Gradient flow scale setting with tree-level improvement

Anna Hasenfratz¹, Christian Schneider², and Oliver Witzel² ¹Department of Physics, University of Colorado, Boulder, Colorado 80309, USA

²Theoretische Physik 1, Universität Siegen, 57068 Siegen, Germany

INTRODUCTION

Ensembles

	eta	L/a	T/a	am_l	$am_s^{\rm sea}$	am_{res}
C1	2.13	24	64	0.005	0.040	0.003154(15)
C2	2.13	24	64	0.010	0.040	0.003154(15)
M1	2.25	32	64	0.004	0.030	0.0006697(34)
M2	2.25	32	64	0.006	0.030	0.0006697(34)
M3	2.25	32	64	0.008	0.030	0.0006697(34)
F1	2.31	48	96	0.002144	0.02144	0.0009679(21)
X1	2.37	32	64	0.0047	0.0186	0.0006296(58)

- Precise determination of the lattice scale is crucial for all physics
- Gradient flow scales are easy to calculate and precise,
- however, $\sqrt{t_0}$ [1] and w_0 [2] can exhibit large cutoff effects
- Study discretization errors of $\sqrt{t_0}$ and w_0
- RBC-UKQCD's 2+1 flavor Shamir domain-wall fermion and Iwasaki gauge field ensembles [3-7]; Wilson gradient flow measurements [1]
- -Three operators: Clover (C), Wilson (W), and Symanzik (S) with and without tree-level normalization (tln) corrections [8]

Tree-level Normalization

- Removes cutoff effects at tree-level for given gauge action, gradient flow, and operator
- Replace $t^2 \langle E(t) \rangle$ with $t^2 \langle E(t) \rangle / C(t, L, T)$
- Determine C(t, L, T) perturbatively [8]
- Reduces cutoff effects between operators for $\sqrt{t_0}$
- Notable improvement for determinations of the step-scaling β function for SU(3) with $N_f = 4$, 6, 8, 10, 12 [10-12]
- Does not improve strong coupling loop-corrections

Scale $\sqrt{t_0}$ on M1

• Operator with small/no cutoff effects should predict the same relative scale, independent of where the scale is defined • Ratios of scales should be independent of the lattice spacing

• $\sqrt{t_0/t_2^C}$ vs. a^2/t_2^C suggests Clover operator < 2% cutoff effects • Symanzik and Wilson operators have about 5% cutoff effects

Comparison of $\sqrt{t_0^C} / w_0^C$

• Clearly resolved quark mass dependence

• TIn reduces cutoff effects between different operators

Continuum limit of chirally-extrapolated data

Some gradient flow scales show large discretization effects

• Different operators for w_0 show little cutoff effects

- For Iwasaki gauge with Wilson flow w scales are preferred
- Discretization effects between different operators are subdominant
- Tree-level normalization reduces spread between different operators, but does not lead to an overall improvement
- Consistent continuum limit when extrapolating three finest ensembles, coarsest ensembles need higher order corrections

0.76											
0.000	0.002	0.004	0.006	0.008	0.010	0.012	0.014				
$a(m_{res}+m_l)$											

References

Acknowledgement We thank RBC-UKQCD for generating and making the 2+1 flavor gauge field ensembles available. Gradient flow measurements are calculated using QLUA [13] on the OMNI compute cluster at University Siegen. The used gauge field configurations were generated on the DiRAC Blue Gene Q system at the University of Edinburgh, part of the DiRAC Facility, funded by BIS National E-infrastructure grant ST/K000411/1 and STFC grants ST/H008845/1, ST/K005804/1 and ST/K005790/1, the BG/Q computers of the RIKEN-BNL Research Center, and in part on facilities of the USQCD Collaboration, which are funded by the Office of Science of the U.S. Department of Energy.