ISOSPIN BREAKING CORRECTIONS IN VECTOR-VECTOR CORRELATORS FOR $(g-2)_{\mu}$ AND τ DECAYS

> Mattia Bruno for the RBC/UKQCD Collaboration

Lattice Conference 2022, Bonn, Germany August, 2022

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへの

WINDOW FEVER - I

Hadronic Vacuum Polarization (HVP) contribution to a_{μ}

 $\begin{array}{ll} \text{Time-momentum representation} & & [\text{Bernecker, Meyer, '11}] \\ G^{\gamma}(t) = \frac{1}{3} \sum_{k} \int d\boldsymbol{x} \ \langle j_{k}^{\gamma}(x) j_{k}^{\gamma}(0) \rangle & \rightarrow & a_{\mu} = 4\alpha^{2} \sum_{t} w_{t} G^{\gamma}(t) \end{array}$

Windows in Euclidean time

[RBC/UKQCD '18]

$$\begin{aligned} a^W_\mu &= 4\alpha^2 \sum_t w_t \, G^\gamma(t) \left[\Theta(t,t_0,\Delta) - \Theta(t,t_1,\Delta)\right] \\ t_0 &= 0.4 \text{ fm} \quad t_1 = 1.0 \text{ fm} \quad \Delta = 0.15 \text{ fm} \end{aligned}$$

allow for in-depth cross-checks

WINDOW FEVER - II

RBC/UKQCD 18 BMW 20 Mainz/CLS 22 ETMC 22 Colangelo et al. 22 226 228 230 232 234 236 238 $a_{\mu}^{\mu} \times 10^{10}$

Status of intermediate window $(0.4 - 1.0 \text{ fm}, \Delta = 0.15 \text{ fm})$

Add one player to the game: au data

Several lattice collaborations agree

Updated results (RBC/UKQCD, FNAL/HPQCD ...) soon [e.g. Lehner on Fri]

 $\begin{array}{l} \mbox{Data-driven approach [Colangelo et al. '22]} \\ a^W_\mu \times 10^{10} = 229.4(1.4) \ [total] \\ 138.3(1.2) \ [\pi\pi] \end{array}$

 $\pi\pi$ is 60% of mean of a^W_μ $\pi\pi$ is > 80% of error of a^W_μ

WINDOW FEVER - II

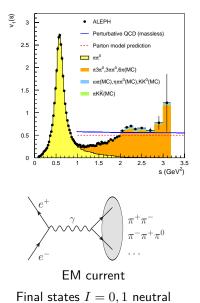
Status of intermediate window $(0.4 - 1.0 \text{ fm}, \Delta = 0.15 \text{ fm})$

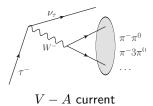
RBC/UKQCD 2018 Aubin et al. 2019 BMW 2020 v1 H H H Aubin et al 2022 ChiQCD 2022 OV/DW ChiQCD 2022 OV/HISC Mainz 2022 ETMC 2022 H-H-H KNT 2018/Lattice 195 210 215 200 205 $a_{\mu, ud, conn, isospin, W-0.4-1.0-0.15} \times 10^{10}$

Add one player to the game: au data

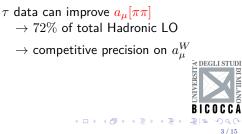
Several lattice collaborations agree

Updated results (RBC/UKQCD, FNAL/HPQCD ...) soon [e.g. Lehner on Fri]


 $\begin{array}{l} \mbox{Data-driven approach [Colangelo et al. '22]} \\ a^W_\mu \times 10^{10} = 229.4(1.4) \ [total] \\ 138.3(1.2) \ [\pi\pi] \end{array}$


イロト イポト イヨト イヨト

 $\pi\pi$ is 60% of mean of a^W_μ $\pi\pi$ is > 80% of error of a^W_μ



Motivations for τ

Final states I = 1 charged

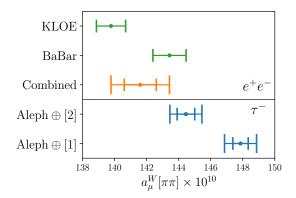
ISOSPIN CORRECTIONS

Restriction to $e^+e^- \to \pi^+\pi^-$ and $\tau^- \to \pi^-\pi^0\,\nu_\tau$

$$v_0(s) = \frac{s}{4\pi\alpha^2}\sigma_{\pi^+\pi^-(\gamma)}(s)$$

$$v_{-}(s) = \frac{m_{\tau}^{2}}{6|V_{ud}|^{2}} \frac{\mathcal{B}_{\pi\pi^{0}}}{\mathcal{B}_{e}} \frac{1}{N_{\pi\pi^{0}}} \frac{dN_{\pi\pi^{0}}}{ds} \left(1 - \frac{s}{m_{\tau}^{2}}\right)^{-1} \left(1 + \frac{2s}{m_{\tau}^{2}}\right)^{-1} \frac{1}{S_{\rm EW}}$$
Isospin correction $v_{0} = R_{\rm IB}v_{-}$

$$R_{\rm IB} = \frac{\text{FSR}}{G_{\rm EM}} \frac{\beta_{0}^{3}|F_{\pi}^{0}|^{2}}{\beta_{-}^{3}|F_{\pi}^{-}|^{2}}$$
[Alemani et al. '98]


- **0.** $S_{\rm EW}$ electro-weak radiative correct. [Marciano, Sirlin '88][Braaten, Li '90]
- **1.** Final State Radiation of $\pi^+\pi^-$ system [Schwinger '89][Drees, Hikasa '90]
- 2. $G_{\rm EM}$ (long distance) radiative corrections in au decays Chiral Resonance Theory [Cirigliano et al. '01, '02] Meson Dominance [Flores-Talpa et al. '06, '07]

3. Phase Space ($\beta_{0,-}$) due to $(m_{\pi^{\pm}} - m_{\pi^0})$

WINDOW FEVER - III

(my) PRELIMINARY analysis of exp.data syst. errs require further investigation/understanding


```
Isospin-breaking:
[1]: w/o \rho\gamma mixing
   [Davier et al.]
   [Jegerlehner, Szafron]
[2]: w/ \rho\gamma mixing
   [Jegerlehner, Szafron]
```

What is $\rho\gamma$? too much to say, too little time to explain everything... ZDEGLI STUDI

イロト イポト イヨト イヨト

DI MILANO

5/15

STATUS

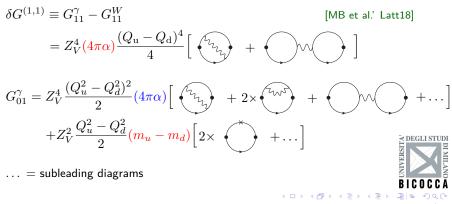
From the (g-2) White Paper

" ... it appears that, at the required precision to match the e^+e^- data, the present understanding of the IB corrections to τ data is unfortunately not yet at a level allowing their use for the HVP dispersion integrals. "

"The ratio $|F_0(s)/F_-(s)|^2$ is the most difficult to estimate reliably, since a number of different IB effects may contribute."

Contribution to a_{μ}

7/15


$$\begin{array}{ll} \text{Time-momentum representation} & & [\text{Bernecker, Meyer, '11}] \\ G^{\gamma}(t) = \frac{1}{3} \sum_{k} \int d\boldsymbol{x} \ \langle j_{k}^{\gamma}(x) j_{k}^{\gamma}(0) \rangle & \rightarrow & a_{\mu} = 4\alpha^{2} \sum_{t} w_{t} G^{\gamma}(t) \end{array}$$

Isospin decomposition of u, d current

$$\begin{aligned} j_{\mu}^{\gamma} &= \frac{i}{6} \left(\bar{u} \gamma_{\mu} u + \bar{d} \gamma_{\mu} d \right) + \frac{i}{2} \left(\bar{u} \gamma_{\mu} u - \bar{d} \gamma_{\mu} d \right) = j_{\mu}^{(0)} + j_{\mu}^{(1)} \\ G_{00}^{\gamma} &\leftarrow \langle j_{k}^{(0)}(x) j_{k}^{(0)}(0) \rangle = & & & & & & & & & & \\ G_{01}^{\gamma} &\leftarrow \langle j_{k}^{(0)}(x) j_{k}^{(1)}(0) \rangle = & & & & & & & & & & & \\ G_{11}^{\gamma} &\leftarrow \langle j_{k}^{(1)}(x) j_{k}^{(1)}(0) \rangle = & & & & & & & & & & & & & \\ Decompose \ a_{\mu} &= a_{\mu}^{(0,0)} + a_{\mu}^{(0,1)} + a_{\mu}^{(1,1)} & & & & & & & & & & \\ \end{bmatrix}$$

NEUTRAL VS CHARGED

$$\begin{split} &\frac{i}{2} \left(\bar{u} \gamma_{\mu} u - \bar{d} \gamma_{\mu} d \right), \begin{bmatrix} I = 1\\ I_3 = 0 \end{bmatrix} \rightarrow j^{(1,-)}_{\mu} = \frac{i}{\sqrt{2}} \left(\bar{u} \gamma_{\mu} d \right), \begin{bmatrix} I = 1\\ I_3 = -1 \end{bmatrix} \\ &\text{Isospin 1 charged correlator } G^W_{11} = \frac{1}{3} \sum_k \int dx \ \langle j^{(1,+)}_k(x) j^{(1,-)}_k(0) \rangle \end{split}$$

8/15

SYNERGY

イロト イボト イヨト イヨト

from QCD we need a 4-point function f(x, y, z, t): known kernel with details of photons and muon line 1 pair of point sources (x, y), sum over z, t exact at sink stochastic sampling over (x, y) (based on |x - y|) Successfull strategy: x10 error reduction [RBC '16]

from QCD we need a 4-point function f(x, y, z, t): $(g-2)_{\mu}$ kernel + photon propagator Similar problem \rightarrow re-use HLbL point sources!

The RBC & UKQCD collaborations

UC Berkeley/LBNL

Aaron Mever

BNL and BNL/RBRC

Yasumichi Aoki (KEK) Peter Boyle (Edinburgh) Taku Izubuchi Chulwoo Jung Christopher Kelly Meifeng Lin Nobuyuki Matsumoto Shigemi Ohta (KEK) Amarjit Soni Tianle Wang

CERN

Andreas Jüttner (Southampton) Tobias Tsang

Columbia University

Norman Christ Yikai Huo Yong-Chull Jang Joseph Karpie Bob Mawhinney Bigeng Wang (Kentucky) Yidi Zhao

University of Connecticut

Tom Blum Luchang Jin (RBRC) Douglas Stewart Joshua Swaim Masaaki Tomii

Edinburgh University

Matteo Di Carlo Luigi Del Debbio Felix Erben Vera Gülpers Tim Harris Ryan Hill Raoul Hodgson Nelson Lachini Michael Marshall Fionn Ó hÓgáin Antonin Portelli James Richings Azusa Yamaguchi Andrew Z.N. Yong

Liverpool Hope/Uni. of Liverpool Nicolas Garron

Michigan State University Dan Hoying

University of Milano Bicocca Mattia Bruno

Nara Women's University Hiroshi Ohki

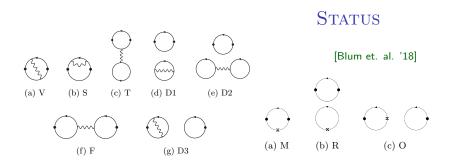
Peking University Xu Feng

University of Regensburg

Davide Giusti Christoph Lehner (BNL)

University of Sieaen

Matthew Black Oliver Witzel


University of Southampton

Alessandro Barone Jonathan Flynn Nikolai Husung Rajnandini Mukherjee Callum Radley-Scott Chris Sachraida

Stony Brook University

Jun-Sik Yoo Sergey Syritsyn (RBRC)

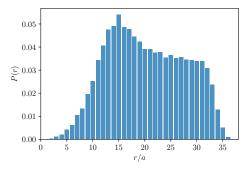
Done:

leading diagrams on coarse 24^3 ensemble $a^{-1} \simeq 1$ GeV V, S, F, M, D3, O (analysis to be finalized soon)

On-going:

cross-checks for data generation and analysis \rightarrow calculation on finer ensemble 481 calculations of subleading diagrams

イロト イポト イヨト イヨト

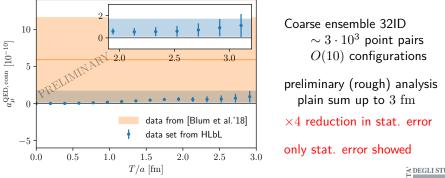

SAMPLING STRATEGY

Propagators on disk from HLbL project

[Phys.Rev.Lett. 118 (2017)]

$$\tilde{V}_{\Gamma}(x_0, z_0, r) = \sum_{\boldsymbol{x}, \boldsymbol{z}} \operatorname{tr} \left[\Gamma D^{-1}(x, 0) \gamma_{\nu} D^{-1}(0, z) \Gamma D^{-1}(z, r) \gamma^{\nu} D^{-1}(r, x) \right]$$
$$V_{\Gamma}(|x_0 - z_0|) = \sum_{r} \Delta(r) \tilde{V}_{\Gamma}(x_0, z_0, r)$$

 ${\cal O}(10^3) \ {\rm points} \rightarrow {\cal O}(10^6) \ {\rm pairs}$


contract photon offline \rightarrow study QED_L vs QED_∞

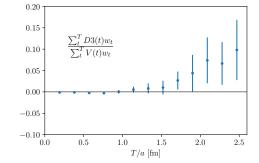
イロト イポト イヨト イヨト

QED VALENCE CONNECTED

Stat. improvements from data of HLbL project [Phys.Rev.Lett. 118 (2017)] contribution of diagrams V,S to a_{μ}



expected QED conn. error $\leq 3 \times 10^{-10} \rightarrow$ matches target


<ロト < 同ト < ヨト < ヨト

QED VALENCE DISCONNECTED

Preliminary (run2) Point sources at exchanged photon vertices

Coarse lattice $a \simeq 0.2 \text{ fm}$

イロト イポト イヨト イヨト

Observe suppression relative to Vmatches target accuracy not yet explored full statistics (running)

BICOCCA 14/15

CONCLUSIONS

These are exciting times for $(g-2)_{\mu}$:

 $<\!1\%$ goal reached by BMWc, to be expected from other collabs windows powerful intermediate tool to validate full calculation QED+SIB crucial to reach target uncertainty

As a bi-product we get $\Delta a_{\mu}[\tau]$ for τ data:

- 1. first lattice calculation of $\Delta a_{\mu}[\tau]$ almost complete study energy cut at τ mass (e.g. Backus-Gilbert method)
- 2. comparing with experiment requires

re-evaluation of radiative corrections [in collab. w/ Cirigliano] lattice fully inclusive: understand role higher channels [private exchange Maltman, Golterman et al.]

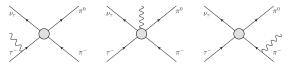
3. tests/checks previous calculations [Jegelehner, Szafron][Davier et approximate [Jegelehner, Szafron]]

Thanks for your attention

Backup slides

LONG DISTANCE QED - I

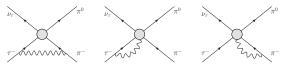
At low energies relevant degrees of freedom are mesons


Chiral Perturbation Theory [Cirigliano et al. '01, '02]

Meson dominance model

[Flores-Talpa et al. '06, '07]

Corrections casted in one function $v_{-}(s) \rightarrow v_{-}(s)G_{\rm EM}(s)$



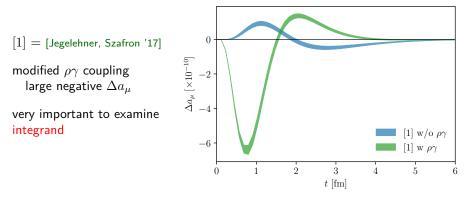
$\mathsf{Real} + \mathsf{virtual}$

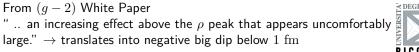
イロト イポト イヨト イヨト

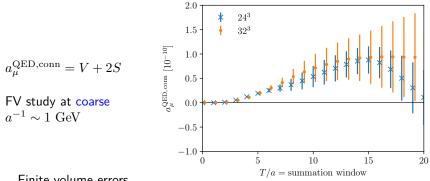

 \rightarrow IR divergences cancel

Virtual photon corrections

PION FORM FACTORS


Sources of IB breaking in phenomenological models

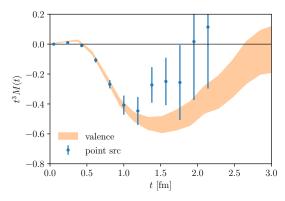

$$m_{
ho^0}
eq m_{
ho^{\pm}}$$
, $\Gamma_{
ho^0}
eq \Gamma_{
ho^{\pm}}$, $m_{\pi^0}
eq m_{\pi^{\pm}}$
 $ho - \omega$ mixing $\delta_{
ho\omega} \simeq O(m_{\rm u} - m_{\rm d}) + O(e^2)$


$\rho\gamma$ mixing

Comparison in Euclidean time more natural for Lattice

FINITE VOLUME ERRORS

Finite volume errors


empirical observation: diagrams may have largish FV errors cancellation of FV effects in physical combinations similar observation in ChPT, e.g. [Bijnens, Portelli '19]

イロト イボト イヨト イヨト

STRONG ISOSPIN BREAKING

Accurate determination from multiple valence calculations independent determination from point sources only 8k / 1M on-going check if full 1M can be competitive

イロト イポト イヨト イヨト