Hadronic Vacuum Polarization: A Window on the g-2 mystery

C.T.H. Davies, C. DeTar, A.X. El-Khadra, E. Gámiz, Steven Gottlieb*, A.S. Kronfeld, J. Laiho, S. Lahert, M. Lynch, G.P. Lepage, C. McNeile, E.T. Neil, C. Peterson, J.N. Simone, R.S. Van de Water, and A. Vaquero
(Fermilab Lattice/HPQCD/MILC Collaborations)
Lattice 2022
Universität Bonn
August 12, 2022

Introduction

-Anomalous magnetic moments of electron and muon are two of the most precisely measured quantities in physics
-E821 at BNL published its final value for the muon in 2006
\rightarrow FNAL E989 announced its initial result in April, 2021

- spectacular agreement with E821
- Will continue running
- New experiment E34 planned at J-PARC
\uparrow There is $\approx 4.2 \sigma$ difference between data driven standard model (SM) calculation and experiment
-BMW 2021 value lies between SM value and experiment
\rightarrow It is important to improve the precision of other lattice QCD calculations.

Theory Overview

\uparrow SM contributions come from QED (electron \& muon), electroweak contributions, and hadronic contributions that involve quarks

- all forces save gravitation contribute
\uparrow Current situation summarized by Muon g-2 Theory Initiative
- T. Aoyama et al., Phys. Rept. 887 (2020, 2006.04822 [hep-ph]
- Next plot shows how the hadronic corrections dominate the error

Error vs. Contribution

- QED in blue has very small error
- Electroweak in green has larger error, but small contribution
- Hadronic contributions are all in red
- LO Hadronic vacuum polarization largest error and 2nd largest contribution
- HLBL 2nd largest error
- This talk on LO HVP

Lowest Order HVP

\uparrow HVP is calculated as sum of several contributions: light quark connected, strange connected, ..., light disconnected, ..., strong isospin breaking, electromagnetic, etc.
$\star \alpha_{\mu}^{l l}$ (conn.) light quark connected is biggest contribution, by far

- FNAL/HPQCD/MILC: PRD 101, 034512 (2020), 1902.04223 [hep-lat]
- briefly recap

Lattice Ensembles

- In 2020, we used Nf=2+1+1 HISQ ensembles from the MILC collaboration with physical light quark masses

$\approx a(\mathrm{fm})$	$a m_{l}^{\text {sea }} / a m_{s}^{\text {sea }} / a m_{c}^{\text {sea }}$	w_{0} / a	$M_{\pi_{5}}(\mathrm{MeV})$	$(L / a)^{3} \times(T / a)$	$N_{\text {conf. }}$
0.15	$0.00235 / 0.0647 / 0.831$	$1.13670(50)$	$133.04(70)$	$32^{3} \times 48$	997
0.15	$0.002426 / 0.0673 / 0.8447$	$1.13215(35)$	$134.73(71)$	$32^{3} \times 48$	9362
0.12	$0.00184 / 0.0507 / 0.628$	$1.41490(60)$	$132.73(70)$	$48^{3} \times 64$	998
0.09	$0.00120 / 0.0363 / 0.432$	$1.95180(70)$	$128.34(68)$	$64^{3} \times 96$	1557
0.06	$0.0008 / 0.022 / 0.260$	$3.0170(23)$	$134.95(72)$	$96^{3} \times 192$	1230

- Have retuned 0.12 fm and added statistics for current analysis. Still adding at 0.06 fm .

$\approx a[\mathrm{fm}]$	$N_{s}^{3} \times N_{t}$	$a m_{l}^{\text {sea }} / a m_{s}^{\text {sea }} / a m_{c}^{\text {sea }}$	w_{0} / a	$M_{\pi_{5}}(\mathrm{MeV})$	$N_{\text {conf. }}$	$N_{\text {wall }}$
0.15	$32^{3} \times 48$	$0.002426 / 0.0673 / 0.8447$	$1.13215(35)$	$134.73(71)$	9362	48
0.12	$48^{3} \times 64$	$0.001907 / 0.05252 / 0.6382$	$1.41110(59)$	$134.86(71)$	9011	64
0.09	$64^{3} \times 96$	$0.00120 / 0.0363 / 0.432$	$1.95180(70)$	$128.34(68)$	5384	48
0.06	$96^{3} \times 128$	$0.0008 / 0.022 / 0.260$	$3.0170(23)$	$134.95(72)$	2621	24

Blinding

- To avoid confirmation bias in analysis, correlators are all blinded by multiplication by an unknown factor.
\uparrow Once all aspects of analysis are completed, the collaboration will decide to unblind and actual result will be available.
\uparrow None of the plots in this talk can be used to compare values with other groups, except for one.
- As the blinding factor is multiplicative, the percentage error in result is reasonably accurate, but preliminary.

Windows Analysis

- The statistical noise at large Euclidean time is challenging
- RBC/UKQCD suggested using windows to achieve higher precision and allow better comparison of different calculations
- PRL 121, 022003 (2018)
- FNAL/HPQCD/MILC recently advocated one-sided windows with longer time extent than SD defined in PRL above.
- 2207.04765 [hep-lat] (use such windows as part of this study)
\uparrow We have considered multiple windows and concentrate on just two here

$$
\Theta\left(t, t_{0}, t_{1}, \Delta\right)=\frac{1}{2}\left[\tanh \left(\frac{t-t_{1}}{\Delta}\right)_{\text {S. Gottite, Latitice 22, Bonn }}-\tanh \left(\frac{t-t_{2}}{\Delta}\right)\right]
$$

Windows Considered

\rightarrow We fix $\Delta=0.15 \mathrm{fm}$.
\uparrow For the one-sided (O.S.), $t_{1}=1,1.5,2,3$.

label	$\left[t_{0}, t_{1}\right] \mathrm{fm}$
$a_{\mu}^{\text {SD }}$	$[0,0.4]$
a_{μ}^{W}	$[0.4,1]$
$a_{\mu}^{\mathrm{W}_{2}}$	$[1.5,1.9]$
$a_{\mu}^{\mathrm{O} . \text { S. }}\left(t_{1}\right)$	$\left[0, t_{1}\right]$

-Here, we only present W and W_{2} (Aubin et al. 2204.12256 [hep-lat])

- Each window has its own blinding factor, so can unblind independently.

Effect of Window

\star Left: a_{μ} integrand in blue; W window factor in green;
W_{2} in red
\uparrow Right: integrand after multiplication by window factor

- note effect of staggering on W

Corrections

\uparrow Three corrections are applied: volume, mass mistuning, and taste breaking. (Latter is optional, see below.)
$\uparrow a_{\mu}\left(L_{\infty}, m_{\pi_{\text {phys }}}\right)=a_{\mu}\left(L_{\text {latt }}, m_{\pi_{\text {latt }, \xi_{1}}} \cdots, m_{\pi_{\text {latt, } 5 \text { 组 }}}\right)+\Delta_{\mathrm{FV}}+\Delta_{\text {mistune }}+\Delta_{\mathrm{TB}}$
$\rightarrow \Delta_{\mathrm{FV}}=a_{\mu}\left(L_{\infty}, m_{\pi_{\text {latt, } \xi_{1}}} \cdots, m_{\pi_{\text {latt, } \xi_{16}}}\right)-a_{\mu}\left(L_{l a t t}, m_{\pi_{\text {latt, }},}, \cdots, m_{\pi_{\text {latt }}} \xi_{16}\right)$
$\rightarrow \Delta_{\text {mistune }}=a_{\mu}\left(L_{\infty}, m_{\pi_{p h y s, \xi_{1}}} \cdots, m_{\pi_{p_{h y s, \xi, 516}}}\right)-a_{\mu}\left(L_{\infty}, m_{\pi_{\text {lat, }, \xi_{1}}}, \cdots, m_{\pi_{\text {latt, } \xi_{16}}}\right)$
$\rightarrow \Delta_{\mathrm{TB}}=a_{\mu}\left(L_{\infty}, m_{\pi_{p h y s}} \cdots, m_{\pi_{p h y s}}\right)-a_{\mu}\left(L_{\infty}, m_{\pi_{p h y s, 5 \xi_{1}}}, \cdots, m_{\pi_{p h y s, \xi_{16}}}\right)$
\uparrow Correction terms calculated on each ensemble using several models

Correction Models

- We consider several models
- Chiral Perturbation Theory (ChiPT NLO, NNLO)
- Meyer-Lellouch-Lüscher-Gournaris-Sakurai (MLLGS)
- Chiral Model (CM, and CM' variation)
- Hansen and Patella (HP)
- last is used only for finite volume correction
\rightarrow We also try neglecting Δ_{TB} at each lattice spacing and allowing continuum limit to eliminate taste breaking
- Don't need to use the same model for all correction terms.
- many, many variations

Finite Volume Correction

- FV correction for W (left) and W_{2} (right) windows, shows much better consistency for the window at larger time advocated by Aubin et al.
- FV correction is so small at smaller volume (coarser ensembles) because taste breaking is larger there.

To Correct TB or Not?

- We can allow continuum limit to remove taste breaking or remove on each ensemble.
- We see some differences as $a \rightarrow 0$ depending on model whether we include coarsest ensemble.

W window

To Correct TB or Not? II

- Lattice spacing dependence is quite different for window at larger time.
- Model corrections can differ quite a bit, but as $a \rightarrow 0$ results are more consistent, than in previous case.
- Error is also larger.

W_{2} window

Bayesian Model Averaging

- Introduced by Jay and Neil, PRD 103, 114502 (2021).
\uparrow Useful when considering multiple models (or parameter values like $t_{\text {min }}$ in fits).
$\operatorname{pr}(M \mid D) \equiv \exp \left[-\frac{1}{2}\left(\chi_{\text {aug }}^{2}\left(\mathbf{a}^{\star}\right)+2 k+2 N_{\text {cut }}\right)\right]$
gives the weight of each model in the average.
$\left\langle a_{\mu}\right\rangle=\sum_{i}\left\langle a_{\mu}\right\rangle_{i} \operatorname{pr}\left(M_{i} \mid D\right)$
is the average over the models.

Bayesian Model Averaging II

- Many variations in how the fit is done:
- choice of model for each correction FV, mistuning, TB
- also no taste breaking correction
- apply corrections to a reduced region of time
- remove opposite parity contributions to vector-correlator that come from using staggered quarks
- dropping some of the coarser ensembles
- variations in the number of powers of a^{2} and α_{s} in continuum fit
- inclusion of sea-quark mistuning term

BMA for W

- (L) Four panels show many aspects of the various fits: histogram of 25,600 fits; examples of fits using CM and NLO chiral perturbation theory; 50 best fits; p-value for data contribution to χ^{2}.
$\bullet(R)$ Model average using only subsets of the models.

BMA for W_{2}

- Similar to previous slide but for the window suggested by Aubin et al.

Expected Error for $a_{\text {ull }}^{W}($ conn.)

- Result is blinded by a multiplicative factor so we can calculate our percentage error.
- Expect our result to be comparable in precision to recent results.

Towards a Complete Calculation

\uparrow Ultimate goal is a_{μ}, so we need:

- better scale setting
- extending range of ensembles with gauge flow data
- Ω baryon mass (Yin Lin)
- better statistical accuracy at large time
- Michael Lynch's poster on low-mode improvements
- Shaun Lahert's work on two pion states (not presented here)
- now analyzing 0.12 fm ensemble
- strong isospin breaking
- Curtis Peterson's analysis (not presented here)
- electromagnetic corrections
- Gaurav Ray's talk in 20 minutes

Conclusions

\uparrow Contributions to a_{μ} from various windows in Euclidean time provide valuable benchmarks for lattice QCD calculations on the way to complete HVP calculation

- Stay tuned for our upcoming paper with unblinded results.
- Expect it to be posted before Muon g-2 Theory Initiative meeting in Edinburgh.
\uparrow Do not quote any numbers from these blinded plots.

One sided windows

- Difference between lattice and R-ratio determination for various one-sided windows.
- From 2207.04765, using data from 2020.
- We have analyzed several windows with our updated data set

