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Window fever - I

Hadronic Vacuum Polarization (HVP) contribution to aµ

Time-momentum representation [Bernecker, Meyer, ’11]

Gγ(t) = 1
3

∑
k

∫
dx 〈jγk (x)jγk (0)〉 → aµ = 4α2

∑
t

wtG
γ(t)

Windows in Euclidean time [RBC/UKQCD ’18]

aWµ = 4α2∑
t wtG

γ(t) [Θ(t, t0,∆)−Θ(t, t1,∆)]
t0 = 0.4 fm t1 = 1.0 fm ∆ = 0.15 fm

allow for in-depth cross-checks
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Window fever - II

Status of intermediate window (0.4− 1.0 fm, ∆ = 0.15 fm)

226 228 230 232 234 236 238

aWµ × 1010

Colangelo et al. 22

BMW 20

Mainz/CLS 22

ETMC 22

RBC/UKQCD 18
Several lattice collaborations agree

Updated results (RBC/UKQCD,
FNAL/HPQCD ...) soon [e.g. Lehner on Fri]

Data-driven approach [Colangelo et al. ’22]
aWµ × 1010 = 229.4(1.4) [total]

138.3(1.2) [ππ]

ππ is 60% of mean of aWµ
ππ is > 80% of error of aWµ

Add one player to the game:
τ data
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Aubin et al. 2022
ETMC 2021

LM 2020
BMW 2020 v1

Aubin et al. 2019
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Motivations for τ
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EM current
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τ data can improve aµ[ππ]
→ 72% of total Hadronic LO
→ competitive precision on aWµ
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Isospin Corrections
Restriction to e+e− → π+π− and τ− → π−π0 ντ

v0(s) = s

4πα2σπ+π−(γ)(s)

v−(s) = m2
τ

6|Vud|2
Bππ0

Be
1

Nππ0

dNππ0

ds

(
1− s

m2
τ

)−1(
1 + 2s

m2
τ

)−1 1
SEW

Isospin correction v0 = RIBv− RIB = FSR
GEM

β3
0 |F 0

π |2

β3
−|F−π |2

[Alemani et al. ’98]

0. SEW electro-weak radiative correct. [Marciano, Sirlin ’88][Braaten, Li ’90]

1. Final State Radiation of π+π− system [Schwinger ’89][Drees, Hikasa ’90]

2. GEM (long distance) radiative corrections in τ decays
Chiral Resonance Theory [Cirigliano et al. ’01, ’02]
Meson Dominance [Flores-Talpa et al. ’06, ’07]

3. Phase Space (β0,−) due to (mπ± −mπ0)
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Window fever - III

(my) PRELIMINARY analysis of exp.data
syst. errs require further investigation/understanding

138 140 142 144 146 148 150

aWµ [ππ]× 1010

Aleph⊕ [1]

Aleph⊕ [2]

Combined

BaBar

KLOE

e+e−

τ−

Isospin-breaking:
[1]: w/o ργ mixing

[Davier et al.]
[Jegerlehner, Szafron]

[2]: w/ ργ mixing
[Jegerlehner, Szafron]

What is ργ? too much to
say, too little time to
explain everything...
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Status

From the (g − 2) White Paper

“ ... it appears that, at the required precision to match the e+e− data,
the present understanding of the IB corrections to τ data is unfortunately
not yet at a level allowing their use for the HVP dispersion integrals. ”

“The ratio |F0(s)/F−(s)|2 is the most difficult to estimate reliably, since
a number of different IB effects may contribute.”
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Contribution to aµ

Time-momentum representation [Bernecker, Meyer, ’11]

Gγ(t) = 1
3

∑
k

∫
dx 〈jγk (x)jγk (0)〉 → aµ = 4α2

∑
t

wtG
γ(t)

Isospin decomposition of u, d current

jγµ = i
6
(
ūγµu+ d̄γµd

)
+ i

2
(
ūγµu− d̄γµd

)
= j

(0)
µ + j

(1)
µ

Gγ00 ← 〈j
(0)
k (x)j(0)

k (0)〉 = + + + . . .

Gγ01 ← 〈j
(0)
k (x)j(1)

k (0)〉 = + . . .

Gγ11 ← 〈j
(1)
k (x)j(1)

k (0)〉 = + + . . .

Decompose aµ = a
(0,0)
µ + a

(0,1)
µ + a

(1,1)
µ
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Neutral vs Charged
i
2
(
ūγµu− d̄γµd

)
,

[
I = 1
I3 = 0

]
→ j

(1,−)
µ = i√

2

(
ūγµd) ,

[
I = 1
I3 = −1

]
Isospin 1 charged correlator GW11 = 1

3

∑
k

∫
dx 〈j(1,+)

k (x)j(1,−)
k (0)〉

δG(1,1) ≡ Gγ11 −GW11 [MB et al.’ Latt18]

= Z4
V (4πα) (Qu −Qd)4

4

[
+

]

Gγ01 = Z4
V

(Q2
u −Q2

d)2

2 (4πα)
[

+ 2× + + . . .
]

+Z2
V

Q2
u −Q2

d

2 (mu −md)
[

2× + . . .
]

. . . = subleading diagrams
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Synergy

from QCD we need a 4-point function f(x, y, z, t):
known kernel with details of photons and muon line
1 pair of point sources (x, y), sum over z, t exact at sink
stochastic sampling over (x, y) (based on |x− y|)
Successfull strategy: x10 error reduction [RBC ’16]

from QCD we need a 4-point function f(x, y, z, t):
(g − 2)µ kernel + photon propagator
Similar problem → re-use HLbL point sources!
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Status

2

with C(t) = 1
3

P
~x

P
j=0,1,2hJj(~x, t)Jj(0)i. With appro-

priate definition of wt, we can therefore write

aµ =
X

t

wtC(t) . (4)

The correlator C(t) is computed in lattice QCD+QED
with dynamical up, down, and strange quarks and non-
degenerate up and down quark masses. We compute the
missing contributions to aµ from bottom quarks and from
charm sea quarks in perturbative QCD [13] by integrating
the time-like region above 2 GeV and find them to be
smaller than 0.3 ⇥ 10�10.

We tune the up, down, and strange quark masses mup,
mdown, and mstrange such that the ⇡0, ⇡+, K0, and K+

meson masses computed in our calculation agree with
the respective experimental measurements [14]. The lat-
tice spacing is determined by setting the ⌦� mass to
its experimental value. We perform the calculation as a
perturbation around an isospin-symmetric lattice QCD
computation [15, 16] with two degenerate light quarks
with mass mlight and a heavy quark with mass mheavy

tuned to produce a pion mass of 135.0 MeV and a kaon
mass of 495.7 MeV [17]. The correlator is expanded in
the fine-structure constant ↵ as well as �mup, down =
mup, down � mlight, and �mstrange = mstrange � mheavy.
We write

C(t) = C(0)(t) + ↵C
(1)
QED(t) +

X

f

�mfC
(1)
�mf

(t)

+ O(↵2,↵�m,�m2) , (5)

where C(0)(t) is obtained in the lattice QCD calculation
at the isospin symmetric point and the expansion terms
define the QED and strong isospin-breaking (SIB) correc-
tions, respectively. We keep only the leading corrections
in ↵ and �mf which is su�cient for the desired precision.

In our numerical implementation, we insert the
photon-quark vertices perturbatively with photons cou-
pled to local lattice vector currents multiplied by the
appropriate renormalization factor ZV [17]. The SIB
correction is computed by inserting scalar operators in
the respective quark lines. The procedure used for e↵ec-
tive masses in such a perturbative expansion is explained
in detail in Ref. [18]. We use the QEDL prescription
[19] to regulate the infrared behavior of the photons in
the finite simulation volume and remove the universal
1/L and 1/L2 corrections [20] with L being the spatial
extend of the lattice. We find �mup = �0.00050(1),
�mdown = 0.00050(1), and �mstrange = �0.0002(2) for
the 48I lattice ensemble described in Ref. [17]. The shift
of the ⌦� mass due to the QED correction is significantly
smaller than the lattice spacing uncertainty and its e↵ect
on C(t) is therefore not included separately.

Figure 1 shows the quark-connected and quark-
disconnected contributions to C(0). Similarly, Fig. 2
shows the relevant diagrams for the QED correction to

FIG. 1. Quark-connected (left) and quark-disconnected
(right) diagram for the calculation of aHVP LO

µ . We do not
draw gluons but consider each diagram to represent all orders
in QCD.
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Figure 6: Displacement probability for 48c run 1.

(a) V (b) S (c) T (d) D1 (e) D2

(f) F (g) D3

Figure 7: Mass-splitting and HVP 1-photon diagrams. In the former the dots
are meson operators, in the latter the dots are external photon vertices. Note
that for the HVP some of them (such as F with no gluons between the two
quark loops) are counted as HVP NLO instead of HVP LO QED corrections.
We need to make sure not to double-count those, i.e., we need to include the
appropriate subtractions! Also note that some diagrams are absent for flavor
non-diagonal operators.

8

FIG. 2. QED-correction diagrams with external pseudo-scalar
or vector operators.

the meson spectrum and the hadronic vacuum polariza-
tion. The external vertices are pseudo-scalar operators
for the former and vector operators for the latter. We
refer to diagrams S and V as the QED-connected and to
diagram F as the QED-disconnected contribution. We
note that only the parts of diagram F with additional
gluons exchanged between the two quark loops contribute
to aHVP LO

µ as otherwise an internal cut through a single
photon line is possible. For this reason, we subtract the
separate quantum-averages of quark loops in diagram F.
In the current calculation, we neglect diagrams T, D1,
D2, and D3. This approximation is estimated to yield an
O(10%) correction for isospin splittings [21] for which the
neglected diagrams are both SU(3) and 1/Nc suppressed.
For the hadronic vacuum polarization the contribution of
neglected diagrams is still 1/Nc suppressed and we adopt
a corresponding 30% uncertainty.

In Fig. 3, we show the SIB diagrams. In the calculation
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x

x

x

(c) O

Figure 8: Mass-counterterm diagrams for mass-splitting and HVP 1-photon
diagrams. Diagram M gives the valence, diagram R the sea quark mass shift
e↵ects to the meson masses. Diagram O would yield a correction to the HVP
disconnected contribution (that likely is very small).
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FIG. 3. Strong isospin-breaking correction diagrams. The
crosses denote the insertion of a scalar operator.

[Blum et. al. ’18]
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Figure 8: Mass-counterterm diagrams for mass-splitting and HVP 1-photon
diagrams. Diagram M gives the valence, diagram R the sea quark mass shift
e↵ects to the meson masses. Diagram O would yield a correction to the HVP
disconnected contribution (that likely is very small).

9

Done:
leading diagrams on coarse 243 ensemble a−1 ' 1 GeV

V, S, F,M,D3, O (analysis to be finalized soon)
On-going:

cross-checks for data generation and analysis
→ calculation on finer ensemble 48I
calculations of subleading diagrams
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Sampling strategy
Propagators on disk from HLbL project [Phys.Rev.Lett. 118 (2017)]

ṼΓ(x0, z0, r) =
∑
x,z

tr
[
ΓD−1(x, 0)γνD−1(0, z)ΓD−1(z, r)γνD−1(r, x)

]
VΓ(|x0 − z0|) =

∑
r

∆(r)ṼΓ(x0, z0, r)

O(103) points → O(106) pairs
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r/a

0.00

0.01

0.02
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0.05

P
(r

)

contract photon offline
→ study QEDL vs QED∞
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QED valence connected

Stat. improvements from data of HLbL project [Phys.Rev.Lett. 118 (2017)]

contribution of diagrams V, S to aµ
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data from [Blum et al.’18]

data set from HLbL

2.0 2.5 3.0

0

2
Coarse ensemble 32ID

∼ 3 · 103 point pairs
O(10) configurations

preliminary (rough) analysis
plain sum up to 3 fm

×4 reduction in stat. error

only stat. error showed

expected QED conn. error ≤ 3× 10−10 → matches target
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QED valence disconnected

Preliminary (run2)
Point sources at exchanged
photon vertices

Coarse lattice a ' 0.2 fm 0.0 0.5 1.0 1.5 2.0 2.5

T/a [fm]
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t D3(t)wt∑T
t V (t)wt

Observe suppression relative to V
matches target accuracy
not yet explored full statistics (running)
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Conclusions
These are exciting times for (g − 2)µ:

<1% goal reached by BMWc, to be expected from other collabs
windows powerful intermediate tool to validate full calculation
QED+SIB crucial to reach target uncertainty

As a bi-product we get ∆aµ[τ ] for τ data:
1. first lattice calculation of ∆aµ[τ ] almost complete

study energy cut at τ mass (e.g. Backus-Gilbert method)
2. comparing with experiment requires

re-evaluation of radiative corrections [in collab. w/ Cirigliano]

lattice fully inclusive: understand role higher channels
[private exchange Maltman, Golterman et al.]

3. tests/checks previous calculations [Jegelehner, Szafron][Davier et al.]

Thanks for your attention
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Backup slides



Long distance QED - I
At low energies relevant degrees of freedom are mesons

Chiral Perturbation Theory [Cirigliano et al. ’01, ’02]

Meson dominance model [Flores-Talpa et al. ’06, ’07]

Corrections casted in one function v−(s)→ v−(s)GEM(s)

Real photon corrections

τ−

ντ
π0

π− τ−

ντ
π0

π− τ−

ντ
π0

π−

Virtual photon corrections

τ−

ντ
π0

π− τ−

ντ
π0

π− τ−

ντ
π0

π−

Real + virtual
→ IR divergences cancel



Pion form factors

F 0
π (s) ∝

m2
ρ

Dρ(s)
π+

π−

ρ0γ [Gounaris, Sakurai ’68]
[Kühn, Santamaria ’90]

×
[
1 + δρω

s

Dω(s)

]
ρ0γ

π+

π−

γωρ0γ

π+

π−

ω

+ m2
X

DX(s) X = ρ′ , ρ′′

π+

π−

ρ′ , ρ′′γ

F−π (s) ∝
m2
ρ−

Dρ−(s) + (ρ′ , ρ′′)
π0

π−

ρ−
W −

Sources of IB breaking in phenomenological models
mρ0 6= mρ± , Γρ0 6= Γρ± , mπ0 6= mπ±

ρ− ω mixing δρω ' O(mu −md) +O(e2)



ργ mixing
Comparison in Euclidean time more natural for Lattice

[1] = [Jegelehner, Szafron ’17]

modified ργ coupling
large negative ∆aµ

very important to examine
integrand

0 1 2 3 4 5 6

t [fm]

−6

−4

−2

0

∆
a
µ

[×
10
−

1
0
]

[1] w/o ργ

[1] w ργ

From (g − 2) White Paper
“ .. an increasing effect above the ρ peak that appears uncomfortably
large.” → translates into negative big dip below 1 fm



Finite volume errors

aQED,conn
µ = V + 2S

FV study at coarse
a−1 ∼ 1 GeV
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Finite volume errors
empirical observation: diagrams may have largish FV errors

cancellation of FV effects in physical combinations
similar observation in ChPT, e.g. [Bijnens, Portelli ’19]



Strong isospin breaking

Accurate determination from multiple valence calculations
independent determination from point sources only 8k / 1M
on-going check if full 1M can be competitive
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