Chiral extrapolation of hadronic vacuum polarization and isospin-breaking corrections

Martin Hoferichter

b UNIVERSITÄT BERN Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, University of Bern

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

Aug 09, 2022

The 39th International Symposium on Lattice Field Theory (Lattice 2022)

Colangelo, MH, Stoffer JHEP 02 (2019) 006, PLB 814 (2021) 136073 [2π disp]

Colangelo, MH, Kubis, Niehus, Ruiz de Elvira PLB 825 (2022) 136852 [2π IAM+disp]

Stamen, Hariharan, MH, Kubis, Stoffer EPJC 82 (2022) 432 [KK disp]

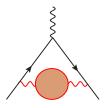
Colangelo, MH, Kubis, Stoffer, to appear [IB in 2π]

thanks to B.-L. Hoid $[\pi^0 \gamma]$, A. Keshavarzi $[\eta \gamma]$, and L. Lellouch [IB in BMWc 2020]

effect	$\pi^0\gamma$	$\eta\gamma$	$ ho{-}\omega$ mixing	FSR	M_{π^0} vs. M_{π^\pm}	total
size in units of 10^{-10}	4.64(4)	0.65(1)	2.71(1.36)	4.22(2.11)	-4.47(4.47)	7.8(5.1)

BMWc 2017, Jegerlehner

- Detailed comparison between e⁺e⁻ data and lattice QCD
- Well-defined for total and windows, here: what about isospin breaking?
- Can do much better than previous estimates, but still caveats:
 - Cannot cover all channels
 - Scheme dependence
- Dominant effects:
 - Radiative channels $\pi^0\gamma$, $\eta\gamma$: data
 - $\rho-\omega$ mixing: residue in dispersive representation
 - FSR: scalar QED + dispersive corrections
 - M_{π^0} vs. $M_{\pi^{\pm}}$ for 2π channel: IAM + Omnès
 - **KK**: resonance/threshold enhancement



Decomposition of pion form factor

$$F_{\pi}^{V}(s) = \underbrace{\Omega_{1}^{1}(s)}_{\text{elastic }\pi\pi \text{ scattering}} \times \underbrace{G_{\omega}(s)}_{\text{isospin-breaking }3\pi \text{ cut}} \times \underbrace{G_{\text{in}}(s)}_{\text{inelastic effects: }4\pi, \dots}$$

Omnès factor

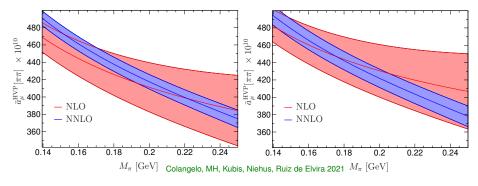
$$\Omega_1^1(s) = \exp\left\{\frac{s}{\pi}\int_{4M_\pi^2}^{\infty} \mathsf{d}s'\frac{\delta_1^1(s')}{s'(s'-s)}\right\}$$

 \hookrightarrow can get pion-mass dependence from IAM Guo et al. 2009

- $G_{\omega}(s)$ describes $\rho \omega$ mixing in terms of residue $\epsilon_{\rho\omega}$
- Gin(s) parameterized as normal or conformal polynomial
 - \hookrightarrow free parameters can be matched to $\langle r_{\pi}^2 \rangle$ (and c_{π})
- Pion-mass dependence of $\langle r_\pi^2
 angle$ at two loops known Bijnens, Colangelo, Talavera 1998

 \hookrightarrow new LEC r_{V1}^r (from resonance saturation or lattice calculation of $\langle r_{\pi}^2 \rangle$)

Predicting the pion-mass dependence from the IAM



•
$$\bar{a}_{\mu}^{\text{HVP}}[\pi\pi]$$
 only $I = 1$ correlator (with $\epsilon_{\rho\omega} = 0$)

- Free parameters:
 - LECs in $\delta_1^1(s)$: combined fit to data Colangelo, MH, Stoffer 2019 and lattice Andersen et al. 2019
 - r_{V1}^r : resonance saturation $r_{V1}^r = 2.0 \times 10^{-5}$ in concord with lattice Feng, Fu, Jin 2020
- Validated at physical point

Possible application to lattice QCD

Ohiral LECs as fit parameters:

- Describes $\pi\pi$ physics
- Need to add $a_{\mu}^{\text{HVP}}[ud, I = 1, \text{non-}\pi\pi] = \zeta + M_{\pi}^2 \xi$

 \hookrightarrow infrared singularities will be totally dominated by 2π

• Can provide independent constraints from other lattice calculations: δ_1^1 , F_{π} , $\langle r_{\pi}^2 \rangle$

Simple parameterizations:

- Only possible for integrated HVP or space-like integrand $\frac{\overline{\Pi}(-Q^2)}{Q^2} = \frac{a+bQ^2}{1+cQ^2+dQ^4}$
- Test infrared singularities Golterman, Maltman, Peris 2017, e.g., M_{π}^{-2} , log M_{π}^{2}
- Fits to {a, b, c, d} indicate singularity as strong as M⁻²_π in [0.14, 0.25] GeV
- Purely empirical finding, no analytic approximation to full IAM nor true chiral behavior
- Could help inform lattice fits
- Isospin breaking due to pion mass difference:

$$\mathbf{a}_{\mu}^{\mathsf{HVP}}[\pi\pi]\big|_{\mathbf{M}_{\pi^{\pm}}} - \mathbf{a}_{\mu}^{\mathsf{HVP}}[\pi\pi]\big|_{\mathbf{M}_{\pi^{0}}} = -7.67(4)_{\mathsf{ChPT}}(3)_{\mathsf{polynomial}}(4)_{\langle r_{\pi}^{2} \rangle}(21)_{r_{V1}'}[22]_{\mathsf{total}}$$

ρ – ω mixing and FSR

• FSR dominated by infrared enhanced effects

 $\hookrightarrow \text{scalar QED}$

Corrections small Moussallam 2013

$$a_{\mu}^{\mathsf{HVP}}[\pi\pi\gamma,\mathsf{non-Born}] = 0.15_{\pi^{+}\pi^{-}\gamma} + 0.03_{\pi^{0}\pi^{0}\gamma} = 0.18(4)$$

- Can get FSR and $\epsilon_{\rho\omega}$ contributions from dispersive fits to 2π
- Higher-order terms $\mathcal{O}(e^2\epsilon_{\rho\omega})$ small, $\lesssim 0.1$
- Line shape matters Wolfe, Maltman 2009, we use

$$\begin{aligned} G_{\omega}(s) &= 1 + \frac{s}{\pi} \int_{9M_{\pi}^{2}}^{\infty} ds' \frac{\operatorname{Im} g_{\omega}(s')}{s'(s'-s)} \left(\frac{1 - \frac{9M_{\pi}^{2}}{s'}}{1 - \frac{9M_{\pi}^{2}}{M_{\omega}^{2}}} \right)^{4} \\ g_{\omega}(s) &= 1 + \epsilon_{\rho\omega} \frac{s}{(M_{\omega} - \frac{i}{2}\Gamma_{\omega})^{2} - s} \qquad \epsilon_{\rho\omega} \to \operatorname{Re} \epsilon_{\rho\omega} + i\operatorname{Im} \epsilon_{\rho\omega} \frac{\left(1 - \frac{M_{\pi}^{2}}{s}\right)^{3}}{\left(1 - \frac{M_{\pi}^{2}}{M_{\omega}^{2}}\right)^{3}} \theta(s - M_{\pi^{0}}^{2}) \end{aligned}$$

to account for radiative channels $\rho \to \pi^0 \gamma, \ldots \to \omega$, $\sigma \to \sigma = \sigma$

Results:

$$a_{\mu}^{\mathsf{HVP}}[\pi\pi, \mathsf{FSR}, \mathsf{Born}] = 4.24(2)$$
 $a_{\mu}^{\mathsf{HVP}}[\pi\pi, \rho - \omega] = 3.68(17)$

• Separation of $\epsilon_{\rho\omega}$ into $\mathcal{O}(e^2)$ and $\mathcal{O}(\delta) = \mathcal{O}(m_u - m_d)$ Urech 1995

$$egin{array}{lll} \Theta_{
ho\omega}\simeq -3\epsilon_{
ho\omega}M_V^2 & \Theta_{
ho\omega}ig|_{e^2}=e^2 F_
ho F_\omega & \Gamma(V
ightarrow e^+e^-)=rac{e^4 F_V^2}{12\pi M_V} \end{array}$$

Correction actually relative to ρ(770), so

$$\epsilon_{
ho\omega}\big|_{e^2}\simeq -e^2\Big(rac{F_\omega}{M_\omega}\Big)^2\simeq -0.34(1) imes 10^{-3}$$

• With $|\epsilon_{\rho\omega}|\simeq 1.97 imes 10^{-3}$ we estimate

$$a_{\mu}^{\mathsf{HVP}}[\pi\pi,
ho-\omega, e^2] = -0.64(3)$$
 $a_{\mu}^{\mathsf{HVP}}[\pi\pi,
ho-\omega, \delta] = 4.32(20)$

Isospin breaking in $\overline{K}K$ channel

- Why *KK*?
 - ϕ resonance close to $\bar{K}K$ threshold
 - Isospin breaking from masses enhanced
- Threshold region dominated by isoscalar form factor via ϕ Stamen et al. 2022
 - \hookrightarrow analyzed in terms of ϕ resonance parameters
- Significant isospin breaking in residues

$$c_{\phi}^{K^+K^-}=0.977(6)$$
 $c_{\phi}^{ar{K}^0K^0}=1.001(6)$

 \hookrightarrow dominant source of uncertainty

• Definition of isospin limit via self energy $(M_{K^{\pm}}^2)_{\rm EM} = 2.12(18) \times 10^{-3} \, {\rm GeV}^2$ from Cottingham formula

$$M_{K^{\pm}} = (494.58 - 3.05_{\delta} + 2.14_{e^2}) \text{ MeV}$$
 $M_{K^0} = (494.58 + 3.03_{\delta}) \text{ MeV}$

• How close is this to popular lattice conventions? matches well with BMWc 2020 scheme, estimate by L. Lellouch: $M_{K\pm} = (494.54 - 3.06_{\delta} + 2.19_{e^2}) \text{ MeV},$ $M_{K0} = (494.55 + 3.06_{\delta}) \text{ MeV}$

Isospin breaking in $\overline{K}K$ channel

Results

$$\begin{aligned} a_{\mu}^{\mathsf{HVP}}[\mathcal{K}^{+}\mathcal{K}^{-}, \leq 1.05\,\mathsf{GeV}] &= 18.45(20) & a_{\mu}^{\mathsf{HVP}}[\mathcal{K}^{0}\bar{\mathcal{K}}^{0}, \leq 1.05\,\mathsf{GeV}] = 11.83(15) \\ a_{\mu}^{\mathsf{HVP}}[\mathcal{K}^{+}\mathcal{K}^{-}, \mathsf{FSR}] &= 0.75(4) \\ a_{\mu}^{\mathsf{HVP}}[\mathcal{K}^{+}\mathcal{K}^{-}, e^{2}] &= -3.24(17) & a_{\mu}^{\mathsf{HVP}}[\mathcal{K}^{0}\bar{\mathcal{K}}^{0}, e^{2}] = -0.02(0) \\ a_{\mu}^{\mathsf{HVP}}[\mathcal{K}^{+}\mathcal{K}^{-}, \delta] &= 4.98(26) & a_{\mu}^{\mathsf{HVP}}[\mathcal{K}^{0}\bar{\mathcal{K}}^{0}, \delta] = -4.62(23) \\ a_{\mu}^{\mathsf{HVP}}[\mathcal{K}^{+}\mathcal{K}^{-}, e^{2}\delta] &= -0.33(1) \end{aligned}$$

- Note:
 - K⁰ self energy negligible, but indirect O(e²) effect from the K[±] contribution to the φ spectral function
 - Remaining differences between "isospin limit" K^+K^- (16.29) and \bar{K}^0K^0 (16.47) due to c_{a} and isovector form factor
- Isospin-breaking effects huge due to threshold/resonance enhancement
 - \hookrightarrow higher-order terms $\mathcal{O}(e^2\delta)$ in K^+K^- larger than in $2\pi!$

Summing everything up

	SD window		int window		LD window		full HVP	
	$\mathcal{O}(e^2)$	$\mathcal{O}(\delta)$	$\mathcal{O}(e^2)$	$\mathcal{O}(\delta)$	$\mathcal{O}(e^2)$	$\mathcal{O}(\delta)$	$\mathcal{O}(e^2)$	$\mathcal{O}(\delta)$
$\pi^0\gamma$	0.16(0)	-	1.52(2)	-	2.70(4)	-	4.38(6)	-
$\eta \gamma$	0.05(0)	-	0.34(1)	-	0.31(1)	-	0.70(2)	-
$\rho{-}\omega$ mixing	-0.01(0)	0.06(0)	-0.14(1)	0.97(8)	-0.48(2)	3.27(13)	-0.64(3)	4.32(20)
FSR (2 <i>π</i>)	0.11(0)	-	1.17(1)	-	3.14(3)	-	4.42(4)	-
$M_{\pi 0}$ vs. $M_{\pi \pm}$ (2 π)	0.04(1)	-	-0.09(7)	-	-7.62(14)	-	-7.67(22)	-
$FSR(K^+K^-)$	0.07(0)	-	0.39(2)	-	0.29(2)	-	0.75(4)	-
kaon mass (K^+K^-)	-0.29(1)	0.44(2)	-1.71(9)	2.63(14)	-1.24(6)	1.91(10)	-3.24(17)	4.98(26)
kaon mass ($\bar{K}^0 K^0$)	0.00(0)	-0.41(2)	-0.01(0)	-2.44(12)	-0.01(0)	-1.78(9)	-0.02(0)	-4.62(23)
total	0.13(1)	0.09(3)	1.46(12)	1.16(20)	-2.92(16)	3.40(19)	-1.32(29)	4.68(40)
BMWc 2020	-	-	-0.09(6)	0.52(4)	-	-	-1.5(6)	1.9(1.2)

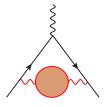
• Note: error estimates only refer to the effects included

 \hookrightarrow additional channels missing (most relevant for SD and int window)

- Systematic error \simeq 0.8 from c_{ϕ} due to ambiguity how to define the isospin limit
- Reasonable agreement with BMWc 2020, if anything, the result would become larger with these phenomenological estimates

Conclusions

- Phenomenological estimates for dominant
 isospin-breaking effects from π⁰γ, ηγ, 2π(γ), KK(γ)
- Chiral extrapolation for pion mass difference
- Separation into $\mathcal{O}(e^2)$ and $\mathcal{O}(m_u m_d)$ and windows
- Caveats:
 - Other hadronic channels
 - Scheme dependence
- Cancellations especially among various $\mathcal{O}(e^2)$ effects
- Reasonable agreement with BMWc 2020, maybe some indication that $\mathcal{O}(m_u m_d)$ is a little larger
- Some room for improvement by better matching schemes



• 3π channel:

- Naive estimate for FSR by comparing to 2π : \simeq 0.4 Kubis, Prabhu, Schuh, work in progress
- BaBar 2021 quotes $\rho \to 3\pi$ contribution in VMD fit ($\simeq -0.6$ in a_{μ}^{HVP} Boito et al. 2022), but hard to extract beyond the model context
- ω peak scales with 1/Γω in narrow-width approximation, dependence of Γω on pion mass could play a role Dax, Isken, Kubis 2018, but effect cancels out in the integral
- Threshold effects suppressed by $(s 9M_{\pi}^2)^3$, far away from ω peak
- Main uncertainty again from residue $c_{\omega}^{3\pi}$, is there any isospin breaking as in $c_{\omega}^{\bar{K}K}$?

• R-ratio from perturbative QCD

• QED corrections included in rhad Harlander, Steinhauser 2003, but $O(10^{-3})$ compared to leading-order result, and $10^{-3}a_{\mu}^{HVP}[\geq 1.8 \,\text{GeV}] \lesssim 0.05$

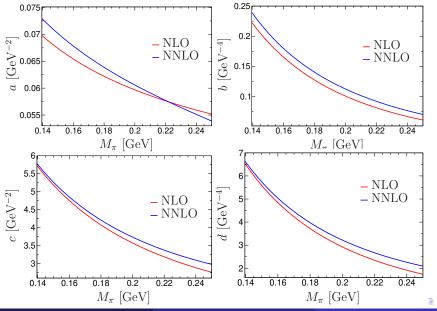
Chiral extrapolation part of systematic error budget

- \hookrightarrow extrapolation to (or interpolation around) physical quark masses
- Biggest contribution from *I* = 1 *ud* isospin-symmetric correlator
 - \hookrightarrow phenomenologically dominated by 2π channel, first correction from 4π
- ChPT not enough Golterman, Maltman, Peris 2017

$$a_{\mu}^{l=1} = \frac{\alpha^2}{24\pi^2} \bigg(-\log\frac{M_{\pi}^2}{m_{\mu}^2} - \frac{31}{6} + 3\pi^2 \sqrt{\frac{M_{\pi}^2}{m_{\mu}^2}} + \mathcal{O}\Big(\frac{M_{\pi}^2}{m_{\mu}^2}\log^2\frac{M_{\pi}^2}{m_{\mu}^2}\Big) \bigg)$$

- \hookrightarrow "convergence" in M_π/m_μ
- Need to provide information on the $\rho(770)$ resonance
 - $\hookrightarrow \text{ inverse-amplitude method at two-loop order}$

Possible application to lattice QCD



M. Hoferichter (Institute for Theoretical Physics)

Chiral extrapolation of HVP and IB corrections