
MAXIMIZING THE BANG PER BIT
Kate Clark @ Lattice 2022

2

QUDA
• “QCD on CUDA” – http://lattice.github.com/quda (open source, BSD license)

• Effort started at Boston University in 2008, now in wide use as the GPU backend

for BQCD, Chroma**, CPS**, MILC**, TIFR, etc.

• Provides solvers for major fermionic discretizations, pure gauge algorithms, etc.

• Maximize performance

– Mixed-precision methods

– Autotuning for high performance on all CUDA-capable architectures

– Multigrid solvers for optimal convergence

– NVSHMEM for improving strong scaling

• Portable: HIP (merged), SYCL (in review) and OpenMP (in development)

• A research tool for how to reach the exascale (and beyond)

– Optimally mapping the problem to hierarchical processors and node topologies

**ECP benchmarks apps

!9

QUDA

• “QCD on CUDA” – http://lattice.github.com/quda (C++14, open source, BSD license)
• Effort started at Boston University in 2008, now in wide use as the GPU backend for

BQCD, Chroma, CPS, MILC, TIFR, etc.
• Various solvers for all major fermionic discretizations, with multi-GPU support
• Maximize performance

– Mixed-precision methods (runtime specification of precision for maximum flexibility)
– Exploit physical symmetries to minimize memory traffic
– Autotuning for high performance on all CUDA-capable architectures
– Domain-decomposed (Schwarz) preconditioners for strong scaling
– Eigenvector and deflated solvers (Lanczos, EigCG, GMRES-DR)
– Multi-RHS solvers
– Multigrid solvers for optimal convergence

• A research tool for how to reach the exascale (and beyond)

3

QUDA CONTRIBUTORS

! Ron Babich (NVIDIA)

! Simone Bacchio (Cyprus)

! Kip Barros (LANL)

! Rich Brower (Boston University)

! Nuno Cardoso (NCSA)

! Kate Clark (NVIDIA)

! Michael Cheng (Boston University)

! Carleton DeTar (Utah University)

! Justin Foley (Utah -> NIH)

! Joel Giedt (Rensselaer Polytechnic Institute)

! Arjun Gambhir (William and Mary)

! Steve Gottlieb (Indiana University)

! Kyriakos Hadjiyiannakou (Cyprus)

! Dean Howarth (LLNL)

! Xiao-Yong Jin (ANL)

! Bálint Joó (Jlab)

! Hyung-Jin Kim (BNL -> Samsung)

! Bartek Kostrzewa (Bonn)

! James Osborn (ANL)

! Claudio Rebbi (Boston University)

! Eloy Romero (William and Mary)

! Hauke Sandmeyer (Bielefeld)

! Guochun Shi (NCSA -> Google)

! Mario Schröck (INFN)

! Alexei Strelchenko (FNAL)

! Jiqun Tu (NVIDIA)

! Alejandro Vaquero (Utah University)

! Mathias Wagner (NVIDIA)

! André Walker-Loud (LBL)

! Evan Weinberg (NVIDIA)

! Frank Winter (Jlab)

! Yi-bo Yang (CAS)

10+ years - lots of contributors

4

ANNOUNCING H100

HIGHEST AI AND HPC PERFORMANCE
4PF FP8 (6X)| 2PF FP16 (3X)| 1PF TF32 (3X)| 60TF FP64 (3X)

3TB/s (1.5X), 80GB HBM3 memory

TRANSFORMER MODEL OPTIMIZATIONS
6X faster on largest transformer models

HIGHEST UTILIZATION EFFICIENCY AND SECURITY
7 Fully isolated & secured instances, guaranteed QoS

2nd Gen MIG | Confidential Computing

FASTEST, SCALABLE INTERCONNECT
900 GB/s GPU-2-GPU connectivity (1.5X)

up to 256 GPUs with NVLink Switch | 128GB/s PCIe Gen5

Unprecedented Performance, Scalability, and Security for Every Data Center

Custom 4N TSMC Process | 80 billion transistors

5

MAPPING THE DIRAC OPERATOR TO GPUS

• Finite difference operator in LQCD is known as Dslash

• Assign a single space-time point to each thread

V = XYZT threads, e.g., V = 244 => 3.3x106 threads

• Looping over direction each thread must

– Load the neighboring spinor (24 numbers x8)

– Load the color matrix connecting the sites (18 numbers x8)

– Do the computation

– Save the result (24 numbers)

• Each thread has (Wilson Dslash) 0.92 naive arithmetic intensity

• QUDA reduces memory traffic

Exact SU(3) matrix compression (18 => 12 or 8 real numbers)

Use 16-bit fixed-point representation with mixed-precision solver

review basic details of the LQCD application and of NVIDIA
GPU hardware. We then briefly consider some related work
in Section IV before turning to a general description of the
QUDA library in Section V. Our parallelization of the quark
interaction matrix is described in VI, and we present and
discuss our performance data for the parallelized solver in
Section VII. We finish with conclusions and a discussion of
future work in Section VIII.

II. LATTICE QCD
The necessity for a lattice discretized formulation of QCD

arises due to the failure of perturbative approaches commonly
used for calculations in other quantum field theories, such as
electrodynamics. Quarks, the fundamental particles that are at
the heart of QCD, are described by the Dirac operator acting
in the presence of a local SU(3) symmetry. On the lattice,
the Dirac operator becomes a large sparse matrix, M , and the
calculation of quark physics is essentially reduced to many
solutions to systems of linear equations given by

Mx = b. (1)

The form of M on which we focus in this work is the
Sheikholeslami-Wohlert [6] (colloquially known as Wilson-
clover) form, which is a central difference discretization of the
Dirac operator. When acting in a vector space that is the tensor
product of a 4-dimensional discretized Euclidean spacetime,
spin space, and color space it is given by

Mx,x0 = �1
2

4⇤

µ=1

�
P�µ ⇤ Uµ

x �x+µ̂,x0 + P+µ ⇤ Uµ†
x�µ̂ �x�µ̂,x0

⇥

+ (4 + m + Ax)�x,x0

⌅ �1
2
Dx,x0 + (4 + m + Ax)�x,x0 . (2)

Here �x,y is the Kronecker delta; P±µ are 4 ⇥ 4 matrix
projectors in spin space; U is the QCD gauge field which
is a field of special unitary 3⇥ 3 (i.e., SU(3)) matrices acting
in color space that live between the spacetime sites (and hence
are referred to as link matrices); Ax is the 12⇥12 clover matrix
field acting in both spin and color space,1 corresponding to
a first order discretization correction; and m is the quark
mass parameter. The indices x and x0 are spacetime indices
(the spin and color indices have been suppressed for brevity).
This matrix acts on a vector consisting of a complex-valued
12-component color-spinor (or just spinor) for each point in
spacetime. We refer to the complete lattice vector as a spinor
field.

Since M is a large sparse matrix, an iterative Krylov
solver is typically used to obtain solutions to (1), requiring
many repeated evaluations of the sparse matrix-vector product.
The matrix is non-Hermitian, so either Conjugate Gradients
[7] on the normal equations (CGNE or CGNR) is used, or
more commonly, the system is solved directly using a non-
symmetric method, e.g., BiCGstab [8]. Even-odd (also known

1Each clover matrix has a Hermitian block diagonal, anti-Hermitian block
off-diagonal structure, and can be fully described by 72 real numbers.

Fig. 1. The nearest neighbor stencil part of the lattice Dirac operator D,
as defined in (2), in the µ� ⇥ plane. The color-spinor fields are located on
the sites. The SU(3) color matrices Uµ

x are associated with the links. The
nearest neighbor nature of the stencil suggests a natural even-odd (red-black)
coloring for the sites.

as red-black) preconditioning is used to accelerate the solution
finding process, where the nearest neighbor property of the
Dx,x0 matrix (see Fig. 1) is exploited to solve the Schur com-
plement system [9]. This has no effect on the overall efficiency
since the fields are reordered such that all components of
a given parity are contiguous. The quark mass controls the
condition number of the matrix, and hence the convergence of
such iterative solvers. Unfortunately, physical quark masses
correspond to nearly indefinite matrices. Given that current
leading lattice volumes are 323 ⇥ 256, for > 108 degrees of
freedom in total, this represents an extremely computationally
demanding task.

III. GRAPHICS PROCESSING UNITS

In the context of general-purpose computing, a GPU is
effectively an independent parallel processor with its own
locally-attached memory, herein referred to as device memory.
The GPU relies on the host, however, to schedule blocks of
code (or kernels) for execution, as well as for I/O. Data is
exchanged between the GPU and the host via explicit memory
copies, which take place over the PCI-Express bus. The low-
level details of the data transfers, as well as management of
the execution environment, are handled by the GPU device
driver and the runtime system.

It follows that a GPU cluster embodies an inherently het-
erogeneous architecture. Each node consists of one or more
processors (the CPU) that is optimized for serial or moderately
parallel code and attached to a relatively large amount of
memory capable of tens of GB/s of sustained bandwidth. At
the same time, each node incorporates one or more processors
(the GPU) optimized for highly parallel code attached to a
relatively small amount of very fast memory, capable of 150
GB/s or more of sustained bandwidth. The challenge we face is
that these two powerful subsystems are connected by a narrow
communications channel, the PCI-E bus, which sustains at
most 6 GB/s and often less. As a consequence, it is critical
to avoid unnecessary transfers between the GPU and the host.

Dx,x0 =
x x

x

x−

x−

U x



U
x

μ

μ

ν

X[0]

X[1]

6

IEEE FLOATING-POINT NUMBERS

FP32

32-bits per real

24-bit mantissa => Precision

8-bit exponent => Range

ϵ ∼ 5 × 10−8

∈ [1 × 10−38, 3 × 1038]

struct float32_t {

 unsigned int mantissa : 23;

 unsigned int exponent : 8;

 unsigned int sign : 1;

};

FP64

64-bits per real

53-bit mantissa => Precision

8-bit exponent => Range

ϵ ∼ 1 × 10−16

∈ [2 × 10−208, 2 × 10308]

7

QUDA “HALF” PRECISION

Gauge Field

Element range

No need to store exponent

Store the matrix elements in 16-bit fixed-point

Fermion fields

No a priori bound on the elements range

For each site vector store max element to set range

Perform computation in FP32

16-bit local precision with global FP32 range

cf IEEE FP16:

∈ [−1,1]

ϵ ∼ 3 × 10−5

ϵ ∼ 5 × 10−4

struct vector3 {

 int16_t v[6];

 float max;

};

struct matrix {

 int16_t v[18];

};

Staggered fermion

3x3 Link matrix

8

SINGLE GPU PERFORMANCE
HISQ stencil (Chroma, A100-80)

NVIDIA A100,  
CUDA 11.1,  
GCC 11.5

~2350 GB/s

~2400 GB/s

~2400 GB/s

G
FL

O
PS

0

1000

2000

3000

4000

L

8 12 16 20 24 28 32 36 40

half single double

9

SINGLE GPU PERFORMANCE
Wilson-clover stencil (Chroma, A100-80)

NVIDIA A100,  
CUDA 11.1,  
GCC 11.5

~2400 GB/s

~2700 GB/s

~2700 GB/s

G
FL

O
PS

0

1500

3000

4500

6000

L

8 12 16 20 24 28 32 36 40

half single double

10

MIXED PRECISION
Using your bits wisely

do
ub

le

do
ub

le-
sin

gle

do
ub

le-
ha

lf

0.0 5.0 10.0 15.0 20.0 25.0

solution time in siterations

tr
ue

 r
es

id
ua

l (
L 2

 n
or

m
)

MILC/QUDA HISQ CG, mass = 0.001 => ~106κ MILC/QUDA HISQ CG solver

Tesla V100,  
CUDA 10.1,  
GCC 7.3,  
QUDA 1.0

11

MIXED-PRECISION CG

1x10-12

1x10-10

1x10-8

1x10-6

0.0001

0.01

1

0 2000 4000 6000 8000 10000 12000 14000 16000

double
double-single
double-half

double-half alt

1x10-11

1x10-10

1x10-9

12500 13000 13500 14000 14500 15000 15500

double
double-single
double-half

double-half alt

double-half

• Reliable update: periodic

replacement of the residual with
true residual in high precision

• Maintain solution vectors in  
high precision

• Including the partial accumulator

• When true residual is injected,  
re-project the direction vector

• Use Polak-Ribière formula

double-half alt

• Residual replacement strategy of van

der Worst and Ye

12

NEED FOR MORE PRECISION

Mixed-precision solvers have their limits

Can break down once we can longer represent the linear system

Explicit orthogonolization can become unstable

Co-linearity break down (multi-shift solver)

Performance is dictated by memory bandwidth

=> Can we increase precision without increasing the memory traffic?

λmin

λmax
= κ−1 < ϵ

13

MORE PRECISION AT CONSTANT BITS

struct vector3_half {

 int16_t v[6];

 float max;

};

ϵ ∼ 3 × 10−5

struct spinor3_fp32 {

 float v[6];

};

ϵ ∼ 1 × 10−7

struct spinor_20 {

 int20_t v[6];

 uint8_t exponent;

};

ϵ ≳ 3 × 10−6

struct spinor_30 {

 int30_t v[6];

 uint8_t exponent;

};

ϵ ≳ 2 × 10−9

128 bits

192 bits

14

 template <> struct spinor_packed<30> {

 static constexpr unsigned int bitwidth = 30;

 static constexpr float scale = get_scale<bitwidth>();

 unsigned int a_re : bitwidth;

 unsigned int exponent0: 2;

 unsigned int a_im : bitwidth;

 unsigned int exponent1: 2;

 unsigned int b_re : bitwidth;

 unsigned int exponent2: 2;

 unsigned int b_im : bitwidth;

 unsigned int exponent3: 2;

 unsigned int c_re : bitwidth;

 unsigned int dummy0: 2;

 unsigned int c_im : bitwidth;

 unsigned int dummy1: 2;

 spinor_packed() = default;

 template <typename spinor> __host__ __device__ spinor_packed(const spinor &in) { pack(in); }

 template <typename spinor> __host__ __device__ inline void pack(const spinor &in)

 {

 // find the max

 float max[2] = {fabsf(in[0].real()), fabsf(in[0].imag())};

 for (int i = 1; i < 3; i++) {

 max[0] = fmaxf(max[0], fabsf(in[i].real()));

 max[1] = fmaxf(max[1], fabsf(in[i].imag()));

 }

 max[0] = fmaxf(max[0], max[1]);

 // ensures correct max covers all values if input vector is higher precision

 if (sizeof(in[0].real()) > sizeof(float))

 max[0] += max[0] * std::numeric_limits<float>::epsilon();

 // compute rounded up exponent for rescaling

 float_structure fs;

 fs.f = max[0] / scale;

 fs.s.exponent++;

 fs.s.mantissa = 0;

 // pack the exponent

 exponent0 = fs.s.exponent >> 0;

 exponent1 = fs.s.exponent >> 2;

 exponent2 = fs.s.exponent >> 4;

 exponent3 = fs.s.exponent >> 6;

 // rescale and convert to integer

 int vs[6];

 for (int i = 0; i < 3; i++) {

 vs[2 * i + 0] = lrint(in[i].real() / fs.f);

 vs[2 * i + 1] = lrint(in[i].imag() / fs.f);

 }

 unsigned int vu[6];

 for (int i = 0; i < 6; i++) memcpy(vu + i, vs + i, sizeof(int));

 // split into required bitfields

 a_re = vu[0];

 a_im = vu[1];

 b_re = vu[2];

 b_im = vu[3];

 c_re = vu[4];

 c_im = vu[5];

 }

 template <typename spinor> __host__ __device__ inline void unpack(spinor &v)

 {

 // reconstruct 30-bit numbers

 unsigned int vu[6];

 vu[0] = a_re;

 vu[1] = a_im;

 vu[2] = b_re;

 vu[3] = b_im;

 vu[4] = c_re;

 vu[5] = c_im;

 // convert to signed

 int vs[6];

 for (int i = 0; i < 6; i++) memcpy(vs + i, vu + i, sizeof(int));

 // signed extend to 32 bits and rescale

 float_structure fs;

 fs.f = 0;

 fs.s.exponent = exponent0 + (exponent1 << 2) + (exponent2 << 4) + (exponent3 << 6);

 using real = decltype(v[0].real());

 for (int i = 0; i < 3; i++) {

 v[i].real(static_cast<real>(signextend<bitwidth>(vs[2 * i + 0])) * fs.f);

 v[i].imag(static_cast<real>(signextend<bitwidth>(vs[2 * i + 1])) * fs.f);

 }

 }

Hidden in the QUDA accessors

Write once and used library wide

15

HOW WELL DOES IT WORK?
Precision: gauge / fermion / compute

HISQ Dslash element-by-element absolute 
 deviation CDF vs FP64 reference

16

HOW WELL DOES IT WORK?
Precision: gauge / fermion / compute

HISQ Dslash element-by-element absolute 
 deviation CDF vs FP64 reference

17

HOW WELL DOES IT WORK?
Precision: gauge / fermion / compute

HISQ Dslash element-by-element absolute 
 deviation CDF vs FP64 reference

18

HOW WELL DOES IT WORK?
Precision: gauge / fermion / compute

HISQ Dslash element-by-element absolute 
 deviation CDF vs FP64 reference

19

HOW WELL DOES IT WORK?
Precision: gauge / fermion / compute

G
FL

O
PS

0

275

550

825

1100

Category Axis

Precision

16-bit / 16 bit / FP32
16-bit / 20-bit / FP32
FP32 / FP32 / FP32
32-bit / 30-bit / FP32
32-bit / 30-bit / FP64
FP64 / FP64 / FP64

HISQ Dslash Performance

V = 324, Quadro GV100

HISQ Dslash element-by-element absolute 
 deviation CDF vs FP64 reference

Gain two orders of magnitude in precision with no performance cost

20

BICGSTAB(4)
HISQ, V = 363x72, β = 6.3, m = 0.001

Iterations Time (s)

pure double 26064 307

double-single 27308 159

double-int30 26580 150

double-int20 29336 106

double-half 67552 247

21

MULTI-SHIFT CG SOLVER

Used for RHMC and multi-mass solver propagators

Mixed-precision multi-shift CG

Essentially mixed-precision CG on shift 0

Shifted iterated residuals drift away true residual

Refine each shifted system to correct for lack of residual collinearity

Many additional iterations can be required

Prior optimal QUDA strategy

double-single multi-shift-CG

double-half per shift refinement

22

MULTI-SHIFT SOLVER
HISQ RHMC, V = 363x72, β = 6.3, m = 0.001, 11 shifts

Residual history of  
CG refinement 
double-single-half

Residual history of 
CG refinement 
double-int30-int20

Multi-shift CG 
Residual history for shift 0

Significant reduction in  
refinement iterations

prelim
inary

23

SUMMARY

LQCD has different precision requirements than IEEE floating-point

No need to couple the computation precision to storage format

Custom precision formats can do significantly better while having negligible overhead

Dramatic improvement in solver stability is possible

Outlook

Bit-packed storage formats ideal for offline storage, e.g., eigenvectors

For going beyond double precision, we can do better than float128

