Hadronic vacuum polarization from step scaling

Lattice 2022

Fabian Frech for the BMWc

August 12, 2022

Contents

1. Adler function from low to high energies

2. Determination of the lines of constant physics

3. Results

Adler function from low to high energies

Hadronic vacuum polarization

 $\bullet\,$ The hadronic contributions to $\alpha_{em}(M_Z^2)$ are given by the HVP $\Pi(M_Z^2)$

$$\Pi(Q^2)(Q^2\delta_{\mu\nu} - Q_{\mu}Q_{\nu}) = \Pi_{\mu\nu}(Q^2) = \int d^4x e^{iQ\cdot x} \langle j_{\mu}(x)j_{\nu}(0) \rangle$$

Interested in the difference

$$\Pi(Q_n^2) - \Pi(Q_0^2)$$
 $Q_0 \sim 1\,{\rm GeV}, \,\,Q_n \sim 100\,{\rm GeV}$

- Computationally unfeasible
- Use a strategy similar to step scaling [Lüscher, Weisz, Wolff, Sommer ...]
- Divide the range into many steps $Q_0, Q_1 = 2Q_0, ..., Q_n = 2^nQ_0$

Strategy

Discrete Adler function:

$$\Delta(Q^2) = \Pi(4Q^2) - \Pi(Q^2)$$

$$\Pi(Q_n^2) - \Pi(Q_0^2) = \Delta(Q_0^2) + \Delta(Q_1^2) + \dots + \Delta(Q_n^2)$$

- Compute each step in decreasing volumes
- Higher energies are less sensitive to FV effects

Test the strategy in QED_2

Partition function:

$$Z = \int [dU] \exp(-S_g[U]) \det M(m, U)$$

$$S_g = \beta \sum_{x \in \Lambda} \operatorname{Re} U_{x,0} U_{x+\hat{0},1} U_{x+\hat{1},0}^* U_{x,1}^*$$

$$M = \sum_{\mu=0,1} \eta_{x,\mu} \nabla_{\mu} + m$$

• Line of constant physics (LCP) defined via

$$\beta m^2 = 0.8$$

Volumes given by

$$mL_0 = 16, \ L_0/L_n = 2^n$$

Metropolis + top, update, reweighting

Continuum Extraplation

OFF THE STATE OF T

- Cont. extrapolation from L/a = 32, 48, 64, 96, 128 ($\beta \propto a^{-2}$, $m \propto a$)
- Sweet spot for lattice artifacts and FV effects, $Q=4\cdot rac{2\pi}{L}$
- No logarithmically enhanced lattice artefacts $a^2 \log(a^2)$
- Systematic error from different cont. extrapolations

Finite volume effects

$$Q_n = 4 \cdot \frac{2\pi}{L_n} = 2 \cdot \frac{2\pi}{L_{n+1}} = 1 \cdot \frac{2\pi}{L_{n+2}}$$

- FV effects $\propto e^{-m_{\pi}L}$
- $Q = 4 \cdot \frac{2\pi}{L} \Rightarrow \text{FV effects below } 0.05\%$

Discrete Adler function QED_2

• 1-loop PT [Adams'98]:

$$\Pi(q^2)_{PT}/e^2 = \frac{1}{\pi} \frac{1}{q^2} \left(1 + \frac{2m^2}{q^2} \frac{1}{R} \log \frac{1+R}{1-R} \right) \quad R = \sqrt{1 - \frac{4m^2}{Q^2}}$$

- For large Q^2 $\Delta(Q^2) \propto \frac{1}{Q^2}$
- Deviation from higher order effects (checked by perfroming simulations with e → 0)

Discrete Adler function QED_2

Q/e	$\Delta(Q)/e^2$	stat. $[10^{-6}]$	cont. extrap. $[10^{-6}]$	$FV [10^{-6}]$	$total[10^{-6}]$
1.405	0.036009	31	16	18	37
2.810	0.019362	17	7	10	13
5.620	0.006515	4	< 1	10	10
11.240	0.001807	< 1	1	4	4
22.480	0.000467	< 1	< 1	< 1	< 1
44.960	0.000118	< 1	< 1	< 1	< 1
89.920	0.000029	< 1	< 1	< 1	< 1

Adding up gives final result:

$$\Pi(2^{14}Q_0^2) - \Pi(Q_0^2) = 0.064308[41, 0.06\%]$$

• Here we used analytic LCP (known in QED_2)

Lines of constant physics ($\beta(a), m(\beta)$)

Determination of the LCP

HOS OF THE PARTY O

- General strategy to determine $m(\beta)$ and $\beta(a)$ twofold:
- (A) Determine $\beta(a)$ to ensure that we will have in all of our steps the same physical volume
- (B) Use Δ (Adler function) to fix m as a function of β
- (C) Please note that this should be done simultaneously

General strategy

- 1. Assume we know $\beta(a_1) = \beta_1$, $\beta(a_2) = \beta_2$, $\beta(a_3) = \beta_3$
- 2. Determine $\beta(a_4)$ with cont. extrapolation of an Observable $\langle O \rangle$ sensitive to β
- 3. Halve phys. size $L_{2,3,4}/2$ and switch to $\langle O \rangle$ with smaller FV effects
- 4. Shift $a_2 \rightarrow a_1$, $a_3 \rightarrow a_2$, $a_4 \rightarrow a_3$ and go to 1.

Choosing the observables

• Observable sensitive to β : $t_0^{(n)}$ -scale from gradient flow

$$\frac{d}{dt}U_t(x,\mu) = -\left[\partial_{x,\mu}\frac{1}{\beta}S_g(U_t)\right]U_t(x,\mu)$$
$$t_0^{(n)} \cdot E(U_{t_0^{(n)}})/(L/a)^2 = 0.375 \cdot \left(\frac{1}{2}\right)^{2n}$$

Observable sensitive to m:

$$\Delta^{(n)} = \Delta(Q_n^2, 2^n m)$$

Mass doubling favors mass dependence of the discrete Adler function

Determination of the LCP

- Intersection point gives the LCP
- Generalization to D parameters possible (D observables needed)

Estimation of uncertainties

- Systematic uncertainties from continuum extrapolation
- Many extrapolations weighted with AIC:

$$\exp\left\{-\frac{1}{2}(\chi^2 + 2n_f - n_p)\right\}$$

- Recursive structure ⇒ Dependence on the previous estimations
 - $\circ~$ 36 different fits $\Rightarrow 36^6 \approx 10^{10}$ fits after 6 steps
 - We reduce this number by choosing a handful of random representants after every step
- Statistical uncertainties from a Jackknife analysis
- Whole procedure repeated on the $N_J=48$ Jackknife bins

Results

Results for the LCP in QED_2

- Good agreement with exact results
- Uncertainties $\leq 1\%$

How LCP uncertainty effects Adler function?

SOUTH OF STATE OF THE STATE OF

- Uncertainty from $\delta\beta(a)$ estimated from $\frac{1}{Q^2}$ dependence
- Uncertainty from $\delta m(a)$ estimated from measuring mass dependence of $\Delta(Q^2)$

Results and Conclusion

DENVERSITATION OF THE PROPERTY OF THE PROPERTY

The final results of the total study:

$$\Pi\left(2^{14}Q_0^2\right) - \Pi(Q_0^2) = 0.064308[186, 0.3\%]$$

• Error budget:

Stat. error:	$32 \cdot 10^{-6}$	0.05%
Finite volume error:	$14\cdot 10^{-6}$	0.02%
Cont. Extrap. error:	$19 \cdot 10^{-6}$	0.03%
eta estimation error:	$155\cdot 10^{-6}$	0.24%
m estimation error:	$95 \cdot 10^{-6}$	0.14%

- Seems to work in QED₂
- Does the method work in QCD to calculate physical observables?

Thank you for your attention!

I am happy to answer any questions you have!

