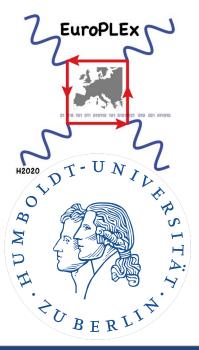
A Quenched Exploration of Heavy Quarks Moments and their Perturbative Expansion



Leonardo Chimirri,

Rainer Sommer

HU Berlin - DESY

leonardo.chimirri@desy.de

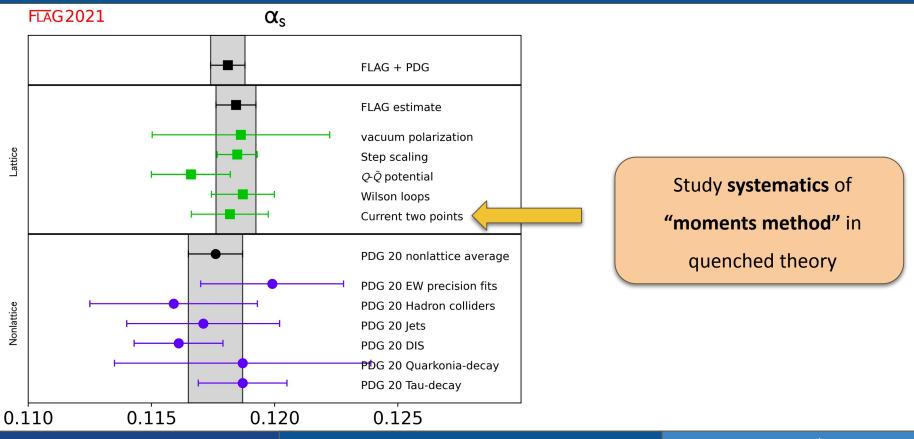
August 11th, 2022 39th International Lattice Conference

Thanks to N. Husung, T. Korzec, S. Schaefer, B. Strassberger.

Leonardo Chimirri (DESY - HU)

HQ Moments and Perturbation Theory

The Strong Coupling



Leonardo Chimirri (DESY - HU)

HQ Moments and Perturbation Theory

- Moments method, pioneered by Bochkarev, de Forcrand [*hep-lat/9505025*] and HPQCD in 2008
 [*hep-lat/0805.2999*].
- The observables are <u>derivatives of the vacuum polarization</u> with heavy quarks (*h*, *h*') at CoM energy $q^2 = 0$.
- $m \leftrightarrow$ scale of observable.

$$\Pi(q^{2},m) = i \int d^{4}x \, e^{iq \cdot x} \langle 0| \, \mathscr{T} \left\{ J^{\dagger}(x,m)J(0,m) \right\} |0\rangle$$
$$\mathcal{M}_{n}(m) = \frac{1}{n!} \left(\frac{\partial}{\partial q^{2}} \right)^{n} \Pi(q^{2},m) \Big|_{q^{2}=0} \qquad [\mathcal{M}_{n}] = \operatorname{En.}^{4-n}$$
$$\overbrace{\overline{h}}^{h'}$$

- Moments method, pioneered by Bochkarev, de Forcrand [*hep-lat/9505025*] and HPQCD in 2008
 [*hep-lat/0805.2999*].
- The observables are <u>derivatives of the vacuum polarization</u> with heavy quarks (*h*, *h'*) at CoM energy $q^2 = 0$.
- $m \leftrightarrow$ scale of observable.

$$\Pi(q^{2},m) = i \int d^{4}x \, e^{iq \cdot x} \, \langle 0| \, \mathscr{T} \left\{ J^{\dagger}(x,m)J(0,m) \right\} | 0 \rangle$$

$$\mathcal{M}_{n}(m) = \frac{1}{n!} \left(\frac{\partial}{\partial q^{2}} \right)^{n} \Pi(q^{2},m) \Big|_{q^{2}=0} \qquad [\mathcal{M}_{n}] = \operatorname{En.}^{4-n}$$

$$\tilde{h}$$
Object known to high
(4-loop) orders in PT
[Maier, Maierhöfer, Marquard,
Smirnov '10]

- Moments method, pioneered by Bochkarev, de Forcrand [*hep-lat/9505025*] and HPQCD in 2008
 [*hep-lat/0805.2999*].
- The observables are <u>derivatives of the vacuum polarization</u> with heavy quarks (*h*, *h'*) at CoM energy $q^2 = 0$.
- $m \leftrightarrow$ scale of observable.

$$\Pi(q^{2},m) = i \int d^{4}x \, e^{iq \cdot x} \, \langle 0| \, \mathscr{T} \left\{ J^{\dagger}(x,m)J(0,m) \right\} | 0 \rangle$$

$$\mathcal{M}_{n}(m) = \frac{1}{n!} \left(\frac{\partial}{\partial q^{2}} \right)^{n} \Pi(q^{2},m) \Big|_{q^{2}=0} \qquad [\mathcal{M}_{n}] = \operatorname{En.}^{4-n}$$

$$\mathcal{M}_{n}(m) = \int_{-\infty}^{\infty} dt \, t^{n}G(t,m), \quad G(t;m) = \int d^{3}x \left\langle J^{\dagger}(x;m)J(0;m) \right\rangle$$

$$\mathcal{M}_{n}(t) = \int_{-\infty}^{\infty} dt \, t^{n}G(t,m), \quad G(t;m) = \int d^{3}x \left\langle J^{\dagger}(x;m)J(0;m) \right\rangle$$

- Moments method, pioneered by Bochkarev, de Forcrand [*hep-lat/9505025*] and HPQCD in 2008 [*hep-lat/0805.2999*].
- The observables are <u>derivatives of the vacuum polarization</u> with heavy quarks (*h*, *h'*) at CoM energy $q^2 = 0$.
- $m \leftrightarrow$ scale of observable.

$$\Pi(q^{2},m) = i \int d^{4}x \, e^{iq \cdot x} \langle 0| \, \mathscr{T} \left\{ J^{\dagger}(x,m)J(0,m) \right\} |0\rangle$$

$$\mathcal{M}_{n}(m) = \frac{1}{n!} \left(\frac{\partial}{\partial q^{2}} \right)^{n} \Pi(q^{2},m) \Big|_{q^{2}=0} \qquad [\mathcal{M}_{n}] = \operatorname{En.}^{4-n}$$

$$\mathcal{M}_{n}(m) = \int_{-\infty}^{\infty} dt \, t^{n}G(t,m) , \quad G(t;m) = \int d^{3}x \left\langle J^{\dagger}(x;m)J(0;m) \right\rangle$$

Object known to high (4-loop) orders in <u>PT</u> [Maier, Maierhöfer, Marquard, Smirnov '10]

★
$$J_{PS}(x) = i\mu_{tm}\overline{\psi}_h(x)\gamma_5\psi_{h'}(x)$$
 is renormalization
independent in certain regularizations

★ At maximal twist: $Z_P Z_\mu = 1$

- Moments method, pioneered by Bochkarev, de Forcrand [*hep-lat/9505025*] and HPQCD in 2008 [*hep-lat/0805.2999*].
- The observables are <u>derivatives of the vacuum polarization</u> with heavy quarks (*h*, *h'*) at CoM energy $q^2 = 0$.

 \star

• $m \leftrightarrow$ scale of observable.

$$\Pi(q^{2},m) = i \int d^{4}x \, e^{iq \cdot x} \, \langle 0| \, \mathscr{T} \left\{ J^{\dagger}(x,m)J(0,m) \right\} | 0 \rangle$$

$$\mathcal{M}_{n}(m) = \frac{1}{n!} \left(\frac{\partial}{\partial q^{2}} \right)^{n} \Pi(q^{2},m) \Big|_{q^{2}=0} \qquad [\mathcal{M}_{n}] = \operatorname{En}^{4-n}$$

$$\mathcal{M}_{n}(m) = \int_{-\infty}^{\infty} dt \, t^{n}G(t,m), \quad G(t;m) = \int d^{3}x \, \left\langle J^{\dagger}(x;m)J(0;m) \right\rangle$$

$$\mathcal{M}_{n}(m) = \int_{-\infty}^{\infty} dt \, t^{n}G(t,m), \quad G(t;m) = \int d^{3}x \, \left\langle J^{\dagger}(x;m)J(0;m) \right\rangle$$

- ★ $J_{PS}(x) = i\mu_{tm}\overline{\psi}_h(x)\gamma_5\psi_{h'}(x)$ is <u>renormalization</u> <u>independent</u> in certain regularizations
- ★ At maximal twist: $Z_P Z_\mu = 1$

Maximal twist also ensures <u>automatic O(a)-improvement.</u>

- Moments method, pioneered by Bochkarev, de Forcrand [*hep-lat/9505025*] and HPQCD in 2008 [*hep-lat/0805.2999*].
- The observables are <u>derivatives of the vacuum polarization</u> with heavy quarks (*h*, *h'*) at CoM energy $q^2 = 0$.
- $m \leftrightarrow$ scale of observable.

$$\Pi(q^{2},m) = i \int d^{4}x \, e^{iq \cdot x} \, \langle 0 | \, \mathscr{T} \left\{ J^{\dagger}(x,m)J(0,m) \right\} | 0 \rangle$$

$$\mathcal{M}_{n}(m) = \frac{1}{n!} \left(\frac{\partial}{\partial q^{2}} \right)^{n} \Pi(q^{2},m) \Big|_{q^{2}=0} \qquad [\mathcal{M}_{n}] = \operatorname{En.}^{4-n}$$

$$\mathcal{M}_{n}(m) = \int_{-\infty}^{\infty} dt \, t^{n}G(t,m), \quad G(t;m) = \int d^{3}x \, \left\langle J^{\dagger}(x;m)J(0;m) \right\rangle$$

$$J_{PS}(x) = i\mu_{tm}\overline{\psi}_{h}(x)\gamma_{5}\psi_{h'}(x) \text{ is } \underline{renormalization} \\ \underline{independent} \text{ in certain regularizations} \\ \operatorname{At maximal twist:} \quad Z_{P}Z_{\mu} = 1$$

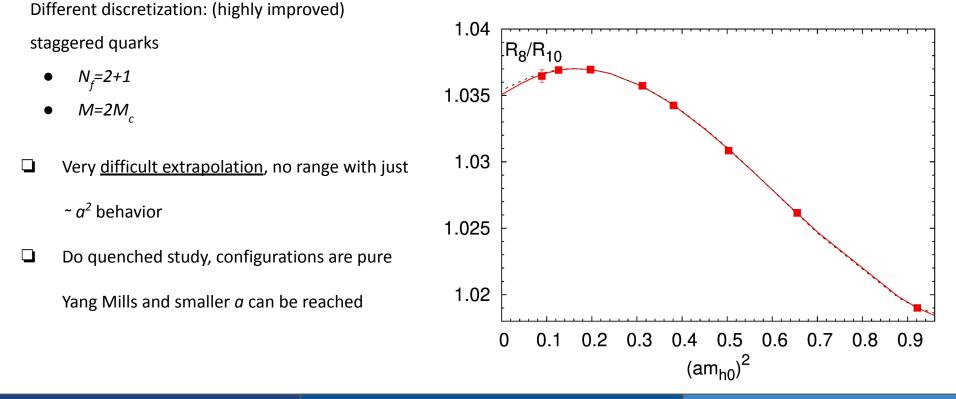
$$\mathcal{M}_{n}(m) = \int_{-\infty}^{\infty} dt \, t^{n}G(t,m), \quad M(t;m) = \int d^{3}x \, \left\langle J^{\dagger}(x;m)J(0;m) \right\rangle$$

★

 \star

Disclaimer: Study the Systematics

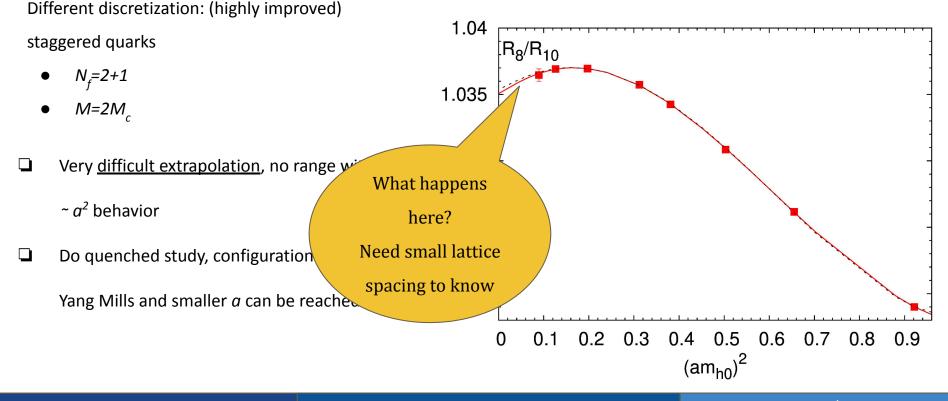
Petreczky, Weber, arXiv:hep-lat/1901.06424



HQ Moments and Perturbation Theory

Disclaimer: Study the Systematics

Petreczky, Weber, arXiv:hep-lat/1901.06424



Lattice Setup

- 1. Plaquette gauge action.
- 2. P.b.c. in space, open b.c. in time to avoid frozen topological charge at small *a*.
- 3. Full twist doublet, with **non-perturbative c**_{sw} to reduce cutoff effects.
- 4. Stochastic evaluation of trace and sum over space with **U(1) noise sources**.
- 5. **Source** placed at **1 fm from boundary**, checked absence of boundary effects:

Physical Volume L≈2 fm, time direction about T≈6 fm.

- 6. Full twist, set **K to its critical value** [1].
- 7. Autocorrelation analysis done with **Γ-method**.
- 8. Scale set through **gradient flow** t_0 [2].

Lüscher, Sint, Sommer, Weisz, Wolff.
 [arXiv:hep-lat/9609035]
 Lüscher, [arXiv:hep-lat/1006.4518]
 Capitani, Lüscher, Sommer, Wittig,
 [hep-lat/9810063]

9. Line of constant physics: fix M_{RGI} in t₀ units, Z and running factors from [3].

Measurements

Run Name	β	$l^3 \times t$	N _{cnfg}	t_0/a^2	a[fm]	$\tau_{\rm int}(t_0)[{\rm cfg}]$	 [Large volume sft ensembles of unprecedented size from: 		
q_beta616	6.1628	$32^{3} \times 96$	128	5.1604(98)	0.071	0.78			
q_beta628	6.2885	$36^3 \times 108$	137	7.578(22)	0.059	1.37			
q_beta649	6.4956	$48^3 \times 144$	109	13.571(50)	0.044	1.55	Husung, Krah, Sommer		
sft4	6.7859	$64^3 \times 192$	200	29.390(98)	0.030	1.00	arXiv:hep-lat/1711.01860]		
sft5	7.1146	$96^3 \times 320$	80	67.74(23)	0.020	0.55			
sft6	7.3600	$128^3 \times 320$	98	124.21(91)	0.015	1.03	Measure for a range		
sft7	7.700	$192^{3} \times 480$	31	286.3(4.7)	0.010	—	of masses:		
Gauge run details, $l = L/a$, $t = T/a$.									
\star vary th	e <u>mass</u> → v	vary the <u>scale</u> of	$M/M_{\rm charm} \simeq 3.48, 2.32, 1.55, 1.16, 0.77$						
variatio	n of truncate	ed nart in PT		$M_{RGI} \simeq 5.75, 3.83, 2.56, 1.92, 1.28 \text{GeV}$					

variation of truncated part in PT

HQ Moments and Perturbation Theory Augus

Leonardo Chimirri (DESY - HU)

Normalization and Ratios

★ Divide by analytical finite volume and *a* tree-level (TL), evaluated at $m_* = \overline{m}_{\overline{MS}}(m_*)$ to suppress cutoff effects.

$$R_n(\sqrt{8t_0}M_{RGI}, aM_{RGI}) = \begin{cases} \frac{\mathcal{M}_n(\sqrt{8t_0}M_{RGI}, aM_{RGI})}{\mathcal{M}_n^{TL}(a\mu_{tm})}, & n = 4\\ \left(\frac{\mathcal{M}_n(\sqrt{8t_0}M_{RGI}, aM_{RGI})}{\mathcal{M}_n^{TL}(a\mu_{tm})}\right)^{\frac{1}{n-4}}, & n > 4 \end{cases}$$

- **★** For n > 4 take ratios of moments:
 - get rid of strong mass dependence and mitigate some error sources: $[\mathcal{M}_n] = \operatorname{En}^{4-n} \xrightarrow{n>4} [R_n] = \operatorname{En}^{-1}$
 - invert equation below for α at a given scale $\mu_s = s\overline{m}_{\overline{MS}}(\mu_s)$
 - varying $M_{_{RGI}}$ varies the scale at which the coupling is computed, changing the size of the truncated term
 - also varying s varies the size of the truncated term \rightarrow other handle to turn.

$$\lim_{a \to 0} \frac{R_n(\sqrt{8t_0}M_{RGI}, aM_{RGI})}{R_{n+2}(\sqrt{8t_0}M_{RGI}, aM_{RGI})} = 1 + \sum_{i=1}^3 c_n^{(i)}(\mu/\overline{m}_{\overline{\mathrm{MS}}}(\mu)) \alpha_{\overline{\mathrm{MS}}}^i(\mu) + O(\alpha^4)$$

Normalization and Ratios

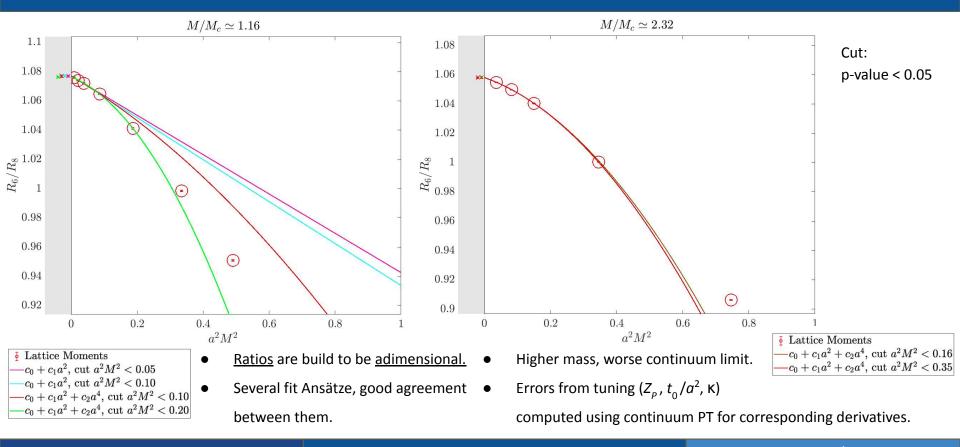
★ Divide by analytical finite volume and *a* tree-level (TL), evaluated at $m_* = \overline{m}_{\overline{MS}}(m_*)$ to suppress cutoff effects.

$$R_{n}(\sqrt{8t_{0}}M_{RGI}, aM_{RGI}) = \begin{cases} \frac{\mathcal{M}_{n}(\sqrt{8t_{0}}M_{RGI}, aM_{RGI})}{\mathcal{M}_{n}^{TL}(a\mu_{tm})}, & n = 4\\ \left(\frac{\mathcal{M}_{n}(\sqrt{8t_{0}}M_{RGI}, aM_{RGI})}{\mathcal{M}_{n}^{TL}(a\mu_{tm})}\right)^{\frac{1}{n-4}}, & n > 4 \end{cases}$$

- **\star** For n > 4 R_a : (1) naturally adimensional, (2) the most short distance observable
 - ^o get Has largest cutoff effects, partially understood: just discussed by Rainer Sommer in previous talk. See also plenary by Husung on Saturday 13th, 8:50 AM.
 - also Here: let's look at results for ratios of moments with n > 4

$$\lim_{a \to 0} \frac{R_n(\sqrt{8t_0}M_{RGI}, aM_{RGI})}{R_{n+2}(\sqrt{8t_0}M_{RGI}, aM_{RGI})} = 1 + \sum_{i=1}^3 c_n^{(i)}(\mu/\overline{m}_{\overline{\mathrm{MS}}}(\mu)) \alpha_{\overline{\mathrm{MS}}}^i(\mu) + O(\alpha^4)$$

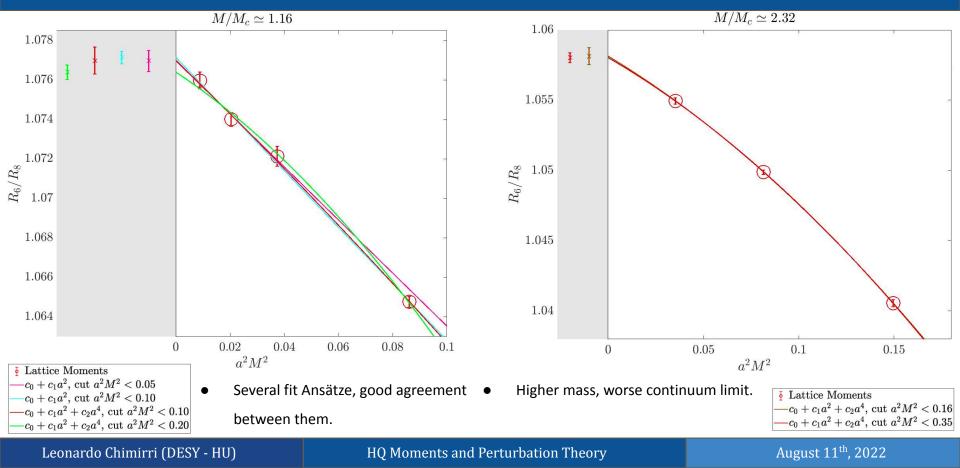
Continuum Extrapolations: $\overline{R_6}/R_8$



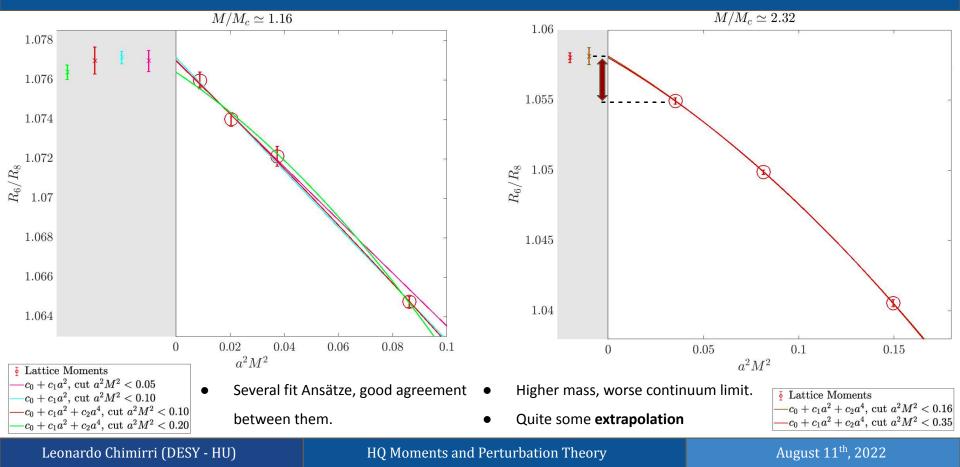
Leonardo Chimirri (DESY - HU)

HQ Moments and Perturbation Theory

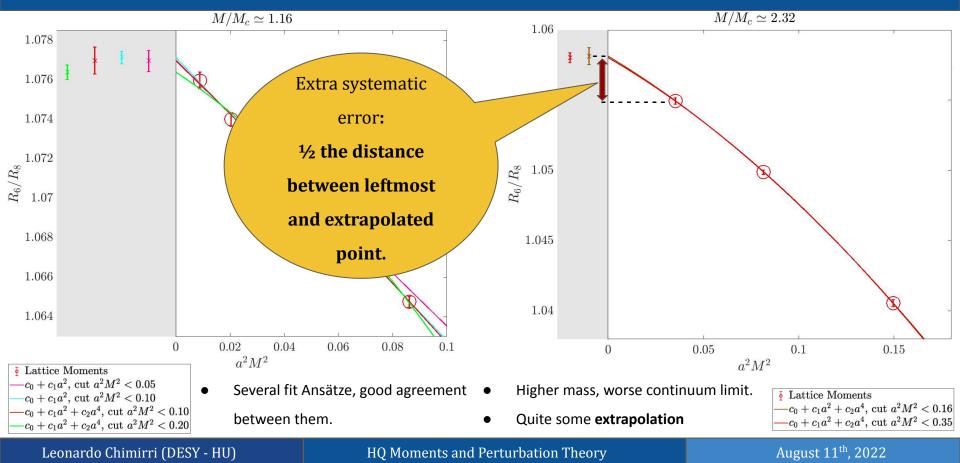
R_6/R_8 zoom in:



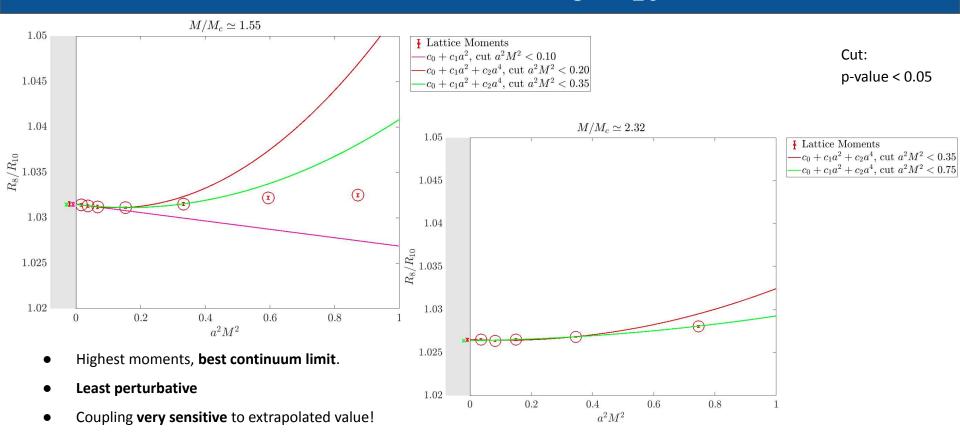
R_6/R_8 zoom in:



R_6/R_8 zoom in:



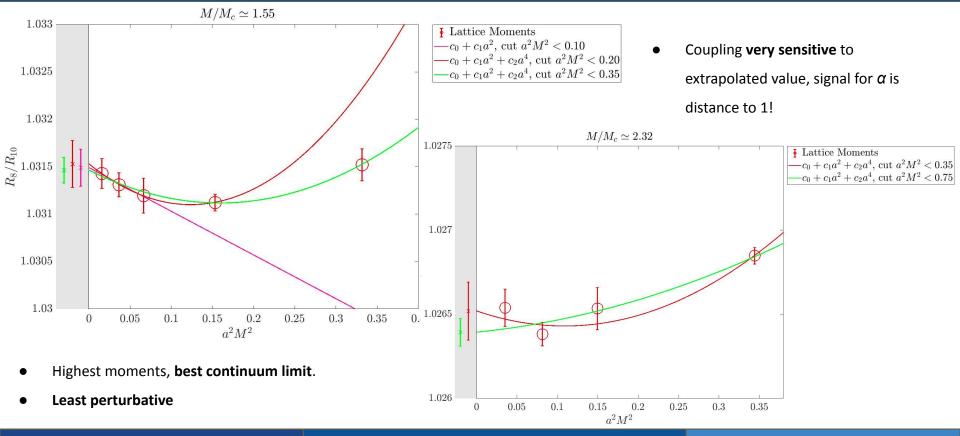
Continuum Extrapolations: R_8/R_{10}



Leonardo Chimirri (DESY - HU)

HQ Moments and Perturbation Theory

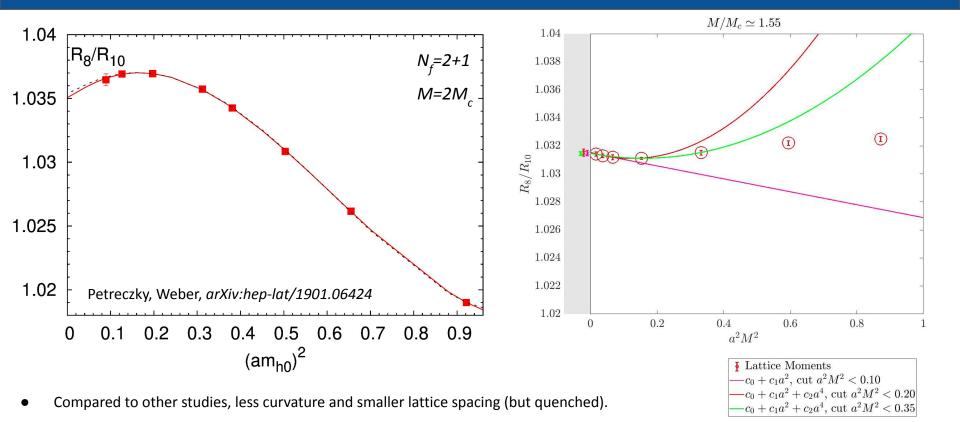
R_8/R_{10} zoom in:



Leonardo Chimirri (DESY - HU)

HQ Moments and Perturbation Theory

Comparison of Twisted Mass and Staggered



Leonardo Chimirri (DESY - HU)

HQ Moments and Perturbation Theory

The Λ **Parameter**

• <u>Observable does not depend on $\mu \rightarrow$ </u> in perturbative expansion there will leftover dependence due to truncation.

$$\mathcal{M}_{n}(m,\mu) \stackrel{\alpha \to 0}{\sim} \sum_{i=0}^{3} c_{n}^{(i)}(\mu/\overline{m}_{\overline{\mathrm{MS}}}) \alpha_{\overline{\mathrm{MS}}}^{i}(\mu) + \mathcal{O}(\alpha^{4}(\mu)),$$
Spurious μ
dependence
Hard to estimate, systematic,
scale dependent truncation error

- Run to infinite energy via 5L β -function and 4L τ (mass anomalous dimension)
- Given $\alpha(\mu_s)$ and $z = \sqrt{8t_0}M_{RGI}$, we can compute Λ . Given the $O(\alpha^4)$ truncation in the moments one has:

The Λ **Parameter**

 $\mathcal{M}_n(m,\mu) \stackrel{\alpha \to 0}{\sim} \sum_{i=0}^{\infty} c_n^{(i)}(\mu/\overline{m}_{\overline{\mathrm{MS}}}) \alpha_{\overline{\mathrm{MS}}}^i(\mu) + \mathcal{O}(\alpha^4(\mu)),$ <u>Observable does not depend on $\mu \rightarrow$ in perturbative</u> expansion there will leftover dependence due to truncation. Spurious µ dependence $\frac{\mathrm{d}\overline{g}}{\mathrm{d}\ln\mu} = \beta(\overline{g}(\mu)) \rightarrow \mathrm{d}\ln\mu = \int^{\overline{g}} \mathrm{d}x \frac{1}{\beta(x)} + C \quad \Longrightarrow \quad \Lambda_{RGI} = \mu(b_0\overline{g}^2)^{-b_1/(2b_0^2)} \exp\left\{-\frac{1}{2b_0\overline{g}^2} - \int_0^{\overline{g}} \mathrm{d}x \left[\frac{1}{\beta(x)} + \frac{1}{b_0x_1} - \frac{b_1}{b_0^2x_1}\right]\right\}$

Contains info of <u>coupling</u> and <u>running</u>.

Is an integration constant of RGEs.

$$(\alpha(\mu), m(\mu)) \longleftrightarrow (\Lambda_{RGI}, M_{RGI})$$

- Run to infinite energy via 5L β -function and 4L τ (mass anomalous dimension)
- Given $\alpha(\mu_s)$ and $z = \sqrt{8t_0}M_{RGI}$, we can compute Λ . Given the $O(\alpha^4)$ truncation in the moments one has: 1

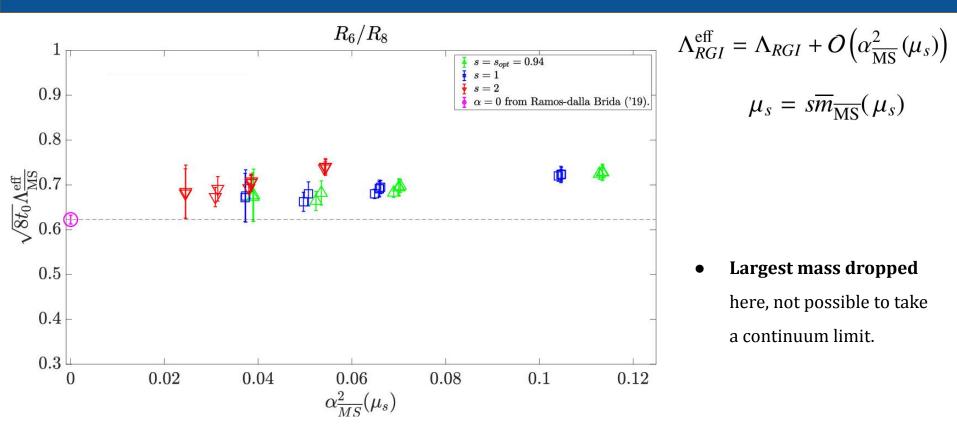
$$\Lambda_{RGI}^{\text{eff}} = \Lambda_{RGI} + O\left(\alpha_{\overline{\text{MS}}}^2(\mu_s)\right)$$

Hard to estimate, syste

scale dependent truncation error

atic,

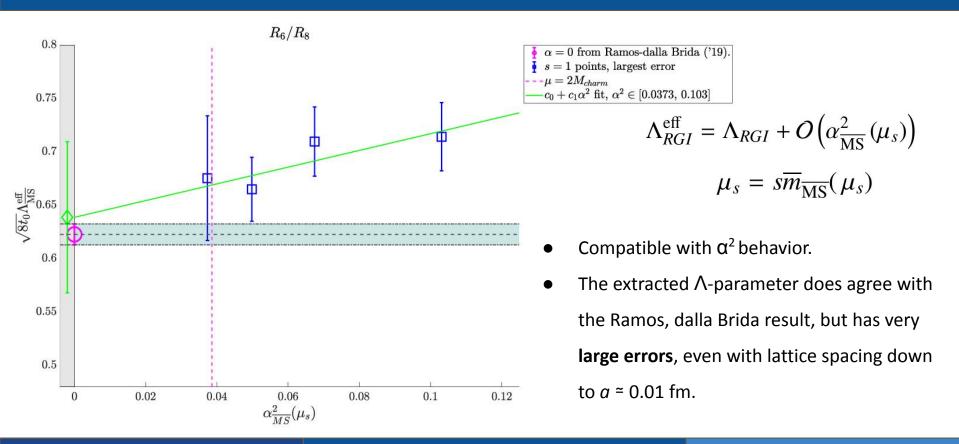
Λ Plot from R_6/R_8



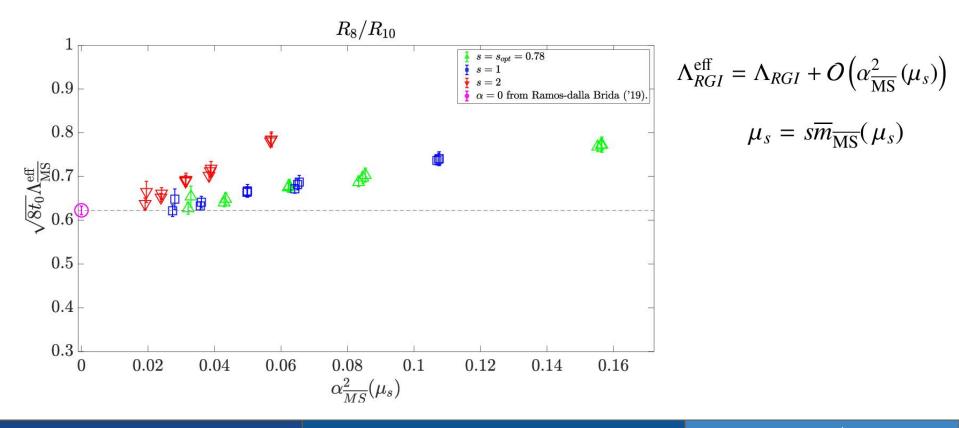
Leonardo Chimirri (DESY - HU)

HQ Moments and Perturbation Theory

Λ Fit from R_6/R_8



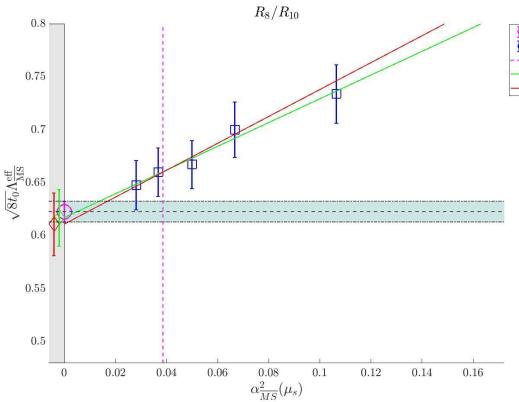
Λ Plot from R_8/R_{10}



Leonardo Chimirri (DESY - HU)

HQ Moments and Perturbation Theory

Λ Fit from R_8/R_{10}



$$\Lambda_{RGI}^{\text{eff}} = \Lambda_{RGI} + O\left(\alpha_{\overline{\text{MS}}}^2(\mu_s)\right)$$
$$\mu_s = s\overline{m}_{\overline{\text{MS}}}(\mu_s)$$

- Dropping the largest mass (with its unclear systematic continuum limit error) does not change much the result.
- Up to $\mu \approx 2 m_{charm} \approx 2.5$ GeV (MS-bar scheme) we see 10% deviation from the asymptotic value

Leonardo Chimirri (DESY - HU)

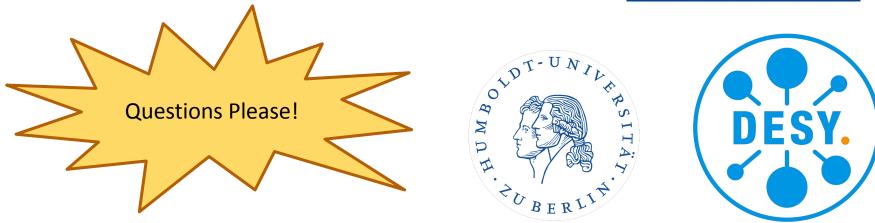
HQ Moments and Perturbation Theory

Summary and Outlook

- In improved theory with lattice spacings down to *a* ~ 0.01 fm, the continuum limit is very challenging.
- Higher moments are dominated by longer distances.
- → We see compatibility with $\Lambda^{\text{eff}} = \Lambda + O(\alpha^2)$, where the **slope increases with n.**
- > The extracted quenched Λ -parameters agree with the Ramos, dalla Brida result.
- > R_g/R_{10} has 10% deviations in Λ w.r.t. the α → 0 result up to μ = 2 m_{charm} = 2.5 GeV (MS-bar scheme).
- > How reliable continuum limits with $N_f > 0$ and the extracted α are is unclear.
- ➤ Precise lattice results of the coupling are crucial for the world average, with influence on many observables such as $H \rightarrow gg$, BSM searches, EW vacuum stability and many more.

Thank You!

This project has received funding from the <u>European</u> <u>Union's Horizon 2020</u> research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 813942.



Cross Checks - I

We cross checked several things:

0.116 0.114

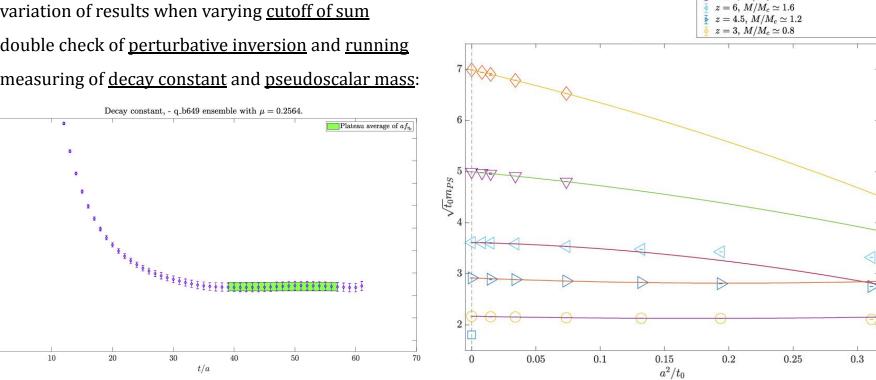
0.112 0.11

 $\overset{u}{f} \overset{0.108}{v}_{v}$

0.106 0.1040.102 0.1 0.098

0

- variation of results when varying cutoff of sum A.
- B. double check of perturbative inversion and running
- C. measuring of <u>decay constant</u> and <u>pseudoscalar mass</u>:



Leonardo Chimirri (DESY - HU)

HQ Moments and Perturbation Theory

August 11th, 2022

Cali et al. 21, at M_c , tune to this value.

 $z = 13.5, M/M_c \simeq 3.5$ $z = 9, M/M_c \simeq 2.3$

Cross Checks - II

No hints of issues, no mistunings, all consistent.

D. <u>Finite Volume Effects</u>? We computed analytically the continuum TL (where FV effects are expected to be larger):

$$\frac{\Delta G_n^L}{G_n(\infty)} \stackrel{mL \to \infty}{\sim} \frac{\pi}{2} \Gamma(3/2) \Gamma\left(\frac{n-2}{2}\right) \left(\frac{2}{mL}\right)^{\frac{3-n}{2}} e^{-mL} \left(1 + O\left(\frac{1}{mL}\right)\right).$$

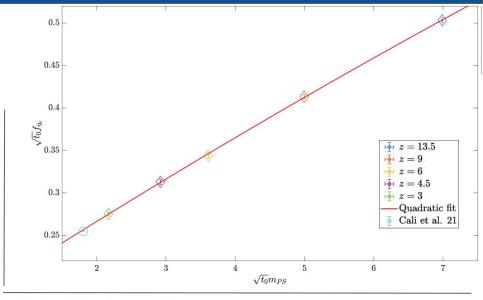


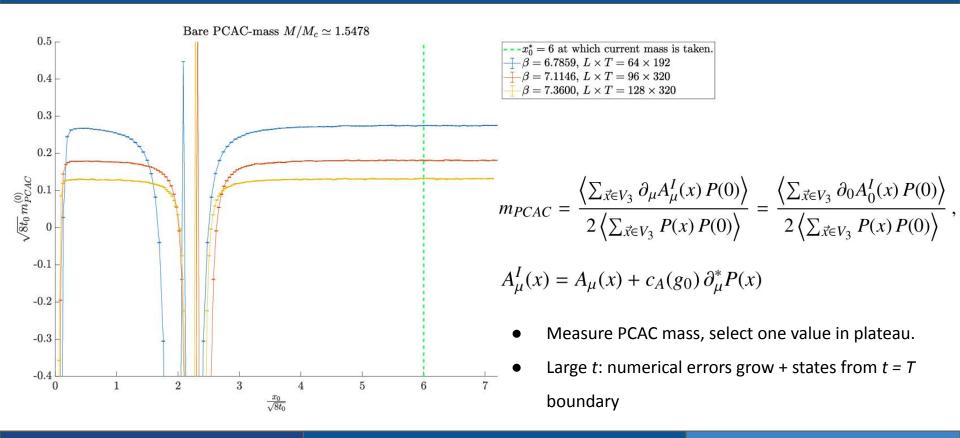
Table 4: Relative TL-FV effects, normalized by $L = \infty$ value, as function of $y = Lm_*$. For $M/M_c > 1.1$, we have y > 14.

у	5	6	7	8	9	10	11	12	13	14	15
n = 4	0.015	0.0060	0.0024	0.00093	0.00036	1.4e-04	5.5e-05	2.1e-05	8.0e-06	3.1e-06	1.2e-06
n = 6	0.037	0.018	0.0083	0.0037	0.0016	7.1e-04	3.0e-04	1.3e-04	5.2e-05	2.1e-05	8.7e-06
n = 8	0.19	0.11	0.058	0.030	0.015	0.0071	0.0033	1.5e-03	6.8e-04	3.0e-04	1.3e-04
n = 10	1.39	0.97	0.61	0.36	0.20	0.11	0.054	0.027	0.013	0.0063	3.0e-03

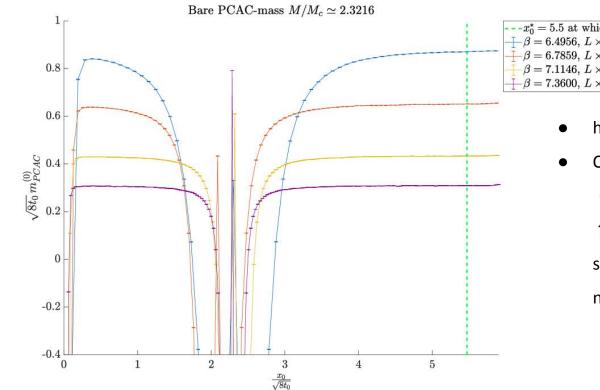
Leonardo Chimirri (DESY - HU)

HQ Moments and Perturbation Theory

PCAC Data I



PCAC Data II



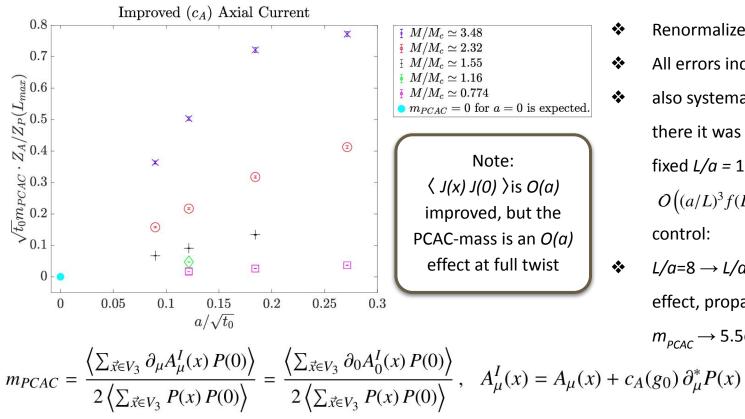
 $\begin{array}{l} ---x_0^* = 5.5 \text{ at which current mass is taken.} \\ ---x_0^* = 6.4956, \ L \times T = 48 \times 144 \\ ---\beta = 6.7859, \ L \times T = 64 \times 192 \\ ---\beta = 7.1146, \ L \times T = 96 \times 320 \\ ----\beta = 7.3600, \ L \times T = 128 \times 320 \end{array}$

- higher mass \rightarrow shorter plateau
- Our sums:

saturate well before the point where

numerical errors appear.

Monitoring Full Twist



- Renormalized PCAC mass vs a
- All errors included: statistic, Z_A , Z_B
 - also systematic error on K, since there it was determined at fixed L/a = 16. Possible NP effects $O((a/L)^3 f(L/r))$, but they are under control:

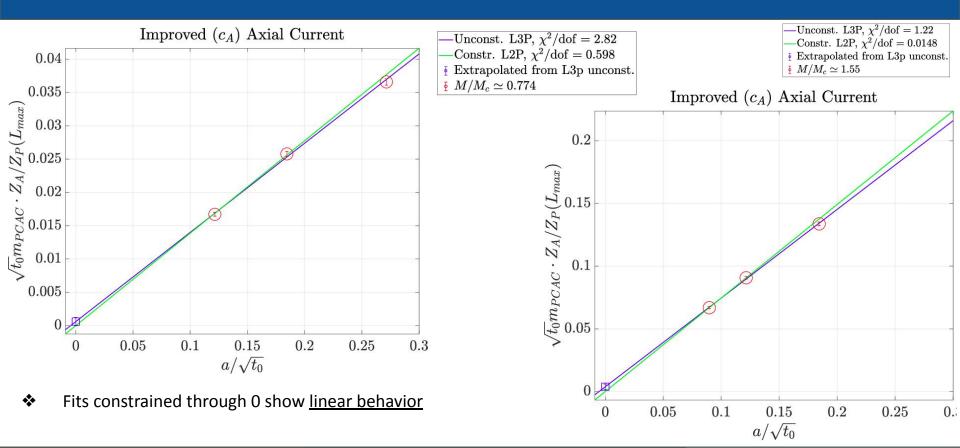
L/a=8
$$\rightarrow$$
 L/a=16 gives 2.0e-05

effect, propagate into

 $m_{_{PCAC}} \rightarrow 5.5e-04$ effect

Leonardo Chimirri (DESY - HU)

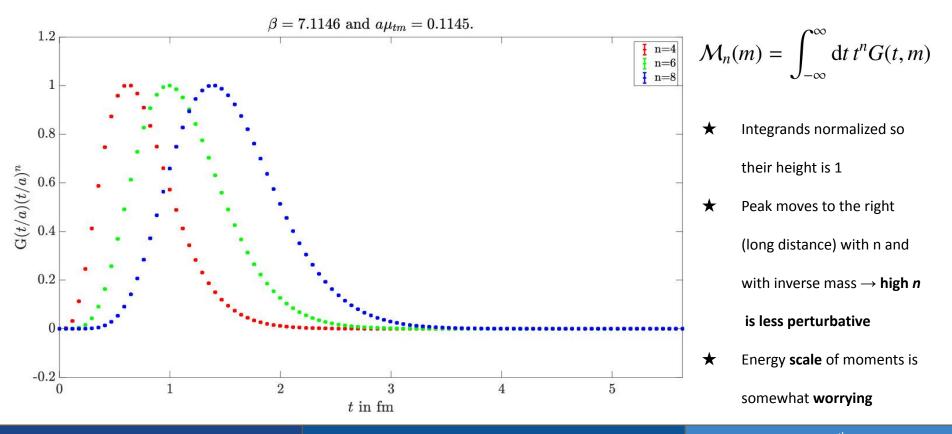
PCAC vs a - I



Leonardo Chimirri (DESY - HU)

HQ Moments and Perturbation Theory

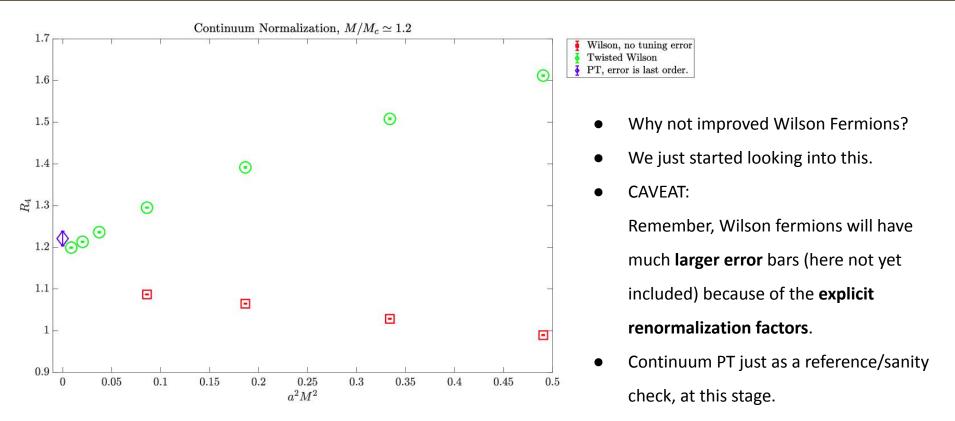
Scale of Moments



Leonardo Chimirri (DESY - HU)

HQ Moments and Perturbation Theory

"Untwisted" Wilson Fermions



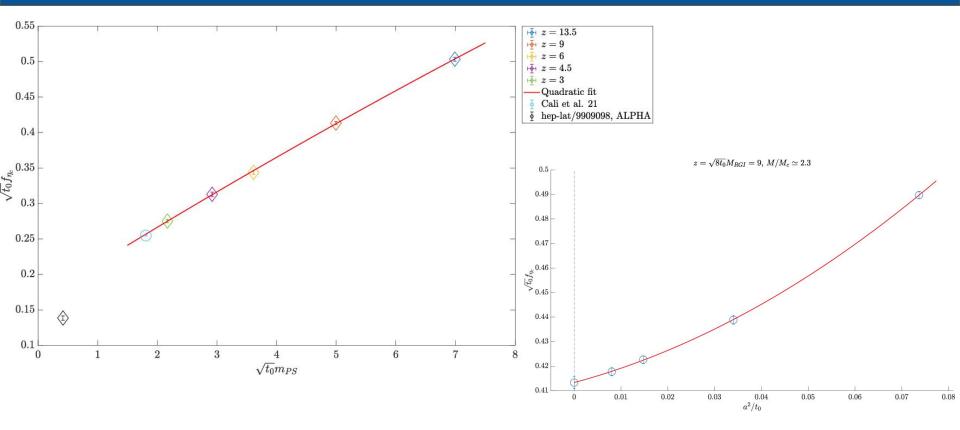
Leonardo Chimirri (DESY - HU)

HQ Moments and Perturbation Theory

Expansion of Ratios of Moments

$$\lim_{a \to 0} \frac{R_n(\sqrt{8t_0}M_{RGI}, aM_{RGI})}{R_{n+2}(\sqrt{8t_0}M_{RGI}, aM_{RGI})} = \frac{\overline{m}_{\overline{\mathrm{MS}}}(\mu)}{\overline{m}_{\overline{\mathrm{MS}}}(\mu)} \frac{\left(\sum_{i\geq 0}^L c_n^{(i)}(\mu/\overline{m}_{\overline{\mathrm{MS}}}(\mu)) \,\alpha_{\overline{\mathrm{MS}}}^i(\mu) + O(\alpha^{L+1})\right)^{\frac{1}{n-4}}}{\left(\sum_{i\geq 0}^L c_{n+2}^{(i)}(\mu/\overline{m}_{\overline{\mathrm{MS}}}(\mu)) \,\alpha_{\overline{\mathrm{MS}}}^i(\mu) + O(\alpha^{L+1})\right)^{\frac{1}{n-2}}}$$
$$= \sum_{i\geq 0}^L \tilde{c}_n^{(i)}(\mu/\overline{m}_{\overline{\mathrm{MS}}}(\mu)) \,\alpha_{\overline{\mathrm{MS}}}^i(\mu) + O(\alpha^{L+1})$$

Extended $m_{\rm PS}$ and $f_{\rm m}$



Leonardo Chimirri (DESY - HU)

HQ Moments and Perturbation Theory

Twisted Mass Renormalization Factors

 For some scheme S, renormalization scale μ, we have for a doublet of mass -degenerate Wilson, twisted mass fermions out of full twist:

$$\overline{m}_{S}(\mu) = \lim_{a \to 0} \left[Z_{P}^{S}(a\mu, g_{0}) \right]^{-1} \sqrt{\mu_{tm}^{2} + Z_{A}^{2}(g_{0})m_{PCAC}^{2}}$$
$$= \lim_{a \to 0} \left[Z_{P}^{S}(a\mu, g_{0}) \right]^{-1} \sqrt{\mu_{tm}^{2} + Z_{A}^{2}(g_{0})Z^{2}(g_{0})m_{q}^{2}}$$
$$m_{q} = m_{0} - m_{cr.}$$
$$Z(g_{0}) = \frac{Z_{m}^{S}(a\mu, g_{0})Z_{P}^{S}(a\mu, g_{0})}{Z_{A}(g_{0})}$$

Twisted PS and Disconnected Diagrams

$$P^{i}(x) = im_{0}\overline{\psi}(x)\gamma_{5}\frac{\tau^{i}}{2}\psi(x)$$

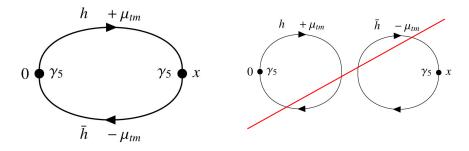
$$P^{\pm}(x) = P^{1}(x) \pm iP^{2}(x)$$

$$P^{1,2}(x) \xrightarrow{\text{chiral rotation}} P^{1,2}(x)$$

$$P^{\pm}(x) \xrightarrow{\text{chiral rotation}} P^{\pm}(x)$$

$$G(t) = -\mu_{tm}^2 \sum_{\vec{x}} a^3 \left\langle \operatorname{tr} \left[S_h(x,0) \gamma_5 S_{h'}(0,x) \gamma_5 \right] \right\rangle$$

The 2 different flavors mean no disconnected diagrams are present:



Saturation of Sum

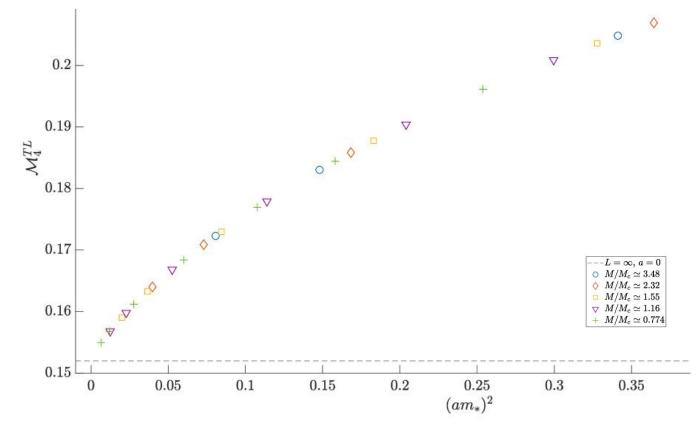


Leonardo Chimirri (DESY - HU)

HQ Moments and Perturbation Theory

More (TL) Finite Volume

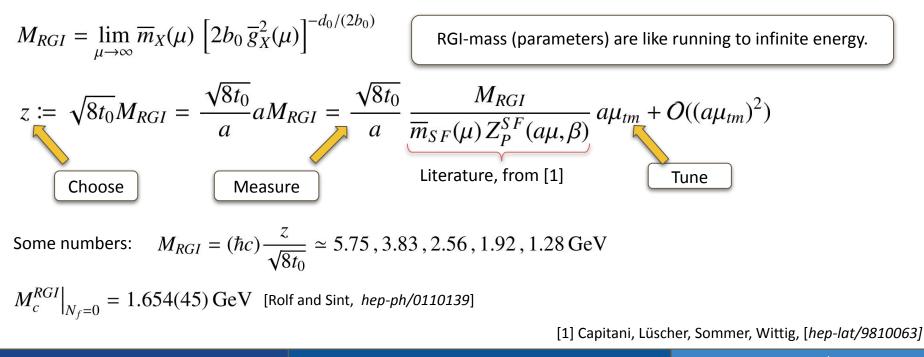
Finite lattice spacing: $TL \rightarrow \beta = \infty$, inputs are L/a and $a\mu_{tm}$. Changing $L\mu_{tm}$, points remain on same curve. Figure: only lattice artefacts can be seen, no FV corrections.



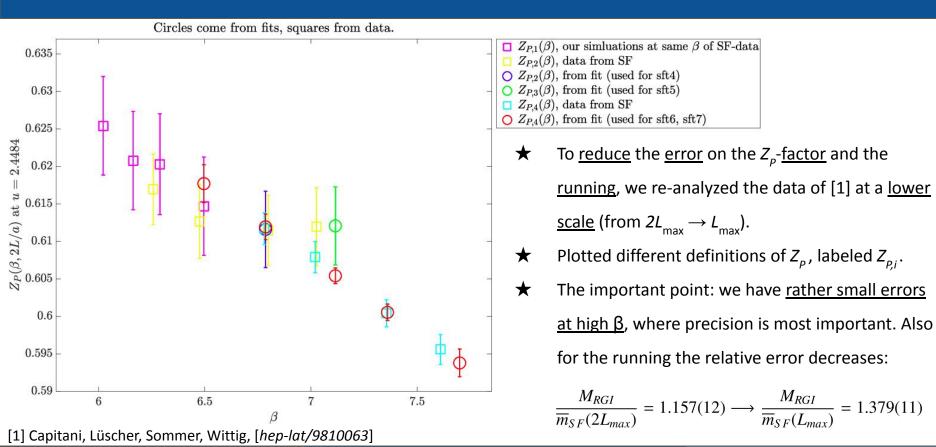
Leonardo Chimirri (DESY - HU)

Constant Mass Trajectory

- Line of constant "physics": at every a we tune the bare mass in order to keep some renormalized mass fixed.
- > We keep the <u>renormalization group invariant</u> mass fixed (scheme independent!):



Reanalysis of Quenched SF Data



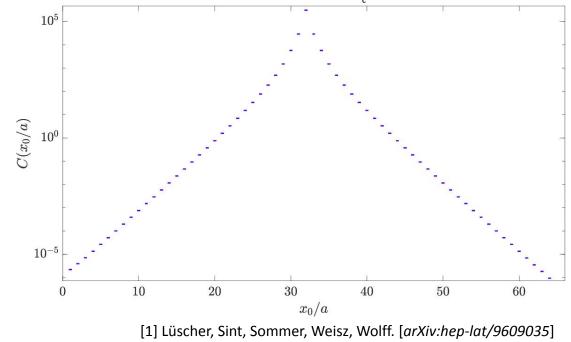
Leonardo Chimirri (DES<u>Y - HU)</u>

Absence of Boundary Effects

Source placed at 1 fm from boundary,

checked absence of boundary effects

Example correlator: no asymmetry around source (no <u>boundary effects</u>) can be seen within precision; $\beta = 6.7859$, $M/M_c \approx 1.6$



[2] Lüscher, arXiv:hep-lat/1006.4518