Neutrinoless Double Beta Decay from Lattice QCD: The ShortDistance $\pi^{-} \rightarrow \pi^{+} e^{-} e^{-}$Amplitude

Will Detmold, Will Jay, David Murphy, Patrick Oare, Phiala Shanahan Massachusetts Institute of Technology

Neutrinoless double $\beta(0 \nu \beta \beta)$ decay

- $0 \nu \beta \beta$ decay is a hypothetical process:

$$
d d \rightarrow u и e^{-} e^{-},
$$

which, if observed, would:

- Violate lepton number (really $B-L$).
- Show that neutrinos are Majorana particles.

- Experiments looking for $0 \nu \beta \beta$ decay in heavy nuclei (i.e. ${ }^{76} \mathrm{Ge},{ }^{136} \mathrm{Xe}$).
- Direct LQCD calculation of matrix elements in these nuclei not possible.
- Instead, use LQCD to compute inputs to EFT in the form of low-energy constants (LECs), and use EFT to study nuclear $0 \nu \beta \beta$ decay.

$0 \nu \beta \beta$ decay mechanisms

- Models are characterized by whether the decay is induced by non-local interactions (long-distance) or local interactions (short-distance).

$0 \nu \beta \beta$ decay mechanisms

- Models are characterized by whether the decay is induced by non-local interactions (long-distance) or local interactions (short-distance).

Light Majorana exchange

$0 \nu \beta \beta$ decay mechanisms

- Models are characterized by whether the decay is induced by non-local interactions (long-distance) or local interactions (short-distance).

Heavy neutrino exchange

This talk!

$0 \nu \beta \beta$ decay mechanisms

- Models are characterized by whether the decay is induced by non-local interactions (long-distance) or local interactions (short-distance).

Heavy neutrino exchange

> This talk!

$$
\mathscr{L}_{0 \nu \beta \beta}^{\mathrm{SD}}=\frac{G_{F}^{2}}{\Lambda_{\mathrm{LNV}}} \sum_{k} c_{k} \bar{e} e^{\mathrm{c}} \mathcal{O}_{k}
$$

$0 \nu \beta \beta$ decay mechanisms

- Models are characterized by whether the decay is induced by non-local interactions (long-distance) or local interactions (short-distance).

Connection to nuclear $0 \nu \beta \beta$

- Nuclear $0 \nu \beta \beta$ decay induced in chiral EFT (χ EFT) through 3 modes:

Connection to nuclear $0 \nu \beta \beta$

- Nuclear $0 \nu \beta \beta$ decay induced in chiral EFT (χ EFT) through 3 modes:

Connection to nuclear $0 \nu \beta \beta$

- Nuclear $0 \nu \beta \beta$ decay induced in chiral EFT (χ EFT) through 3 modes:

- This work: study $\pi^{-} \rightarrow \pi^{+} e^{-} e^{-}$with $m_{e}=0$.
- Compute the pion matrix elements $\left\langle\pi^{+}\right| \mathcal{O}_{k}\left|\pi^{-}\right\rangle$, where \mathscr{O}_{k} are the LO shortdistance operators.

Connection to nuclear $0 \nu \beta \beta$

- Nuclear $0 \nu \beta \beta$ decay induced in chiral EFT (χ EFT) through 3 modes:

- This work: study $\pi^{-} \rightarrow \pi^{+} e^{-} e^{-}$with $m_{e}=0$.
- Compute the pion matrix elements $\left\langle\pi^{+}\right| \mathcal{O}_{k}\left|\pi^{-}\right\rangle$, where \mathscr{O}_{k} are the LO shortdistance operators.

Short-distance operators for $\pi^{-} \rightarrow \pi^{+} e^{-} e^{-}$

- Five operators \mathcal{O}_{k} contribute to the decay $\pi^{-} \rightarrow \pi^{+} e^{-} e^{-}$at leading order:

Lattice setup

- We have used the domain wall fermions and the Iwasaki gauge action.
- This calculation is performed on 5 ensembles with $N_{f}=2+1$ flavors:

Ensemble	$a m_{l}$	$a m_{s}$	β	$L^{3} \times T \times L_{s}$	$a[\mathrm{fm}]$	$m_{\pi}[\mathrm{MeV}]$
24 I	0.01	0.04	2.13	$24^{3} \times 64 \times 16$	$0.1106(3)$	$432.2(1.4)$
	0.005					$339.6(1.2)$
32 I	0.008				$410.8(1.5)$	
	0.006	0.03	2.25	$32^{3} \times 64 \times 16$	$0.0828(3)$	$359.7(1.2)$
	0.004					$302.0(1.1)$

- These ensembles have been previously used to compute the long-distance $\pi^{-} \rightarrow \pi^{+} e^{-} e^{-}$amplitude by W. Detmold and D. Murphy.

Extracting $\left\langle\pi^{+}\right| \mathcal{O}_{k}\left|\pi^{-}\right\rangle$
$C_{k}\left(t_{-}, t_{x}, t_{+}\right)=\sum_{\mathbf{y}, \mathbf{x}, \mathbf{Z}}\left\langle\chi_{\pi}^{\dagger}\left(\mathbf{y}, t_{+}\right) \mathcal{O}_{k}\left(\mathbf{x}, t_{x}\right) \chi_{\pi}^{\dagger}\left(\mathbf{z}, t_{-}\right)\right\rangle$

Extracting $\left\langle\pi^{+}\right| \mathcal{O}_{k}\left|\pi^{-}\right\rangle$

$$
\begin{aligned}
\chi_{\pi}(z) & =\bar{u}(z) \gamma_{5} d(z) \\
t_{+} & =t_{-}+\Delta t
\end{aligned}
$$

$C_{k}\left(t_{-}, t_{x}, t_{+}\right)=\sum_{\mathbf{y}, \mathbf{x}, \mathbf{z}}\left\langle\chi_{\pi}^{\dagger}\left(\mathbf{y}, t_{+}\right) \mathcal{O}_{k}\left(\mathbf{x}, t_{x}\right) \chi_{\pi}^{\dagger}\left(\mathbf{z}, t_{-}\right)\right\rangle \quad C_{2 \mathrm{pt}}(\Delta t)=\frac{1}{T} \sum_{t_{-}=0}^{T-1} \sum_{\mathrm{x}, \mathrm{y}}\langle 0| \chi_{\pi}\left(\mathbf{x}, t_{+}\right) \chi_{\pi}^{\dagger}\left(\mathbf{y}, t_{-}\right)|0\rangle$

Wall source

Wall source

Extracting $\left\langle\pi^{+}\right| \mathcal{O}_{k}\left|\pi^{-}\right\rangle$

$$
\begin{aligned}
\chi_{\pi}(z) & =\bar{u}(z) \gamma_{5} d(z) \\
t_{+} & =t_{-}+\Delta t
\end{aligned}
$$

$C_{k}\left(t_{-}, t_{x}, t_{+}\right)=\sum_{\mathbf{y}, \mathbf{x}, \mathbf{z}}\left\langle\chi_{\pi}^{\dagger}\left(\mathbf{y}, t_{+}\right) \mathcal{O}_{k}\left(\mathbf{x}, t_{x}\right) \chi_{\pi}^{\dagger}\left(\mathbf{z}, t_{-}\right)\right\rangle \quad C_{2 \mathrm{pt}}(\Delta t)=\frac{1}{T} \sum_{t_{-}=0}^{T-1} \sum_{\mathrm{x}, \mathrm{y}}\langle 0| \chi_{\pi}\left(\mathbf{x}, t_{+}\right) \chi_{\pi}^{\dagger}\left(\mathbf{y}, t_{-}\right)|0\rangle$

Wall source
Point sink
Wall source

Extracting $\left\langle\pi^{+}\right| \mathcal{O}_{k}\left|\pi^{-}\right\rangle$

$$
\begin{aligned}
\chi_{\pi}(z) & =\bar{u}(z) \gamma_{5} d(z) \\
t_{+} & =t_{-}+\Delta t
\end{aligned}
$$

$C_{k}\left(t_{-}, t_{x}, t_{+}\right)=\sum_{\mathbf{y}, \mathbf{x}, \mathbf{z}}\left\langle\chi_{\pi}^{\dagger}\left(\mathbf{y}, t_{+}\right) \mathscr{O}_{k}\left(\mathbf{x}, t_{x}\right) \chi_{\pi}^{\dagger}\left(\mathbf{z}, t_{-}\right)\right\rangle \quad C_{2 \mathrm{pt}}(\Delta t)=\frac{1}{T} \sum_{t_{-}=0}^{T-1} \sum_{\mathbf{x}, \mathbf{y}}\langle 0| \chi_{\pi}\left(\mathbf{x}, t_{+}\right) \chi_{\pi}^{\dagger}\left(\mathbf{y}, t_{-}\right)|0\rangle$

Wall source

Point sink

Wall source

Wall sink

Wall source

$$
O_{k}^{\mathrm{eff}}(t) \equiv 2 m_{\pi} \frac{C_{k}(0, t, 2 t)}{C_{2 \mathrm{pt}}(2 t)-\frac{1}{2} C_{2 \mathrm{pt}}(T / 2) e^{m_{\pi}(2 t-T / 2)}} \xrightarrow{T \gg t \gg 0}\left\langle\pi^{+}\right| \mathcal{O}_{k}\left|\pi^{-}\right\rangle
$$

Bare $O_{k}^{\text {eff }}(t)$ on $32^{3} \times 64$, am $=0.004$ ensemble

Bare $O_{k}^{\text {eff }}(t)$ on $32^{3} \times 64, a m_{\ell}=0.004$ ensemble

Let's fix this!

Renormalization

- Renormalize matrix elements in $\overline{\mathrm{MS}}$ at 3 GeV .
- Compute in RI/sMOM scheme and perturbatively match to $\overline{\mathrm{MS}}$.
- Operators with the same quantum numbers mix under renormalization.

$$
\sigma_{k}^{\overline{\mathrm{MS}}}\left(x ; \mu^{2}, a\right)=Z_{k \ell}^{\overline{\mathrm{MS}}}\left(\mu^{2}, a\right){\sigma_{\ell}^{(0)}}_{\ell}^{(x ; a)}
$$

P. A. Boyle et. al.,
JHEP 10, 054 (2017).

Renormalization

- Renormalize matrix elements in $\overline{\mathrm{MS}}$ at 3 GeV .
- Compute in RI/sMOM scheme and perturbatively match to $\overline{\mathrm{MS}}$.
- Operators with the same quantum numbers mix under renormalization.

Diagonals: order 1 numbers
Off-diagonals: small

$$
\sigma_{k}^{\overline{\mathrm{MS}}}\left(x ; \mu^{2}, a\right)=Z_{k \ell}^{\overline{\mathrm{MS}}}\left(\mu^{2}, a\right) O_{\ell}^{(0)}(x ; a)
$$

[^0]
Renormalization coefficients in $\overline{\mathrm{MS}}$

$Z^{\overline{\mathrm{MS}}}\left(\mu^{2}=9 \mathrm{GeV}^{2}, a=0.11 \mathrm{fm}\right)=\left(\begin{array}{ccccc}0.6068(29) & -0.07630(43) 0 & 0 & 0 & 0 \\ -0.06168(46) & 0.5563(26) & 0 & 0 & 0 \\ 0 & 0 & 0.5219(25) & -0.02778(33) & 0 \\ 0 & 0 & 0.00800(19) & 0.6768(32) & 0 \\ 0 & 0 & 0 & 0 & 0.5290(257)\end{array}\right)$
$Z^{\overline{\mathrm{MS}}}\left(\mu^{2}=9 \mathrm{GeV}^{2}, a=0.08 \mathrm{fm}\right)=\left(\begin{array}{ccccc}0.6727(46) & -0.08926(60) & 0 & 0 & 0 \\ -0.05425(40) & 0.5567(39) & 0 & 0 & 0 \\ 0 & 0 & 0.5379(37) & -0.01399(26) & 0 \\ 0 & 0 & 0.03968(35) & 0.7780(54) & 0 \\ 0 & 0 & 0 & 0 & 0.5993(54)\end{array}\right)$

Chiral extrapolation

- $\left\langle\pi^{+}\right| \Theta_{k}^{\overline{\mathrm{MS}}}\left|\pi^{-}\right\rangle$evaluated at finite a, L, and heavier-than-physical quark mass.
- Use functional model \mathscr{F}_{k} for $\left\langle\pi^{+}\right| \mathcal{O}_{k}^{\overline{\mathrm{MS}}}\left|\pi^{-}\right\rangle$computed in $\chi \mathrm{EFT}$, where $\left(\alpha_{k}, \beta_{k}, c_{k}\right)$ determine the χ EFT LECs.

Chiral extrapolation

- $\left\langle\pi^{+}\right| \mathcal{O}_{k}^{\overline{\mathrm{MS}}}\left|\pi^{-}\right\rangle$evaluated at finite a, L, and heavier-than-physical quark mass.
- Use functional model \mathscr{F}_{k} for $\left\langle\pi^{+}\right| \mathcal{O}_{k}^{\overline{\mathrm{MS}}}\left|\pi^{-}\right\rangle$computed in χ EFT, where $\left(\alpha_{k}, \beta_{k}, c_{k}\right)$ determine the χ EFT LECs.

Finite volume artifacts.

$$
\mathscr{F}_{1}\left(m_{\pi}, f_{\pi}, a, L ; \alpha_{1}, \beta_{1}, c_{1}\right)=\frac{\beta_{1} \Lambda_{\chi}^{4}}{(4 \pi)^{2}}\left[1+\epsilon_{\pi}^{2}\left(\log \epsilon_{\pi}^{2}-1+c_{1}-f_{0}\left(m_{\pi} L\right)+2 f_{1}\left(m_{\pi} L\right)\right)+\alpha_{1} a^{2}\right]
$$

Chiral extrapolation

- $\left\langle\pi^{+}\right| \mathcal{O}_{k}^{\overline{\mathrm{MS}}}\left|\pi^{-}\right\rangle$evaluated at finite a, L, and heavier-than-physical quark mass.
- Use functional model \mathscr{F}_{k} for $\left\langle\pi^{+}\right| \mathcal{O}_{k}^{\overline{\mathrm{MS}}}\left|\pi^{-}\right\rangle$computed in χ EFT, where $\left(\alpha_{k}, \beta_{k}, c_{k}\right)$ determine the χ EFT LECs.

Finite volume artifacts.

$$
\mathscr{F}_{1}\left(m_{\pi}, f_{\pi}, a, L ; \alpha_{1}, \beta_{1}, c_{1}\right)=\frac{\beta_{1} \Lambda_{\chi}^{4}}{(4 \pi)^{2}}\left[1+\epsilon_{\pi}^{2}\left(\log \epsilon_{\pi}^{2}-1+c_{1}-f_{0}\left(m_{\pi} L\right)+2 f_{1}\left(m_{\pi} L\right)\right)+\alpha_{1} a^{2}\right]
$$

- Fits to \mathscr{F}_{k} for $\left(\alpha_{k}, \beta_{k}, c_{k}\right)$ performed with least-squares minimization.

$$
\begin{aligned}
&\left\langle\mathcal{O}_{k}\right\rangle^{\text {shift }}=\left\langle\pi^{+}\right| \mathcal{O}_{k}^{\overline{\mathrm{MS}}}\left|\pi^{-}\right\rangle-\mathscr{F}_{k}\left(m_{\pi}, f_{\pi}, a, L ; \alpha_{k}, \beta_{k}, c_{k}\right) \\
&+\mathscr{F}_{k}\left(m_{\pi}, f_{\pi}^{(\text {phys })}, 0, \infty ; \alpha_{k}, \beta_{k}, c_{k}\right) \\
& 0.02
\end{aligned}
$$

$$
\begin{aligned}
& \left\langle\mathcal{O}_{k}\right\rangle^{\text {shift }}=\left\langle\pi^{+}\right| \mathcal{O}_{k}^{\overline{\mathrm{MS}}}\left|\pi^{-}\right\rangle-\mathscr{F}_{k}\left(m_{\pi}, f_{\pi}, a, L ; \alpha_{k}, \beta_{k}, c_{k}\right) \\
& +\mathscr{F}_{k}\left(m_{\pi}, f_{\pi}^{(\mathrm{phys})}, 0, \infty ; \alpha_{k}, \beta_{k}, c_{k}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \epsilon_{\pi}^{2}=\frac{m_{\pi}^{2}}{8 \pi^{2}\left(f_{\pi}^{\text {phys }}\right)^{2}}
\end{aligned}
$$

Patrick Oare, MIT; hep-lat/2208.05322

Operator	$\left\langle\pi^{+}\right\| \mathcal{O}_{k}^{\overline{\mathrm{MS}}}\left\|\pi^{-}\right\rangle\left(\mathrm{GeV}^{4}\right)$	β_{k}	$\chi^{2} /$ dof
\mathcal{O}_{1}	$-0.01479(96)$	$-1.42(10)$	0.02
$\mathcal{O}_{1^{\prime}}$	$-0.0626(33)$	$-6.04(35)$	0.04
\mathcal{O}_{2}	$-0.0287(16)$	$-2.78(17)$	0.69
$\mathcal{O}_{2^{\prime}}$	$0.00788(52)$	$0.765(55)$	0.11
\mathcal{O}_{3}	$0.0001008(33)$	$0.702(27)$	0.03

Relative contributions

- Completes the first computation of long and short-distance $\pi^{-} \rightarrow \pi^{+} e^{-} e^{-}$in a consistent framework.
- How do they compare?

Relative contributions

- Completes the first computation of long and short-distance $\pi^{-} \rightarrow \pi^{+} e^{-} e^{-}$in a consistent framework.
- How do they compare?

Relative contributions

- Completes the first computation of long and short-distance $\pi^{-} \rightarrow \pi^{+} e^{-} e^{-}$in a consistent framework.
- How do they compare?

$$
\text { Seesaw: } m_{\beta \beta}=c \frac{v^{2}}{\Lambda_{\mathrm{LNV}}} \sim \frac{c \longleftarrow}{G_{F} \Lambda_{\mathrm{LNV}}} \quad \text { Wilson coefficient }
$$

Relative contributions

- Completes the first computation of long and short-distance $\pi^{-} \rightarrow \pi^{+} e^{-} e^{-}$in a consistent framework.
- How do they compare?

$$
\text { Seesaw: } m_{\beta \beta}=c \frac{v^{2}}{\Lambda_{\mathrm{LNV}}} \sim \frac{c \longleftarrow}{G_{F} \Lambda_{\mathrm{LNV}}} \quad \text { Wilson coefficient }
$$

Summary and outlook

- For the 5 leading order short-distance operators \mathcal{O}_{k}, we have computed:
- Pion matrix elements $\left\langle\pi^{+}\right| \mathcal{O}_{k}\left|\pi^{-}\right\rangle$.
- The χ EFT LECs β_{k}.
- First computation of $\left\langle\pi^{+}\right| \mathcal{O}_{k}\left|\pi^{-}\right\rangle$with domain-wall valence and sea quarks.
- Completes the $\pi^{-} \rightarrow \pi^{+} e^{-} e^{-}$computation of hep-lat/2004.07404 (2020).
- Remaining short-distance LECs, $g_{k}^{n n}$ and $g_{k}^{\pi n}$, need to be computed to fully parameterize the decay in $\chi \mathrm{EFT}$.

Backup slides

Nuclear matrix elements (many-body)

Long-distance NMEs

[^1]Prospects [nucl-ex/1902.04097]

Short-distance NMEs (heavy neutrino exchange)

Dell'Oro et. al., 0 $2 \rho \beta$: 2015
Review [hep-ph/1601.07512]

Operators for short-distance $0 \nu \beta \beta$

- Classify operators O constructed from SM fields with [O] >4 which can contribute to $0 \nu \beta \beta$. Schematically:

$$
(2 \mathrm{u} \text { fields }) \times(2 \mathrm{~d} \text { fields }) \times(2 \mathrm{e} \text { fields }) \Longrightarrow[O] \geq 9
$$

- Operators must be Lorentz invariant and obey SM gauge symmetries, including $U(1)_{\mathrm{EM}}$.
- 4-quark part of vector operators match onto $\pi\left(\partial^{\mu} \pi\right) \bar{e} \gamma_{\mu} \gamma_{5} e^{\mathrm{c}}+\mathrm{h} . \mathrm{c} .$, which is suppressed by powers of m_{e} (and set to 0 in this calculation).
- Only positive parity operators contribute.

Excited state fits

- Functional model for excited states:

$$
\begin{gathered}
f_{k}\left(t ;\left\langle\mathcal{O}_{k}\right\rangle, m^{(k)}, \Delta^{(k)}, A_{i}^{(k)}\right) \equiv\left\langle\mathcal{O}_{k}\right\rangle+A_{1}^{(k)} e^{-\Delta^{(k)} t} \\
\quad+A_{2}^{(k)} e^{-\left(m^{(k)}+\Delta\right)(T-2 t)}-A_{3}^{(k)} e^{-2 \Delta^{(k)} t} \\
\quad-A_{4}^{(k)} e^{-\left(m^{(k)}+\Delta\right) T+2\left(2 m^{(k)}+\Delta^{(k)}\right) t}
\end{gathered}
$$

- Bayesian least-squares fit on range $\left[t_{\min }, t_{\max }\right.$] with parameters

$$
m^{(k)} \sim N\left(m_{\pi}, \delta m_{\pi}\right), \Delta^{(k)} \sim N\left(2 m_{\pi}, m_{\pi}\right), A_{k}^{(k)} \sim N(0.0,0.1)
$$

- Covariance matrix obtained from sample covariance via linear shrinkage with parameter λ
- Statistically indistinguishable results under variation of $t_{\min } \in[6,11]$, $t_{\text {max }} \in[30,32]$, and $\lambda \in\{0.6,0.7,0.8,0.9\}$

Comparison to constant fit on 24I, $a m_{\ell}=0.01$

Stability plot for $\left\langle\mathcal{O}_{1}\right\rangle, 32 \mathrm{I} / a m_{\ell}=0.004$

Non-perturbative renormalization (NPR)

- The lattice comes equipped with a UV regulator: a^{-1}.
- Correlation functions computed on the lattice are of bare operators.
- Work in NPR basis to simplify calculation.

$$
\begin{aligned}
& \quad \text { NPR operator basis } \\
& Q_{1}=2\left[\mathfrak{O}_{3}\right]_{+}=V V+A A \\
& Q_{2}=4\left[\mathfrak{O}_{1}\right]_{+}=V V-A A \\
& Q_{3}=-2\left[\mathcal{O}_{1}^{\prime}\right]_{+}=S S-P P \\
& Q_{4}=2\left[\mathcal{O}_{2}\right]_{+}=S S+P P \\
& Q_{5}=4\left[\mathcal{O}_{2}^{\prime}\right]_{+}+2\left[\mathcal{O}_{2}\right]_{+}=T T
\end{aligned}
$$

$$
V V=\left(\bar{u} \gamma_{\mu} d\right)\left[\bar{u} \gamma^{\mu} d\right]
$$

RI/sMOM scheme

- Renormalization condition at scale μ : For an operator with $n-1$ quark fields, impose that its renormalized, amputated n-point function equals its tree level value at kinematical point $p_{1}^{2}=p_{2}^{2}=\left(p_{2}-p_{1}\right)^{2}=\mu^{2}$.
- Example: vector current $V_{\mu}(x)=\bar{q}(x) \gamma_{\mu} q(x)$:

\Longrightarrow Allows us to solve for Z factors!

RI/sMOM details

- RI/sMOM renormalization coefficients computed from the following correlation functions

$$
\left(G_{n}\right)_{a b c d}^{\alpha \beta \gamma \delta}\left(q ; a, m_{\ell}\right) \equiv \frac{1}{V} \sum_{x} \sum_{x_{1}, \ldots, x_{4}} e^{i\left(p_{1} \cdot x_{1}-p_{2} \cdot x_{2}+p_{1} \cdot x_{3}-p_{2} \cdot x_{4}+2 q \cdot x\right)}\langle 0| \bar{d}_{d}^{\delta}\left(x_{4}\right) u_{c}^{\gamma}\left(x_{3}\right) Q_{n}(x) \bar{d}_{b}^{\beta}\left(x_{2}\right) u_{a}^{\alpha}\left(x_{1}\right)|0\rangle
$$

Chiral limit of renormalization coefficients

- $F_{n m}\left(q ; a, m_{\ell}\right)$ must be extrapolated to $m_{\ell} \rightarrow 0$ to determine $F_{n m}(q ; a)$
- Perform a linear extrapolation to $m_{\ell} \rightarrow 0$, including correlations with other renormalization coefficients computed on each ensemble: quark field Z_{q}, vector current Z_{V}, axial current Z_{A}
- Extract $Z_{n m}^{\mathrm{RI}}$ as

$$
\begin{aligned}
& \left.Z_{n m}^{\mathrm{RI} ; Q}\left(\mu^{2} ; a\right)\right|_{\text {sym }}=\left.\left(Z_{q}^{\mathrm{RI}}\left(\mu^{2} ; a\right)\right)^{2}\left[F_{n r}^{(\mathrm{tree})} F_{r m}^{-1}(q ; a)\right]\right|_{\text {sym }} \\
& \text { Tree-level value of } F_{n m}(q ; a)
\end{aligned}
$$

Matching to $\overline{\mathrm{MS}}$

- Must match to a scheme useful for phenomenology: $\overline{\mathrm{MS}}$

Chiral extrapolation

- Use χ EFT to extrapolate to the physical point.
- Write each operator \mathcal{O}_{k} as a function of the meson field $\Sigma=\exp \left(2 i \pi^{a} t^{a} / F\right)$ by promoting τ^{+}to a spurion.

$$
\begin{aligned}
& \mathcal{O}_{1}=\left(\bar{q}_{L} \tau^{+} \gamma^{\mu} q_{L}\right)\left[\bar{q}_{R} \tau^{+} \gamma_{\mu} q_{R}\right] \longrightarrow \operatorname{Tr}\left[\Sigma^{\dagger} \tau_{L L}^{+} \Sigma \tau_{R R}^{+}\right] \longrightarrow \operatorname{Tr}\left[\Sigma^{\dagger} \tau^{+} \Sigma \tau^{+}\right] \\
& \tau_{L L}^{+} \mapsto L \tau_{L L}^{+} L^{\dagger} \tau_{R R}^{+} \mapsto R \tau_{R R}^{+} R^{\dagger}
\end{aligned}
$$

- Spurion analysis yields three independent operator structures:

$$
\begin{aligned}
& \mathcal{O}_{1}, \mathcal{O}_{1}^{\prime} \sim \operatorname{Tr}\left[\Sigma^{\dagger} \tau^{+} \Sigma \tau^{+}\right] \quad \mathcal{O}_{2}, \mathcal{O}_{2}^{\prime} \sim \operatorname{Tr}\left[\Sigma \tau^{+} \Sigma \tau^{+}\right]+\text {h.c. } . \\
& L_{\mu} \equiv \Sigma \partial_{\mu} \Sigma^{\dagger} \xrightarrow{\mathcal{O}_{3} \sim \operatorname{Tr}\left[L_{\mu} \tau^{+} L^{\mu} \tau^{+}\right]+\text {h.c. }}
\end{aligned}
$$

Chiral Extrapolation (unshifted)

Chiral Extrapolation (shifted)

[^0]: P. A. Boyle et. al.,

 JHEP 10, 054 (2017).

[^1]: Dolinski et. al., $0 \nu \beta \beta$: Status and

