

      fs.f = max[0] / scale;

      fs.s.exponent++;

      fs.s.mantissa = 0;


      // pack the exponent                                                                                                                                                                                 

      exponent0 = fs.s.exponent >> 0;

      exponent1 = fs.s.exponent >> 2;

      exponent2 = fs.s.exponent >> 4;

      exponent3 = fs.s.exponent >> 6;


      // rescale and convert to integer                                                                                                                                                                    

      int vs[6];

      for (int i = 0; i < 3; i++) {

        vs[2 * i + 0] = lrint(in[i].real() / fs.f);                                                                                                            

        vs[2 * i + 1] = lrint(in[i].imag() / fs.f);

      }


      unsigned int vu[6];

      for (int i = 0; i < 6; i++) memcpy(vu + i, vs + i, sizeof(int));


      // split into required bitfields                                                                                                                                                                     

      a_re = vu[0];

      a_im = vu[1];

      b_re = vu[2];

      b_im = vu[3];

      c_re = vu[4];

      c_im = vu[5];

    }

    template <typename spinor> __host__ __device__ inline void unpack(spinor &v)

    {

      // reconstruct 30-bit numbers

      unsigned int vu[6];

      vu[0] = a_re;

      vu[1] = a_im;

      vu[2] = b_re;

      vu[3] = b_im;

      vu[4] = c_re;

      vu[5] = c_im;


      // convert to signed 

      int vs[6];

      for (int i = 0; i < 6; i++) memcpy(vs + i, vu + i, sizeof(int));


      // signed extend to 32 bits and rescale                            

      float_structure fs;

      fs.f = 0;

      fs.s.exponent = exponent0 + (exponent1 << 2) + (exponent2 << 4) + (exponent3 << 6);


      using real = decltype(v[0].real());

      for (int i = 0; i < 3; i++) {

        v[i].real(static_cast<real>(signextend<bitwidth>(vs[2 * i + 0])) * fs.f);

        v[i].imag(static_cast<real>(signextend<bitwidth>(vs[2 * i + 1])) * fs.f);

      }

    }

Hidden in the QUDA accessors

Write once and used library wide
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HOW WELL DOES IT WORK?
Precision: gauge / fermion / compute

HISQ Dslash element-by-element absolute 
 deviation CDF vs FP64 reference
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HOW WELL DOES IT WORK?
Precision: gauge / fermion / compute

HISQ Dslash element-by-element absolute 
 deviation CDF vs FP64 reference
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HOW WELL DOES IT WORK?
Precision: gauge / fermion / compute

HISQ Dslash element-by-element absolute 
 deviation CDF vs FP64 reference
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HOW WELL DOES IT WORK?
Precision: gauge / fermion / compute

HISQ Dslash element-by-element absolute 
 deviation CDF vs FP64 reference
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HOW WELL DOES IT WORK?
Precision: gauge / fermion / compute

G
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Category Axis

Precision

16-bit / 16 bit / FP32
16-bit / 20-bit / FP32
FP32 / FP32 / FP32
32-bit / 30-bit / FP32
32-bit / 30-bit / FP64
FP64 / FP64 / FP64

HISQ Dslash Performance

V = 324, Quadro GV100

HISQ Dslash element-by-element absolute 
 deviation CDF vs FP64 reference

Gain two orders of magnitude in precision with no performance cost 
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BICGSTAB(4)
HISQ, V = 363x72, β = 6.3, m = 0.001

Iterations Time (s)

pure double 26064 307

double-single 27308 159

double-int30 26580 150

double-int20 29336 106

double-half 67552 247
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MULTI-SHIFT CG SOLVER

Used for RHMC and multi-mass solver propagators


Mixed-precision multi-shift CG

Essentially mixed-precision CG on shift 0

Shifted iterated residuals drift away true residual 

Refine each shifted system to correct for lack of residual collinearity

Many additional iterations can be required


Prior optimal QUDA strategy

double-single multi-shift-CG

double-half per shift refinement
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MULTI-SHIFT SOLVER
HISQ RHMC, V = 363x72, β = 6.3, m = 0.001, 11 shifts

Residual history of  
CG refinement 
double-single-half

Residual history of 
CG refinement 
double-int30-int20

Multi-shift CG 
Residual history for shift 0 

Significant reduction in  
refinement iterations

prelim
inary
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SUMMARY

LQCD has different precision requirements than IEEE floating-point


No need to couple the computation precision to storage format


Custom precision formats can do significantly better while having negligible overhead


Dramatic improvement in solver stability is possible


Outlook

Bit-packed storage formats ideal for offline storage, e.g., eigenvectors

For going beyond double precision, we can do better than float128




