Motivation	0.048 fm	Multi-operators	QEDv	Conclusions

Updates on the HVP computation from the BMW collaboration

Bálint C. Tóth

University of Wuppertal

Budapest-Marseille-Wuppertal collaboration

Motivation	0.048 fm	Multi-operators	QEDv	Conclusions
•	0000		oo	O
Motivation				

- Tensions in $a_{\mu}^{\rm LO-HVP}$
 - 4.2 σ between WP'20 and experiment
 - 1.5 σ between BMW'20 and experiment
 - 2.1 σ between WP'20 and BMW'20

Motivation	0.048 fm	Multi-operators	QEDv	Conclusions

$a = 0.048 \, \text{fm}$

Motivation	0.048 fm	Multi-operators	QEDv	Conclusions
o	●000		oo	O
Simulation	S			

- Tree-level Symanzik gauge action
- N_f = 2 + 1 + 1 staggered fermions

- stout smearing
 4 steps, p = 0.125
- $L \sim 6 \,\mathrm{fm}, T \sim 9 \,\mathrm{fm}$
- *M_π* and *M_K* are around physical point

	eta	<i>a</i> [fm]	$L \times T$	1.02
	3.7000	0.1315	48 × 64	
	3.7500	0.1191	56 imes 96	
	3.7753	0.1116	56 × 84	² ³ 0.98 - β=3.7000 (1)
	3.8400	0.0952	64 imes 96	$\beta = 3.7500 (5)$ $\beta = 3.7753 (4)$
	3.9200	0.0787	80 × 128	$0.94 - \beta = 3.8400 (4) \\ \beta = 3.9200 (6) \\ \beta = 4.0126 (6)$
	4.0126	0.0640	96 × 144	$\beta = 4.1479$ (2)
$NEW \longrightarrow$	4.1479	0.0483	128×192	0.95 1.00 1.05 $M_{\pi_0}^2 w_0^2 / [M_{\pi_0}^2 w_0^2] *$

Motivation	0.048 fm	Multi-operators	QEDv	Conclusions	
o	⊙●○○		oo	O	
Topological tunneling					

a = 0.0483 fm

• Q defined at Wilson-flow time $t = w_0^2$

●
$$\tau_{int} = 85(21)$$

Lattice 2022, Bonn, 12 Aug 2022

Motivation	0.048 fm	Multi-operators	QEDv	Conclusions
o	○○●○		oo	O
Window ob	servable			

• Restrict correlator to window between $t_1 = 0.4$ fm and $t_2 = 1.0$ fm

[RBC/UKQCD'18]

Motivation O	0.048 fm ○○○●	Multi-operators	QEDv oo	Conclusions O	
Intermediate Window					

Motivation	0.048 fm	Multi-operators	QEDv	Conclusions
o	0000		oo	O

Multi-operator measurements

Motivation	0.048 fm	Multi-operators	QEDv	Conclusions
		0000		

Staggered vector meson operators

Vector meson operators [Golterman '85]					
OP	spin ⊗ taste	mult.	# hops	# paths	id*
1-times	slice operators				
Li00	$\gamma_i \otimes \xi_i$ local	3	0	1 × 1	4
L100	$\gamma_i \otimes 1$ conserved	3	1	2×1	5
Lij0	$\gamma_i \otimes \xi_i \xi_j$	6	1	2×1	10
Lijk	γi ⊗ ξiξjξk	3	2	4 × 2	11
Lj00	$\gamma_i \otimes \xi_j$	6	2	4 × 2	15
Ljk0	$\gamma_i \otimes \xi_j \xi_k$	3	3	8×6	20
2-times	slice operators				
Ni00	$\gamma_i \otimes \xi_i \xi_4$	3	1	1×1	24
N100	$\gamma_i \otimes \xi_4$	3	2	2×2	25
Nij0	γi ⊗ ξiξjξ4	6	2	2×2	30
Nijk	γ _i ⊗ ξ _i ξjξ _k ξ ₄	3	3	4×6	31
Nj00	$\gamma_i \otimes \xi_j \xi_4$	6	3	4×6	35
Njk0	γ _i ⊗ ξjξ _k ξ4	3	4	8×24	40
Total	12	48			

* [Altmeyer et.al. '93], [Ishizuka et.al. '94]

Motivation	0.048 fm	Multi-operators	QEDv	Conclusions
O	0000	o●oo	oo	O
Shape of c	orrelator			

- 1-timeslice operators → staggered oscillations
- 2-timeslice operators no staggered oscillations

Lattice 2022, Bonn, 12 Aug 2022

Motivation	0.048 fm	Multi-operators	QEDv	Conclusions
O	0000	○○●○	oo	O
Renormaliz	zation			

• L100 $(\gamma_i \otimes 1)$ is conserved \longrightarrow trivial renormalization:

$$Z_V(L100) = 1$$

- Other tastes: $J^{\mu}(L100) = Z_{V}(OP) \cdot J^{\mu}(OP) + O(a^{2})$
- Z_V is mass-independent

$$Z^2_V(\mathsf{OP}) \stackrel{ ext{def}}{=} rac{a^{ ext{strange}}_{\mu, ext{win}}(\mathsf{L100})}{a^{ ext{strange}}_{\mu, ext{win}}(\mathsf{OP})}$$

Motivation	0.048 fm	Multi-operators	QEDv	Conclusions
O	0000		oo	O
Collapse				

- LMA implementation of all 12 operators (48 components)
- 5 lattice spacings
- 1 ensemble at each β
- 48 configurations on each ensemble

Motivation	0.048 fm	Multi-operators	QEDv	Conclusions
	0000	0000	00	

QED valence contribution

Motivation	0.048 fm	Multi-operators	QEDv	Conclusions
O	0000		●o	O
QED strate	gy			

Rewrite dynamical QED as quenched QED expectation values

$$\left\langle C\right\rangle_{\text{QCD}+\text{unquenched QED}} = \frac{\left\langle \left\langle C(U,A) \frac{\det M(U,A)}{\det M(U,0)} \right\rangle_{\text{quenched QED}} \right\rangle_{\text{QCD}}}{\left\langle \left\langle \frac{\det M(U,A)}{\det M(U,0)} \right\rangle_{\text{quenched QED}} \right\rangle_{\text{QCD}}}$$

• Expand to first order in e^2 and $\delta m = m_d - m_u$

e_v: valence charge,*e_s*: sea charge

•
$$C(U,A) \approx C_0(U) + \frac{\delta m}{m_l} \cdot C'_m(U) + e_V \cdot C'_1(U,A) + e_V^2 \cdot C''_2(U,A)$$

• $\left(\prod_{f=u,d,s,c} \frac{\det M^{(f)}[U,A]}{\det M^{(f)}[U,0]}\right)^{1/4} \approx 1 + e_s \cdot \frac{d_1(U,A)}{d_0(U)} + e_s^2 \cdot \frac{d_2(U,A)}{d_0(U)}$ $O(\delta m)$

 $O(\delta m)$ sea effect vanishes

$$\begin{split} \langle C \rangle_{\text{QCD+QED}} &= \langle C_0(U) \rangle_U + \frac{\delta m}{m_l} \cdot \langle C'_m(U) \rangle_U + \frac{e_v^2}{2} \cdot \left\langle \langle C''_2(U, A) \rangle_{A,q.} \right\rangle_U + \\ &+ e_v e_s \cdot \left\langle \left\langle C'_1(U, A) \cdot \frac{d_1(U, A)}{d_0(U)} \right\rangle_{A,q.} \right\rangle_U + \\ &+ \frac{e_s^2}{2} \cdot \left\langle \left(C_0(U) - \langle C_0(U) \rangle_U \right) \cdot \left\langle \frac{d_2(U, A)}{d_0(U)} \right\rangle_{A,q.} \right\rangle_U \end{split}$$

OED volonee contribution						
O NIOTIVATION	0.048 fm 0000	Multi-operators		O		
	0.040(MAC 102 CONTRACTOR	050			

- QED valence contribution
 - Valence sector of quark-connected HVP

$$\left\langle \left\langle C_{2}^{\prime\prime}(U,A)\right\rangle _{A,q.}\right\rangle _{U} = \left\langle \begin{array}{c} \left\langle \begin{array}{c} \\ \end{array}\right\rangle _{2} \\ \end{array}\right\rangle + \left\langle \begin{array}{c} \\ \end{array}\right\rangle _{2}$$

• Compute as finite difference: measure C(0), $C(+\frac{1}{3}e_*)$, $C(-\frac{1}{3}e_*)$

• Measure at
$$\kappa = \frac{m_{val}^{ud}}{m_{phys}^{ud}} = 3, 5, 7 \longrightarrow \kappa = 1$$

• New strategy: measure directly at $\kappa = 1$ using LMA

Motivation	0.048 fm	Multi-operators	QEDv	Conclusions
O	0000		oo	O

Conclusions & Outlook

Motivation	0.048 fm	Multi-operators	QEDv	Conclusions
O	0000		oo	•
Conclusion	ns & Outloo	ok		

● *a* = 0.048 fm

- Will be included for $a_{\mu,\text{win}}^{\text{light}}$ still blinded
- Need to collect more statistics to include in $a_{\mu}^{\text{LO-HVP}}$

Multi-operators

- $a_{\mu,\text{win}}^{\text{light}}$ measurements with 48 components of 12 operators
- QED at $\kappa = 1$
 - Still in development/testing phase

Motivation	0.048 fm	Multi-operators	QEDv	Conclusions

Staggered meson operators

- Continuum meson operators
 - $\overline{\psi} \Gamma \psi$ Γ : combination of γ matrices
- Staggered meson operators

 $\overline{\psi}(\gamma_s \otimes \xi_t)\psi$ γ_s : spin, ξ_t : taste

• Staggered phase at
$$x = (x_1, x_2, x_3, x_4)$$

 $\gamma_x = \gamma_1^{x_1} \ \gamma_2^{x_2} \ \gamma_3^{x_3} \ \gamma_4^{x_4} \qquad \text{only} \quad \text{mod 2 counts}$

• Meson operator correspoding to spin $s = (s_1, s_2, s_3, s_4)$ and taste $t = (t_1, t_2, t_3, t_4)$:

$$\overline{\psi}(\gamma_{s} \otimes \xi_{t})\psi \longrightarrow \overline{\chi}(x) \frac{1}{4} \operatorname{Tr}[(\gamma_{t})^{\dagger} (\gamma_{x})^{\dagger} \gamma_{s} \gamma_{x \oplus (s + t)}] \chi(x \oplus (s + t))$$

• $s + t \equiv s + t \mod 2$ $\gamma_s = \gamma_1^{s_1} \gamma_2^{s_2} \gamma_3^{s_3} \gamma_4^{s_4}$

• $x \oplus \delta x$: stay within 2⁴ hypercube

[Follana et.al. 2007]

Staggered meson operators

With gauge fields:

$$s = (s_1, s_2, s_3, s_4)$$
 $t = (t_1, t_2, t_3, t_4)$

$$\overline{\psi}(\gamma_s \otimes \xi_t)\psi \longrightarrow \overline{\chi}(x) \frac{1}{4} \operatorname{Tr}\left[(\gamma_t)^{\dagger} (\gamma_x)^{\dagger} \gamma_s \gamma_{x \pm (s + t)}\right] U_{x, x \pm (s + t)} \chi(x \pm (s + t))$$

- U_{x,y}: Average over shortest paths between x and y
- $s + t \equiv s + t \mod 2$
- $x \pm \delta x$: Average over all reflections in spatial directions $\pm \delta x_1, \pm \delta x_2, \pm \delta x_3$
- Take 0 spatial momentum: \sum_{x_1, x_2, x_3}

• 1-timeslice: $(s + t)_4 = 0$

$$\sum_{\mathbf{x}} \bar{\chi}(\mathbf{x}, \mathbf{x}_4) \ J(\mathbf{x}, \mathbf{x}_4; \mathbf{x} \tilde{\pm}(\mathbf{s} \hat{+} \mathbf{t}), \mathbf{x}_4) \ \chi(\mathbf{x} \tilde{\pm}(\mathbf{s} \hat{+} \mathbf{t}), \mathbf{x}_4)$$

L100 ($\gamma_i \otimes 1$, conserved)

Lj00 $(\gamma_i \otimes \xi_j, j \neq i)$

Staggered meson operators

$$\overline{\psi}(\gamma_{s} \otimes \xi_{t})\psi \longrightarrow \overline{\chi}(x) \frac{1}{4} \operatorname{Tr}\left[(\gamma_{t})^{\dagger} (\gamma_{x})^{\dagger} \gamma_{s} \gamma_{x \pm (s + t)}\right] U_{x, x \pm (s + t)} \chi(x \pm (s + t))$$

• Time-nonlocal (2-timeslice) operators: $(s+t)_4 = 1$

$$\sum_{\mathbf{x}} \bar{\chi}(\mathbf{x}, \mathbf{x}_4) J^+(\mathbf{x}, \mathbf{x}_4; \mathbf{x} \tilde{\pm}(\mathbf{s} \hat{+} \mathbf{t}), \mathbf{x}_4 + 1) \chi(\mathbf{x} \tilde{\pm}(\mathbf{s} \hat{+} \mathbf{t}), \mathbf{x}_4 + 1) + \\ + \bar{\chi}(\mathbf{x}, \mathbf{x}_4 + 1) J^-(\mathbf{x}, \mathbf{x}_4 + 1; \mathbf{x} \tilde{\pm}(\mathbf{s} \hat{+} \mathbf{t}), \mathbf{x}_4) \chi(\mathbf{x} \tilde{\pm}(\mathbf{s} \hat{+} \mathbf{t}), \mathbf{x}_4)$$

