# Progress on the exploratory calculation of the rare Hyperon decay $\Sigma^+ \to \rho \ell^+ \ell^-$

### Raoul Hodgson

University of Edinburgh raoul.hodgson@ed.ac.uk Lattice 2022, Bonn

August 11, 2022





# RBC UKQCD Collaboration

#### The RBC & UKQCD collaborations

#### UC Berkeley/LBNL

Aaron Meyer

#### University of Bern & Lund

Nils Hermansson Truedsson

#### BNL and BNL/RBRC

Yasumichi Aoki (KEK) Peter Boyle (Edinburgh) Taku Izubuchi Chulwoo Jung Christopher Kelly Meifeng Lin Nobuyuki Matsumoto Shigemi Ohta (KEK) Amarjit Soni Tianle Wang

#### **CERN**

Andreas Jüttner (Southampton) Tobias Tsang

#### Columbia University

Norman Christ Yikai Huo Yong-Chull Jang Joseph Karpie Bob Mawhinney Bigeng Wang (Kentucky) Yidi Zhao

#### University of Connecticut

Tom Blum Luchang Jin (RBRC) Douglas Stewart Joshua Swaim Masaaki Tomii

#### Edinburgh University

Matteo Di Carlo Luigi Del Debbio Felix Erben Vera Gülpers Maxwell T. Hansen Tim Harris Ryan Hill Raoul Hodgson Nelson Lachini Zi Yan Li Michael Marshall Fionn Ó hÓgáin Antonin Portelli James Richings Azusa Yamaguchi Andrew Z.N. Yong

Liverpool Hope/Uni. of Liverpool Nicolas Garron

#### Michigan State University Dan Hoying

<u>University of Milano Bicocca</u> Mattia Bruno

<u>Nara Women's University</u> Hiroshi Ohki

#### Peking University Xu Feng

#### University of Regensburg

Davide Giusti Christoph Lehner (BNL)

#### University of Siegen

Matthew Black Oliver Witzel

#### University of Southampton

Alessandro Barone Jonathan Flynn Nikolai Husung Rajnandini Mukherjee Callum Radley-Scott Chris Sachrajda

#### Stony Brook University

Jun-Sik Yoo Sergey Syritsyn (RBRC)

### Introduction

#### Rare Hyperon Decay

- $\Sigma^+ \rightarrow p \ell^+ \ell^-$  is an  $s \rightarrow d$  FCNC process, suppressed in the SM
- Potentially sensitive to new physics

[Geng et al. 10.1007/JHEP02(2022)178]

• Baryonic equivalent of the rare kaon decay  $K \rightarrow \pi \ell^+ \ell^-$  (see Ryan Hill's talk [Thur. 11:50])



#### Related Information

- Finite volume corrections to  $\Sigma^+ \rightarrow p \ell^+ \ell^-$  covered in Felix Erben's talk [Thur. 12:30]
- For details on theoretical work presented here and Felix's talk, see [F. Erben et al. arXiv:2208.XXXX]

# Motivation: Experiment



- Observed 3 events
- $\mathcal{B}(\Sigma^+ \to p \mu^+ \mu^-)_{HCP} = 8.6^{+6.6}_{-5.4} \pm 5.5 \times 10^{-8}$
- Originally thought this could be signal for a new particle of mass  $\simeq 214 MeV$

[HyperCP 10.1103/PhysRevLett.94.021801]



- *O*(10) events
- $\mathcal{B}(\Sigma^+ \to \rho \mu^+ \mu^-)_{LHCb} = 2.2^{+1.8}_{-1.3} \times 10^{-8}$
- No evidence for new particle
- Interest in improving measurement with the latest data, including first measurement of angular observables and  $\mathcal{B}(\Sigma^+ \to p e^+ e^-)$

[LHCb 10.1103/PhysRevLett.120.221803]

[LHCb 10.1007/JHEP05(2019)048]

# Motivation: Theory

- SM prediction of the 4 hadronic form factors (*a*,*b*,*c*,*d*) come from combination of sources
- Real parts from experimental input and vector meson dominance
- Imaginary parts from unitarity cuts and various types of Baryon Chiral Perturbation Theory
- Dominated by the long distance contribution

$$\Sigma^+ o p\gamma^* o p\mu^+\mu^-$$

$$1.6 imes 10^{-8} < {\cal B}(\Sigma^+ o p \mu^+ \mu^-) < 8.9 imes 10^{-8} \ -1.4 imes 10^{-5} < {\cal A}_{FB}(\Sigma^+ o p \mu^+ \mu^-) < 0.6 imes 10^{-5}$$

- Large ranges mainly coming from partially unconstrained real parts of a and b
- · Sensitivity to new physics limited by this uncertainty

[X. He 10.1103/PhysRevD.72.074003] [X. He et al. 10.1007/JHEP10(2018)040] [Geng et al. 10.1007/JHEP02(2022)178]

### Motivation: Lattice

 In near term lattice can complement existing methodology by constraining *Re a* and *Re b* to reduce range of *B*



[X. He et al. 10.1007/JHEP10(2018)040]

 In the further future go to a fully lattice determination of B including imaginary parts (see Felix's talk [Thur. 12:30])

### Minkowski Amplitude

- Long distance part  $\Sigma^+ \to \rho \gamma^*$  given by amplitude

$$\mathcal{A}_{\mu} = \int d^4 x \left< p(oldsymbol{p}) \right| T[\mathcal{H}_W(x) J_{\mu}(0)] \left| \Sigma^+(oldsymbol{k}) \right>$$

- *J*<sub>µ</sub>: Electromagnetic current
- $H_w$ :  $s \rightarrow d$  effective weak Hamiltonian

$$\mathcal{H}_W = \frac{G_f}{\sqrt{2}} V_{us} V_{ud}^* \left[ C_1 (Q_1^u - Q_1^c) + C_2 (Q_2^u - Q_2^c) + \ldots \right]$$

with 4-quark operators

$$Q_1^q = (ar{d}\gamma^{L\mu}s)(ar{q}\gamma^L_\mu q) \qquad \qquad Q_2^q = (ar{d}\gamma^{L\mu}q)(ar{q}\gamma^L_\mu s)$$

### Minkowski Amplitude

• Form factor decomposition

$$egin{aligned} \mathcal{A}_{\mu} &= ar{u}_{
ho}(oldsymbol{p}) \left[ i\sigma_{\mu
u}q^{
u}(oldsymbol{a}+b\gamma_5) + (q^2\gamma_{\mu}-q_{\mu}\phi)(oldsymbol{a}+d\gamma_5) 
ight] u_{\Sigma}(oldsymbol{k}) \ &\quad q=k-p \end{aligned}$$

Spectral representation

$$\mathcal{A}_{\mu} = i \int d\omega \left( \frac{\rho_{\mu}(\omega)}{E_{\Sigma}(\mathbf{k}) - \omega + i\epsilon} - \frac{\sigma_{\mu}(\omega)}{\omega - E_{\rho}(\mathbf{p}) - i\epsilon} \right)$$

• In finite volume spectral functions have the form

$$\rho_{\mu}(\omega)_{L} = \sum_{\alpha} \frac{\delta(\omega - E_{\alpha}(\boldsymbol{k}))}{2E_{\alpha}(\boldsymbol{k})} \langle \boldsymbol{p}(\boldsymbol{p}) | J_{\mu} | E_{\alpha}(\boldsymbol{k}) \rangle \langle E_{\alpha}(\boldsymbol{k}) | \mathcal{H}_{W} | \Sigma(\boldsymbol{k}) \rangle$$
  
$$\sigma_{\mu}(\omega)_{L} = \sum_{\beta} \frac{\delta(\omega - E_{\beta}(\boldsymbol{p}))}{2E_{\beta}(\boldsymbol{p})} \langle \boldsymbol{p}(\boldsymbol{p}) | \mathcal{H}_{W} | E_{\beta}(\boldsymbol{p}) \rangle \langle E_{\beta}(\boldsymbol{p}) | J_{\mu} | \Sigma(\boldsymbol{k}) \rangle$$

### **Euclidean Correlators**

• 4-point correlation function

$$\Gamma^{(4)}_{\mu}(t_{p},t_{H},t_{\Sigma}) = \int d^{3} oldsymbol{x} \left\langle \psi_{p}(t_{p},oldsymbol{p}) \; \mathcal{H}_{W}(t_{H},oldsymbol{x}) J_{\mu}(0) \; ar{\psi}_{\Sigma}(t_{\Sigma},oldsymbol{k}) 
ight
angle$$

• Amputate external propagation and overlap factors

$$\hat{\Gamma}_{\mu}^{(4)}(t_{H}) = \frac{4E_{\Sigma}E_{\rho}}{Z_{\rho}Z_{\Sigma}^{*}}e^{+E_{\rho}t_{\rho}}e^{-E_{\Sigma}t_{\Sigma}}\Gamma_{\mu}^{(4)}$$
$$t_{H} < 0: \qquad = \int_{0}^{\infty}d\omega \ \rho_{\mu}(\omega)_{L} \ e^{-(E_{\Sigma}-\omega)t_{H}}$$
$$t_{H} > 0: \qquad = \int_{0}^{\infty}d\omega \ \sigma_{\mu}(\omega)_{L} \ e^{-(\omega-E_{\rho})t_{H}}$$

Assuming ground state dominance of external states

### Euclidean Correlators

- 4 diagrams for 3-point functions of *H<sub>w</sub>*
- 24 diagrams for 4-point functions





















etc

### Integrated Correlator

• Integrate amputated 4-point function within window  $[-T_a, T_b]$ 

$$\begin{split} I_{\mu}^{(4)}(T_{a}, T_{b}) &= -i \int_{-T_{a}}^{T_{b}} dt_{H} \hat{\Gamma}_{\mu}^{(4)}(t_{H}) \\ &= i \int_{0}^{\infty} d\omega \left[ \rho_{\mu}(\omega)_{L} \frac{1 - e^{(E_{\Sigma} - \omega)T_{a}}}{E_{\Sigma} - \omega} - \sigma_{\mu}(\omega)_{L} \frac{1 - e^{-(\omega - E_{\rho})T_{b}}}{\omega - E_{\rho}} \right] \\ &= \mathcal{A}_{\mu} + T_{a}, T_{b} \text{ exp terms} + \text{FV corrections} \end{split}$$

- FV corrections will be covered in Felix's talk [Thur. 12:30]
- Remove  $T_b$  exp terms by taking  $T_b \to \infty$
- $T_a \rightarrow \infty$  limit blows up for region of  $\rho_\mu$  spectrum with  $\omega < E_{\Sigma}$

### Growing Exponentials



Example physical point intermediate spectra with  ${m k}={m 0}$  and  $|{m p}|=400~MeV$ 

- Must remove growing exponentials before taking the  $T_a \rightarrow \infty$  limit
- In practice might also have to remove slowly decaying exponentials to improve convergence as T<sub>a</sub>, T<sub>b</sub> → ∞

# Single Proton removal: Explicit subtraction

- Can construct the problematic exponentials and explicitly remove them from the integrated 4-point function
- Requires energies and matrix elements from 3-point functions of  $H_w$  and  $J_\mu$
- Example: single proton intermediate state

$$\frac{1}{2E_{\rho}(\boldsymbol{k})} \left\langle \rho(\boldsymbol{p}) \right| J_{\mu} \left| \rho(\boldsymbol{k}) \right\rangle \left\langle \rho(\boldsymbol{k}) \right| \mathcal{H}_{W} \left| \Sigma(\boldsymbol{k}) \right\rangle \frac{e^{-(E_{\Sigma}(\boldsymbol{k}) - E_{\rho}(\boldsymbol{k}))T_{a}}}{E_{\Sigma}(\boldsymbol{k}) - E_{\rho}(\boldsymbol{k})} \\ \sim \hat{\Gamma}_{J_{\mu}}^{(3)} \cdot \hat{\Gamma}_{H_{W}}^{(3)} \frac{e^{-(E_{\Sigma}(\boldsymbol{k}) - E_{\rho}(\boldsymbol{k}))T_{a}}}{E_{\Sigma}(\boldsymbol{k}) - E_{\rho}(\boldsymbol{k})}$$

• Can be applied to all intermediate states

# Single Proton removal: (Pseudo)scalar shift

Can also remove a single growing exponential via a (pseudo)scalar operator shift to H<sub>w</sub>. Amplitude invariant due to chiral Ward identities
 [RBC UKQCD 10.1103/PhysRevD.88.014508]

$${\cal H}'_W = {\cal H}_W - c_S \bar{d}s - c_P \bar{d}\gamma_5 s \ \Rightarrow \ {\cal A}' = {\cal A}$$

• Choose  $c_S$  and  $c_P$  such that a single matrix element vanishes

$$\langle p(\mathbf{k}) | \mathcal{H}'_{W} | \Sigma(\mathbf{k}) \rangle = \bar{u}_{p} \left[ (a_{H} - c_{S} a_{S}) + (b_{H} - c_{P} b_{P}) \gamma_{5} \right] u_{\Sigma} = 0$$
  
$$\therefore \quad c_{S} = \frac{a_{H}}{a_{S}} \quad \text{and} \quad c_{P} = \frac{b_{H}}{b_{P}}$$

- In general, need both operators to remove intermediate state (unlike in the rare Kaon decay) [RBC UKQCD 10.1103/PhysRevD.92.094512]
- Σ at rest (k = 0) is a special kinematic point as it removes need for pseudoscalar shift since

$$ar{u}_p^r(\mathbf{0})\gamma_5 u_\Sigma^s(\mathbf{0})=0$$

### Exploratory Calculation: Ensemble details

• Iwasaki gauge action  $\beta = 2.13$ 

[RBC-UKQCD 10.1103/PhysRevD.83.074508]

- 2+1f Shamir domain-wall fermions
- $a\simeq 0.1 fm\simeq (1730~MeV)^{-1}$
- $24^3 \times 64 \ (\times 16)_{L_s}$
- $m_\pi \simeq 340~MeV$  and  $m_K \simeq 580~MeV$
- $m_N\simeq 1150~MeV$  and  $m_\Sigma\simeq 1350~MeV$



# Exploratory Calculation: Measurement Details

- At present only measuring C<sub>sd</sub> and C<sub>su</sub> diagrams (Non-Eye)
- Gauge fixed Gaussian sources
- Source-Sink sampling (x4x4)
- Time translation (x32)
- Kinematics  ${m k}={m 0}$  ,  ${m 
  ho}={2\pi\over L}(1,0,0)$
- Grid/Hadrons

Source-Sink sampling



[Y. Li et al. 10.1103/PhysRevD.103.014514]



- Positions x and y fixed in solves
- Full volume sum for momentum projection requires  $\sim$  14,000 solves
- Approximate with sum over N random position samples
- Could get up to 1/N error scaling

### Exploratory Calculation: Preliminary Data



### Exploratory Calculation: Preliminary Data



- Connected contribution to the amputated 4-point function
- Need to integrate and remove single proton intermediate state via both methods

# Conclusion/Outlook

#### Conclusion

- $\Sigma^+ \to \rho \ell^+ \ell^-$  is a process of interest to the community
- We have theoretical framework to extract the amplitude [F. Erben et al. arXiv:2208.XXXX]
- · Working towards an exploratory computation with heavy pion mass

#### Outlook

- Need to complete data collection (including Eye-type diagrams) and full analysis to be performed
- Move towards a physical point calculation where finite volume effects are important (see Felix's talk [Thur. 12:30])



This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme under grant agreement No 757646