

Implications of gradient flow on the static force

The 39th International Symposium on Lattice Field Theory (Lattice 2022) Julian Frederic Mayer-Steudte

In collaboration with Nora Brambilla (TUM) Viljami Leino (TUM) Antonio Vairo (TUM)

Bonn, 10th of August 2022

1 Motivation

2 Setup

3 Lattice results

4 Conclusion

Interested in the QCD static energy of a quark-antiquark pair *E*(*r*)
 Given by the Wilson loop

$$E(r) = -\lim_{T \to \infty} \frac{\ln \langle \operatorname{Tr}(W_{r \times T}) \rangle}{T}, \qquad \qquad W_{r \times T} = P\left\{ \exp\left(i \oint_{r \times T} dz_{\mu} g A_{\mu}\right) \right\}$$

Interested in the QCD static energy of a quark-antiquark pair *E*(*r*)
 Given by the Wilson loop

$$E(r) = -\lim_{T \to \infty} \frac{\ln \langle \operatorname{Tr}(W_{r \times T}) \rangle}{T}, \qquad \qquad W_{r \times T} = P\left\{ \exp\left(i \oint_{r \times T} dz_{\mu} g A_{\mu}\right) \right\}$$

Can be described by perturbation theory and measured on the lattice For $r\Lambda_{\rm QCD}\ll 1$ both descriptions should agree

Interested in the QCD static energy of a quark-antiquark pair *E*(*r*)
 Given by the Wilson loop

$$E(r) = -\lim_{T \to \infty} \frac{\ln \langle \operatorname{Tr}(W_{r \times T}) \rangle}{T}, \qquad \qquad W_{r \times T} = P\left\{ \exp\left(i \oint_{r \times T} dz_{\mu} g A_{\mu}\right) \right\}$$

Can be described by perturbation theory and measured on the lattice For $r\Lambda_{\rm QCD}\ll 1$ both descriptions should agree

can be used for precise $\alpha_S\text{-}\mathrm{running}$ extraction by comparing PT and lattice

Perturbative form of E(r):

$$E(r) = \Lambda_S - \frac{C_F \alpha_S}{r} \left(1 + \# \alpha_S + \# \alpha_S^2 + \# \alpha_S^3 + \# \alpha_S^3 \ln \alpha_S + \dots \right)$$

• E(r) is known up to N³LL

Perturbative form of E(r):

$$E(r) = \Lambda_S - \frac{C_F \alpha_S}{r} \left(1 + \# \alpha_S + \# \alpha_S^2 + \# \alpha_S^3 + \# \alpha_S^3 \ln \alpha_S + \dots \right)$$

- E(r) is known up to N³LL
- The perturbative expansion affected by a renormalon ambiguity of order Λ in PT side
- On lattice: Linear UV divergence
- All interesting physics is in the slope

Perturbative form of E(r):

$$E(r) = \Lambda_S - \frac{C_F \alpha_S}{r} \left(1 + \# \alpha_S + \# \alpha_S^2 + \# \alpha_S^3 + \# \alpha_S^3 \ln \alpha_S + \dots \right)$$

- E(r) is known up to N³LL
- The perturbative expansion affected by a renormalon ambiguity of order Λ in PT side
- On lattice: Linear UV divergence
- All interesting physics is in the slope

take a derivative of E(r) for the force $F(r) = \partial_r E(r)$

Outline

1 Motivation

2 Setup

3 Lattice results

4 Conclusion

Direct measurement of F(r):

(A. Vairo Mod. Phys. Lett. A 31 (2016) & EPJ Web Conf. 126 (2016), Brambilla et.al.PRD63 (2001))

$$\begin{split} F(r) &= -\lim_{T \to \infty} \frac{i}{\langle \operatorname{Tr}(W_{r \times T}) \rangle} \left\langle \operatorname{Tr} \left(P \left\{ \exp\left(i \oint_{r \times T} dz_{\mu} g A_{\mu}\right) \hat{\mathbf{r}} \cdot g \mathbf{E}(\mathbf{r}, t^{*}) \right\} \right) \right\rangle \\ &= \frac{\langle \operatorname{Tr}\{PW_{r \times T} g E_{j}(r, t^{*})\} \rangle}{\langle \operatorname{Tr}\{PW_{r \times T}\} \rangle} \end{split}$$

Direct measurement of F(r):

(A. Vairo Mod. Phys. Lett. A 31 (2016) & EPJ Web Conf. 126 (2016), Brambilla et.al.PRD63 (2001))

$$\begin{aligned} F(r) &= -\lim_{T \to \infty} \frac{i}{\langle \operatorname{Tr}(W_{r \times T}) \rangle} \left\langle \operatorname{Tr} \left(P \left\{ \exp\left(i \oint_{r \times T} dz_{\mu} g A_{\mu}\right) \hat{\mathbf{r}} \cdot g \mathbf{E}(\mathbf{r}, t^{*}) \right\} \right) \right\rangle \\ &= \frac{\langle \operatorname{Tr} \{ P W_{r \times T} g E_{j}(r, t^{*}) \} \rangle}{\langle \operatorname{Tr} \{ P W_{r \times T} \} \rangle} \end{aligned}$$

- Chromoelectric field E inserted into Wilson loop
- The insertion location t^* is arbitrary \rightarrow reduce boundary terms and choose $t^* = T/2$
- Can be used to extract α_S without the usual renormalon issues and for scale setting

Direct measurement of F(r):

(A. Vairo Mod. Phys. Lett. A 31 (2016) & EPJ Web Conf. 126 (2016), Brambilla et.al.PRD63 (2001))

$$\begin{aligned} F(r) &= -\lim_{T \to \infty} \frac{i}{\langle \operatorname{Tr}(W_{r \times T}) \rangle} \left\langle \operatorname{Tr} \left(P \left\{ \exp\left(i \oint_{r \times T} dz_{\mu} g A_{\mu}\right) \hat{\mathbf{r}} \cdot g \mathbf{E}(\mathbf{r}, t^{*}) \right\} \right) \right\rangle \\ &= \frac{\langle \operatorname{Tr} \{ P W_{r \times T} g E_{j}(r, t^{*}) \} \rangle}{\langle \operatorname{Tr} \{ P W_{r \times T} \} \rangle} \end{aligned}$$

- Chromoelectric field E inserted into Wilson loop
- The insertion location t^* is arbitrary \rightarrow reduce boundary terms and choose $t^* = T/2$
- Can be used to extract α_S without the usual renormalon issues and for scale setting

• On the lattice: modifying Wilson loop with a discretized *E*-field insertion

Clover discretization of *E*:

$$E_{i} = \frac{1}{2iga^{2}} \left(\Pi_{i0} - \Pi_{i0}^{\dagger} \right) \qquad \qquad \Pi_{\mu\nu} = \frac{1}{4} \left(P_{\mu,\nu} + P_{\nu,-\mu} + P_{-\mu,-\nu} + P_{-\nu,\mu} \right)$$

 \blacksquare E has finite size on the lattice

Clover discretization of E:

$$E_{i} = \frac{1}{2iga^{2}} \left(\Pi_{i0} - \Pi_{i0}^{\dagger} \right) \qquad \qquad \Pi_{\mu\nu} = \frac{1}{4} \left(P_{\mu,\nu} + P_{\nu,-\mu} + P_{-\mu,-\nu} + P_{-\nu,\mu} \right)$$

- E has finite size on the lattice
- The self energy contribution of E converges slowly to continuum (See e.g. Lepage et.al.PRD48 (1993), G. Bali Phys. Rept. 343 (2001), and many others...) \rightarrow need renormalization Z_E

Clover discretization of E:

$$E_{i} = \frac{1}{2iga^{2}} \left(\Pi_{i0} - \Pi_{i0}^{\dagger} \right) \qquad \qquad \Pi_{\mu\nu} = \frac{1}{4} \left(P_{\mu,\nu} + P_{\nu,-\mu} + P_{-\mu,-\nu} + P_{-\nu,\mu} \right)$$

E has finite size on the lattice

The self energy contribution of E converges slowly to continuum (See e.g. Lepage et.al.PRD48 (1993), G. Bali Phys. Rept. 343 (2001), and many others...) \rightarrow need renormalization Z_E

We use **Gradient flow** for targeting the renormalization and the signal to noise ratio problems, new scale: flowtime τ_F , flowradius $\sqrt{8\tau_F}$, flowtime ratio τ_F/r^2

The statice force is complementary to the static energy extraction from Wilson loops

- The statice force is complementary to the static energy extraction from Wilson loops
- We measures the force directly with the *E*-field insertion in Wilson loops and Polyakov loops first, with multilevel so far

(Brambilla et. al. Phys.Rev.D 105 (2022))

- The statice force is complementary to the static energy extraction from Wilson loops
- We measures the force directly with the *E*-field insertion in Wilson loops and Polyakov loops first, with multilevel so far

(Brambilla et. al. Phys.Rev.D 105 (2022))

which introduces an additional factor Z_E

One to one comparison to $\partial_r E(r)$ is possible

- The statice force is complementary to the static energy extraction from Wilson loops
- We measures the force directly with the *E*-field insertion in Wilson loops and Polyakov loops first, with multilevel so far

(Brambilla et. al. Phys.Rev.D 105 (2022))

- One to one comparison to $\partial_r E(r)$ is possible
- Here we address first time the force measurement with gradient flow

- The statice force is complementary to the static energy extraction from Wilson loops
- We measures the force directly with the *E*-field insertion in Wilson loops and Polyakov loops first, with multilevel so far

(Brambilla et. al. Phys.Rev.D 105 (2022))

- One to one comparison to $\partial_r E(r)$ is possible
- Here we address first time the force measurement with gradient flow
- This study is a preparation for similar objects with field insertions needed it NREFTs

- The statice force is complementary to the static energy extraction from Wilson loops
- We measures the force directly with the *E*-field insertion in Wilson loops and Polyakov loops first, with multilevel so far

(Brambilla et. al. Phys.Rev.D 105 (2022))

- One to one comparison to $\partial_r E(r)$ is possible
- Here we address first time the force measurement with gradient flow
- This study is a preparation for similar objects with field insertions needed it NREFTs

Setup: Continuum results

Julian Frederic Mayer-Steudte | Static force with gradient flow | 10/08/2022

Setup: Continuum results

- One-loop calculation of the flowed force is known: (Hee Sok Chung et. al. JHEP01(2022)184 (2022))
 - \Box Here: scale $\mu = 1/r$
 - Slight difference to $\mu = 1/\sqrt{r^2 + 8\tau_F}$
 - □ The one-loop behavior should dominate the small τ_F regime

Julian Frederic Mayer-Steudte | Static force with gradient flow | 10/08/2022

Setup: Continuum results

- One-loop calculation of the flowed force is known: (Hee Sok Chung et. al. JHEP01(2022)184 (2022))
 - \Box Here: scale $\mu = 1/r$
 - Slight difference to $\mu = 1/\sqrt{r^2 + 8\tau_F}$
 - □ The one-loop behavior should dominate the small τ_F regime

Setup: Continuum results (some extra details)

- One-loop calculation of the flowed force is known: (Hee Sok Chung et. al. JHEP01(2022)184 (2022))
- Exact form and representations of the individual functions can be found in the paper

Setup: Continuum results (some extra details)

- One-loop calculation of the flowed force is known: (Hee Sok Chung et. al. JHEP01(2022)184 (2022))
- Exact form and representations of the individual functions can be found in the paper
 Small *\(\tau_F\)* exansion:

$$r^{2}F(r;\tau_{F}) \approx r^{2}F(r;\tau_{F}=0) + \frac{\alpha_{S}^{2}C_{F}}{4\pi} \underbrace{\left[-12\beta_{0} - 6C_{A}c_{L}\right]}_{8n_{f}} \frac{\tau_{F}}{r^{2}} \qquad c_{L} = -\frac{22}{3}$$

Setup: Continuum results (some extra details)

- One-loop calculation of the flowed force is known: (Hee Sok Chung et. al. JHEP01(2022)184 (2022))
- Exact form and representations of the individual functions can be found in the paper
 Small τ_F exansion:

$$r^{2}F(r;\tau_{F}) \approx r^{2}F(r;\tau_{F}=0) + \frac{\alpha_{S}^{2}C_{F}}{4\pi} \underbrace{\left[-12\beta_{0} - 6C_{A}c_{L}\right]}_{8n_{f}} \frac{\tau_{F}}{r^{2}} \qquad c_{L} = -\frac{22}{3}$$

At small flowtime the force is constant in pure gauge $(n_f = 0)$

Outline

1 Motivation

2 Setup

3 Lattice results

4 Conclusion

Lattice results: setup and parameters

Parameters:

N_S	N_T	eta	a [fm]	$N_{\rm conf}$	Label
20	40	6.284	0.060	6000	L20
26	52	6.481	0.046	6000	L26
30	60	6.594	0.040	6000	L30
40	80	6.816	0.030	2700	L40

Pure gauge configuration produced with overrelaxation and heatbath

Scale setting with $\ln(a/r_0) = -1.6804 - 1.7331(\beta - 6) + 0.7849(\beta - 6)^2 - 0.4428(\beta - 6)^3$ (1S. Necco & R. Sommer. Nucl. Phys. B622 (2002))

Gradient flow with fixed and adaptive solver, with Symanzik action

Lattice results: Crucial steps

Lattice results: Crucial steps

Extraction of the $\lim_{T\to\infty}$ - limit

(William I. Jay, Ethan T. Neil Phys. Rev. D 103, 114502 (2021))

at each fixed separation r and fixed flowtime au_F or flowtime ratio au_F/r^2

Lattice results: Crucial steps

Extraction of the $\lim_{T\to\infty}$ - limit (William I. Jay, Ethan T. Neil Phys. Rev. D 103, 114502 (2021)) at each fixed separation r and fixed flowtime τ_F or flowtime ratio τ_F/r^2

Working out the continuum limit

Nonperturbative determination of Z_E :

$$Z_E(r) = \frac{\partial_r E(r)}{F(r)}$$

Nonperturbative determination of Z_E :

$$Z_E(r) = \frac{\partial_r E(r)}{F(r)}$$

- Z_E has low r-dependence (Brambilla et. al. Phys.Rev.D 105 (2022))
- Examine the flowed Z_E

Nonperturbative determination of Z_E :

$$Z_E(r) = \frac{\partial_r E(r)}{F(r)}$$

- Z_E has low r-dependence (Brambilla et. al. Phys.Rev.D 105 (2022))
- Examine the flowed Z_E
- $\blacksquare \ Z_E \to 1 \text{ for flowradius } \sqrt{8\tau_F} > a$

Nonperturbative determination of Z_E :

$$Z_E(r) = \frac{\partial_r E(r)}{F(r)}$$

- Z_E has low r-dependence (Brambilla et. al. Phys.Rev.D 105 (2022))
- Examine the flowed Z_E

$$Z_E \rightarrow 1$$
 for flowradius $\sqrt{8\tau_F} > a$

Gradient flow reduces discretization effects of field insertions for $\sqrt{8\tau_F} > a$

Lattice results: Continuum results at large *r*

Lattice results: Continuum results at large r

Lattice results: Continuum results at large r

Cornell fit
$$r^2 F(r) = A + \sigma r^2$$

 $\sigma = 5.18 \dots 5.23 \text{ fm}^{-2}$, literature: 5.5 fm⁻²
 $A = 0.2853 \dots 0.2954$

Julian Frederic Mayer-Steudte | Static force with gradient flow | 10/08/2022

0.45 0.50

0.55 0.60

0.40

r/[fm]

Naive constant fit (bright points) not good ($Z_E \neq 1$)

- Naive constant fit (bright points) not good ($Z_E \neq 1$)
- Combined fit with Λ_0 as fit parameter is better for zero flowtime limit (dashed and dotted points)

- Naive constant fit (bright points) not good ($Z_E \neq 1$)
- Combined fit with Λ₀ as fit parameter is better for zero flowtime limit (dashed and dotted points)

Results:

F2I: $\Lambda_0 = 0.2731 \text{ GeV}$ F3ILus: $\Lambda_0 = 0.2666 \text{ GeV}$ F1I: $\Lambda_0 = 0.3033 \text{ GeV}$ A proper error estimation is still

pending...

- Naive constant fit (bright points) not good ($Z_E \neq 1$)
- Combined fit with Λ₀ as fit parameter is better for zero flowtime limit (dashed and dotted points)

Results:

F2I: $\Lambda_0 = 0.2731 \text{ GeV}$ F3ILus: $\Lambda_0 = 0.2666 \text{ GeV}$ F1I: $\Lambda_0 = 0.3033 \text{ GeV}$ A proper error estimation is

A proper error estimation is still pending...

Constant fit is too naive for small r

Results (in GeV):

0.44

0 42

--- F2I fit

--- F2I fit

 $\tau_{e}/r^{2} = 0.0212$

 $\tau_F/r^2 = 0.0242$

 $\tau_{e}/r^{2} = 0.0288$

пΠ

Results (in GeV):

0.44

0 42

--- F2I fit

--- F2I fit

 $\tau_c/r^2 = 0.0212$

 $\tau_F/r^2 = 0.0242$

 $\tau_c/r^2 = 0.0288$

 Λ_0 varies little, but is within the FLAG error

Julian Frederic Mayer-Steudte | Static force with gradient flow | 10/08/2022

пΠ

Outline

1 Motivation

2 Setup

3 Lattice results

4 Conclusion

Conclusion

- Summary ond observations:
 - Gradient flow reduces effectively discretization effects
 - Gradient flow improves qualitatively the signal to noise ratio
 - Good preparation for future applications in NREFTs

Conclusion

ТШ

- Summary ond observations:
 - Gradient flow reduces effectively discretization effects
 - Gradient flow improves qualitatively the signal to noise ratio
 - Good preparation for future applications in NREFTs
- For the future:
 - \Box Proper Λ extraction
 - Go to finer lattices
 - Other operators with field insertions
 - Extend to dynamical fermions

Thank you for your attention!

r_0 scale flow dependence

 $\begin{bmatrix} 13 \\ 12 \\ 10 \\ 9 \\ 8 \\ 0.00 \\ 0.01 \\ 0.02 \\ 0.03 \\ 0.04 \\ 0.04 \\ 0.03 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.03 \\ 0.04 \\ 0.0$

Figure 1 The r_0 -scale in lattice units for the L20 lattice. The horizontal line corresponds to the expected value.

Figure 2 The r_0 -scale in lattice units for the L30 lattice. The horizontal line corresponds to the expected value.

Tree level behavior

1.00 0.95 eLatt 'F(r, τ_F)^{Tr} 0.90 0.85 F(r, τ_F)^{Tre} 0.80 × $= 0.1028, \tau_F/r^2 = 0.0327$ 0.75 r = 0.2159, $\tau_c/r^2 = 0.0218$ L40 130 L26 L20 lattice spacing a

Figure 3 The ratio of the tree level forces in continuum and on the lattice at zero flowtime.

Figure 4 The ratio of the tree level forces in continuum and on the lattice at finite flowtime.