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Adler function from
low to high energies



Hadronic vacuum polarization

• The hadronic contributions to αem(M2
Z) are given by the HVP Π(M2

Z)

Π(Q2)(Q2δµν −QµQν) = Πµν(Q2) =

∫
d4xeiQ·x〈jµ(x)jν(0)〉

• Interested in the difference

Π(Q2
n)−Π(Q2

0)

Q0 ∼ 1GeV, Qn ∼ 100GeV

◦ Computationally unfeasible
◦ Use a strategy similar to step scaling [Lüscher, Weisz, Wolff, Sommer ...]
◦ Divide the range into many steps Q0, Q1 = 2Q0, ..., Qn = 2nQ0 1/15



Strategy

• Discrete Adler function:

∆(Q2) = Π(4Q2)−Π(Q2)

Π(Q2
n)−Π(Q2

0) = ∆(Q2
0) + ∆(Q2

1) + ...+ ∆(Q2
n)

• Compute each step in decreasing volumes
• Higher energies are less sensitive to FV effects 2/15



Test the strategy in QED2

• Partition function:

Z =

∫
[dU ] exp(−Sg[U ]) detM(m,U)

Sg = β
∑
x∈Λ

ReUx,0Ux+0̂,1U
∗
x+1̂,0

U∗x,1

M =
∑
µ=0,1

ηx,µ∇µ +m

• Line of constant physics (LCP) defined via

βm2 = 0.8

• Volumes given by
mL0 = 16, L0/Ln = 2n

• Metropolis + top. update, reweighting 3/15



Continuum Extraplation
• Cont. extrapolation from L/a = 32, 48, 64, 96, 128 (β ∝ a−2,m ∝ a)
• Sweet spot for lattice artifacts and FV effects, Q = 4 · 2π

L
• No logarithmically enhanced lattice artefacts a2 log

(
a2
)

• Systematic error from different cont. extrapolations
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Finite volume effects
• Same momentum in three different volumes

Qn = 4 · 2π

Ln
= 2 · 2π

Ln+1
= 1 · 2π

Ln+2

• FV effects ∝ e−mπL
• Q = 4 · 2π

L ⇒ FV effects below 0.05%
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Discrete Adler function QED2

• 1-loop PT [Adams’98]:

Π(q2)PT /e
2 =

1

π

1

q2

(
1 +

2m2

q2

1

R
log

1 +R

1−R

)
R =

√
1− 4m2

Q2

• For large Q2

∆(Q2) ∝ 1
Q2

• Deviation from
higher order
effects (checked
by perfroming
simulations with
e→ 0)
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Discrete Adler function QED2

Q/e ∆(Q)/e2 stat.[10−6] cont. extrap.[10−6] FV [10−6] total[10−6]

1.405 0.036009 31 16 18 37
2.810 0.019362 17 7 10 13
5.620 0.006515 4 < 1 10 10
11.240 0.001807 < 1 1 4 4
22.480 0.000467 < 1 < 1 < 1 < 1
44.960 0.000118 < 1 < 1 < 1 < 1
89.920 0.000029 < 1 < 1 < 1 < 1

• Adding up gives final result:

Π(214Q2
0)−Π(Q2

0) = 0.064308[41, 0.06%]

• Here we used analytic LCP (known in QED2) 7/15



Lines of constant
physics (β(a), m(β))



Determination of the LCP

• General strategy to determinem(β) and β(a) twofold:

(A) Determine β(a) to ensure that we will have in all of our steps the same
physical volume

(B) Use ∆ (Adler function) to fixm as a function of β
(C) Please note that this should be done simultaneously
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General strategy
a1 a2 a3 a4

y y y
y y y

1. Assume we know β(a1) = β1, β(a2) = β2, β(a3) = β3

2. Determine β(a4) with cont. extrapolation of an Observable 〈O〉 sensitive
to β

3. Halve phys. size L2,3,4/2 and switch to 〈O〉 with smaller FV effects
4. Shift a2 → a1, a3 → a2, a4 → a3 and go to 1. 9/15



Choosing the observables

• Observable sensitive to β: t(n)
0 -scale from gradient flow

d

dt
Ut(x, µ) = −

[
∂x,µ

1

β
Sg(Ut)

]
Ut(x, µ)

t
(n)
0 · E(U

t
(n)
0

)/(L/a)2 = 0.375 ·
(

1

2

)2n

• Observable sensitive tom:

∆(n) = ∆(Q2
n, 2

nm)

Mass doubling favors mass dependence of the discrete Adler function

10/15



Determination of the LCP

• Intersection point gives the LCP
• Generalization toD parameters possible (D observables needed)
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Estimation of uncertainties

• Systematic uncertainties from continuum extrapolation
• Many extrapolations weighted with AIC:

exp

{
−1

2
(χ2 + 2nf − np)

}
• Recursive structure⇒ Dependence on the previous estimations

◦ 36 different fits⇒ 366 ≈ 1010 fits after 6 steps
◦ We reduce this number by choosing a handful of random representants

after every step
• Statistical uncertainties from a Jackknife analysis
• Whole procedure repeated on the NJ = 48 Jackknife bins
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Results



Results for the LCP in QED2

• Good agreement with exact results
• Uncertainties . 1% 13/15



How LCP uncertainty effects Adler function?
• Uncertainty from δβ(a) estimated from 1

Q2 dependence
• Uncertainty from δm(a) estimated from measuring mass dependence of

∆(Q2)
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Results and Conclusion

• The final results of the total study:

Π
(
214Q2

0

)
−Π(Q2

0) = 0.064308[186, 0.3%]

• Error budget:
Stat. error: 32 · 10−6 0.05%
Finite volume error: 14 · 10−6 0.02%
Cont. Extrap. error: 19 · 10−6 0.03%
β estimation error: 155 · 10−6 0.24%
m estimation error: 95 · 10−6 0.14%

• Seems to work in QED2

• Does the method work in QCD to calculate physical observables?
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Thank you for your attention!
I am happy to answer any questions you have!
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