Calculating the QED correction to the hadronic vacuum polarisation on the lattice

Fermilab Lattice, MILC, and HPQCD collaborations

Gaurav Ray¹ Alexei Bazavov⁴ Christine Davies⁶ Carleton DeTar³ Aida El-Khadra² Steve Gottlieb⁷ Daniel Hatton⁶ Hwancheol Jeong⁷ Andreas Kronfeld⁵ Shaun Lahert² Craig McNeile¹ James Simone⁵ Alejandro Vaquero³

August 12, 2022

 $^{^1\}mathrm{University}$ of Plymouth

 $^{^2 {\}tt University} \ {\tt of} \ {\tt Illinois} \ {\tt at} \ {\tt Urbana-Champaign}$

³University of Utah

⁴Michigan State University

⁵Fermilab

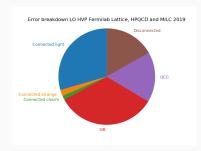
⁶University of Glasgow

⁷Indiana University

Introduction

$$10^{10} a_{\mu}^{\text{HVP,LO}} = 699(15)_{u,d}(1)_{s,c,b}$$

[PRD.101.034512 (2020)]



The estimate used of $0(5) \times 10^{-10}$ for the residual QED correction is a significant part of the 2.2% uncertainty and almost saturates the 1% uncertainty bound on $_{\rm c,HVP}$

- Reducing the theoretical uncertainty of a_{μ} below 1% requires the inclusion of isospin breaking effects.
- This project aims to calculate the $\mathcal{O}(\alpha)$ QED isospin breaking correction to the light connected HVP, with uncertainty $< 5 \times 10^{-10}$.

$$\delta a_{\mu}^f \equiv a_{\mu}^f(m_f, Q_f) - a_{\mu}^f(m_f, 0)$$

Outline of the calculation

- 1. Measure vector current-current correlators with & without QED
- 2. Fit these periodic correlators to a model and replace data with model for $t>t^{*}$
- 3. Fourier transform correlators to obtain quark polarisation function

$$q^2\Pi(q^2)=a^4\sum_t e^{iqt}\sum_x \langle j(x,t)j(0)\rangle$$

4. Integrate over kernel to obtain $a_{\mu}^{\rm HVP}$ with & without QED

$$a_{\mu}^{\text{HVP,(f)}} = \frac{\alpha}{\pi} \int_{0}^{\infty} dq^{2} f(q^{2}) 4\pi \alpha Q_{f}^{2} \hat{\Pi}_{f}(q^{2}),$$

5. Take the difference and transform to an appropriate renormalisation scheme

We use the MILC code for measurements and Peter Lepage's g2tools to carry out the analysis.

Simulation Details

- Random sources + local vector operator
 - We have QED corrections at Q=2/3 to Z_V in the RI-SMOM scheme from the HPQCD collaboration. [PRD 100.114513 (2019)]
 - We derive Q=1/3 corrections from the Q=2/3 factors.
- multi mass inverter
- average over polarisations and charges
- We use the MILC code with QUDA GPU accelerated. Running with A100 GPUs on CSD3 at Cambridge, UK.

Ensembles used

We've been running on 3 physical HISQ 2+1+1 ensembles provided by MILC.

Simulating at the physical point is expensive and noisy so we simulate at multiples of the light quark mass, $m_l = 0.5(m_u + m_d)$, and extrapolate. We measure neutral VT and PS correlators.

Ensemble	$L^3 \times T$	$a[\mathrm{fm}]$	cfgs	masses
very coarse	$32^{3} \times 48$	0.15	1844	$m_u m_d 3/5/7m_l m_s$
coarse	$48^{3} \times 64$	0.12	967	$3/5/7m_l \ m_s$
fine	$64^{3} \times 96$	0.09	596	$3/5/7m_l \ m_s$

- This analysis is blinded at the correlator level.
- Correlated fits across all the masses and charges on each ensemble.

Quenched QED on the lattice

We use the QED_L formulation in the quenched approximation, which means the sea quarks are electrically neutral. $_{[Hayakawa\ \&\ Uno\ (2008)]}$ We generate U(1) fields as follows:

- 1. generate a random momentum space photon field in Feynman gauge for each QCD gluon field configuration
- 2. zero modes are set to zero using the QED_L formulation.

$$A_{\mu}(\hat{k}_0, |\hat{k}| = 0) = 0$$

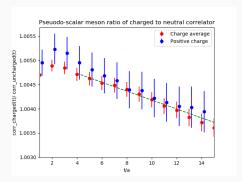
These gauge fields are exponentiated as $\exp(ieQA_{\mu})$ to give a U(1) field which is then multiplied into the QCD gauge links before HISQ smearing.

Truncated Solver Method + Charge Averaging

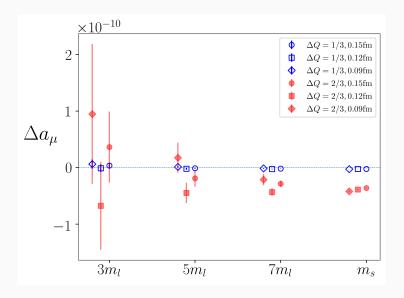
$$C(t) = \frac{1}{15} \sum_{i,i \neq j} C_{\text{sloppy}}^i(t) + (C_{\text{prec}}^j(t) - C_{\text{sloppy}}^j(t)) ,$$

On the j timeslice do a precise solve with a smaller residual. We use $10^{-3}:10^{-6}$ for sloppy:precise. The last two terms are to correct for potential bias incurred by using the looser residual.

[Bali et al. Comput.Phys.Commun. 181 (2010)]



Summary of results at fixed bare mass



Scheme Dependency

- To separate out the physical and unphysical effects of turning on the electric charges we have to choose a renormalisation scheme.
 Hadronic schemes are most commonly used.
- If we can compute quark mass shifts in this scheme then transforming our bare differences is simple,

$$\delta a_{\mu} = a_{\mu}^{\text{QCD+QED}}(m_q - \delta m_q) - a_{\mu}^{\text{QCD}}(m_q)$$
$$= \Delta a_{\mu} - \delta m_q \frac{\partial a_{\mu}}{\partial m_q}$$

where Δa_{μ} is the fixed bare difference and δm_q is the quark mass shift (and is scheme dependent).

- To get the derivative we fit a_{μ} to a smooth function of m_q .
- We assume the lattice spacing does not change.

[See Tantalo's talk tomorrow and Antonin's slides]

Hadronic schemes

We've adopted a Dashen-like scheme following Section C of the MILC paper, [1807.05556] - 'BMW-like'.

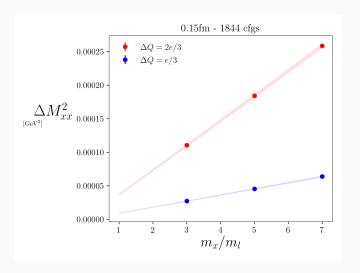
$$M_{uu'}^2 = M_{dd'}^2 = M_{nn'}^2 \equiv M_{\pi^0}^2$$

 $(M_{uu'}^2)^{\gamma} = 0 = (M_{dd'}^2)^{\gamma}$

To go from differences at equal bare quark mass to differences at equal renormalised mass we define fractional quark mass shifts δ_u, δ_d such that

$$\Delta M_{uu'}^2(m_u) = 2Bm_l\delta_u$$
$$\Delta M_{dd'}^2(m_d) = 2Bm_l\delta_d$$

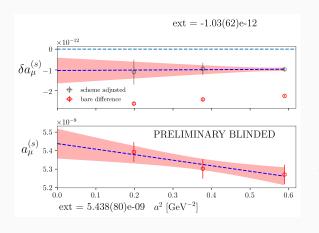
• B from LO SU(2) χ PT



$$f(m_q) = c_1 m_q + c_2 m_q^2$$

Blinded Results at the strange quark mass

$$\delta a_{\mu}^{s} = a_{\mu}^{s}(m_{s}, -\frac{1}{3}) - a_{\mu}^{s}(m_{s}, 0)$$



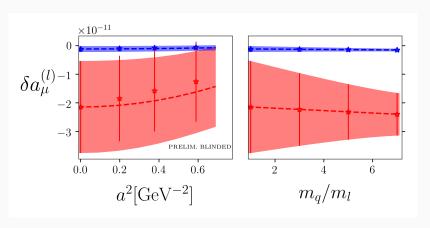
- Large noisy adjustment from δ_d particularly on the fine ensemble use the η_s instead?
- Extrapolation function:

$$\delta a_{\mu}^{(s)} = c_0 \left(1 + c_1 (a\Lambda)^2 \right)$$

Blinded Result at the light quark mass

We apply the scheme adjustments before extrapolating in a, m_q .

$$\delta a_{\mu}^{\mathbf{u}/\mathbf{d}} = c_0 \left(1 + c_1 (a\Lambda)^2 + c_2 m_q \right)$$



$$\delta a_{\mu}^{ll}(m_q = m_l, a = 0) = \delta a_{\mu}^{u}(m_l, 0) + \delta a_{\mu}^{d}(m_l, 0) = -2.3(1.7) \times 10^{-11}$$

EM FV effects on the quark polarisation function

From Bijnens et al. [1903.10591]

$$\Delta\Pi(q^2)\sim \frac{1}{m^3L^3}$$
 where $m=m_{\rm PS}$

we expect FV effects to be largest on the 0.15fm ensemble,

$$m_{\eta_c}L = 2.3 \times 32 = 74 \Rightarrow \frac{1}{74^3} \text{ tiny}$$

 $m_{\eta_s}L = 0.53 \times 32 = 17 \Rightarrow \frac{1}{17^3} \sim \underline{0.02}\%$
 $m_{\pi}L = 0.1 \times 32 = 3.2 \Rightarrow \frac{1}{3.2^3} \sim \underline{3}\%$

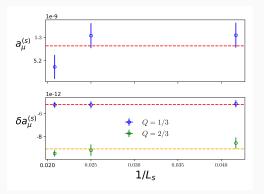
cf this to the fractional error for $\delta a_{\mu}^{(s)} \sim 10\%$ and $\delta a_{\mu}^{(l)} \sim 100\%$. (and cf 10% systematic error because we are using quenched QED)

FV runs at m_l are a possibility although it would require lots of computer time.

Finite Volume Study at m_s

We use the following ensembles, all $\sim 0.12~\mathrm{fm}$ [Not Blinded]

$L^3 \times T$	L[fm]	m_l/m_s	Ncfgs
$24^{3} \times 64$	2.93	1/10	400
$40^{3} \times 64$	4.89	1/10	100
$48^{3} \times 64$	5.82	1/27	694



Conclusions and Outlook

- We can achieve precision $\ll 5 \times 10^{-10}$ on δa_{μ}^{ll} with relative errors around 100%.
- Exploring different schemes partly because we would like to compare our results with other groups
- Fits v. no Fits
- Running ongoing, Dynamical QED runs getting started.
 - Work ongoing on connected, disconnected, and SIB contributions. [eg. see C.McNeile's Schwingerfest slides]
 - Project starting on QED correction to the disconnected contribution.

Extra Information

Fitting details

Vector fits - $5 + 5 \exp$ - wide priors

ensemble	fit range	svdcut	$\overline{\chi}^2/\mathrm{Q}$	with noise*
very coarse	[2-23]	0.000000	0.62/1	0.67/1
coarse	[2-31]	0.000424	0.24/1	0.66/1
fine	[2-47]	0.012667	0.15/1	0.82/1

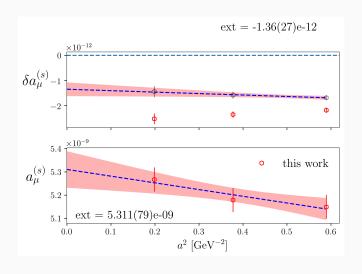
Pseudoscalar fits - 7 exp

ensemble	fit range	svdcut	$\overline{\chi}^2/\mathrm{Q}$	with noise*
very coarse	[3-20]	5.4e-11	0.8/0.99	0.96/0.65
coarse	[4-28]	8.3e-07	0.41/1	0.99/0.52
fine	[4-40]	7.2e-05	0.2/1	0.96/0.73

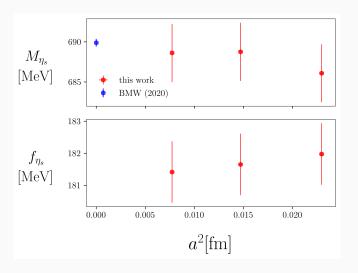
Binning increases ground state PS mass error slightly (but still much below $N^{0.5}$) and likely within 'error of the error' - looking at UNEW python library.

 \ast just svd noise, no prior noise - this seems to mess up some of the fits. Needed with wide priors ?

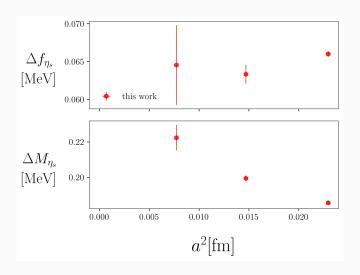
δa_u^s in the Quark mass scheme



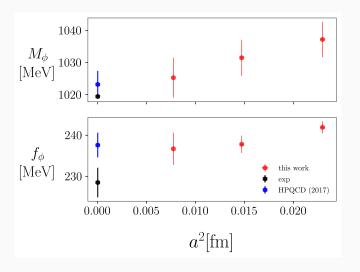
Crosschecks at m_s - η_s meson



Crosschecks at m_s - η_s meson



Crosschecks at m_s - ϕ meson



from the MILC paper [1807.05556]

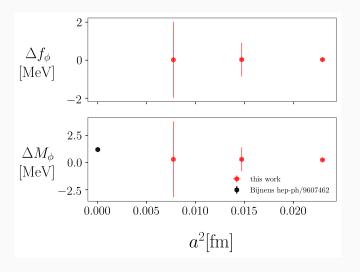
Once the strange quark mass has been renormalized, we may compute $(M_{K^0}^2)^\gamma$, the EM effect on the neutral kaon, from

$$(M_{K^0}^2)^{\gamma} = \Delta M_{K^0}^2 - B_s(m_s - m_S) - B_l(m_l - m_d), \quad (43)$$

where B_s and B_l are the derivatives of $(M_K^2)^{\rm QCD}$ with respect to m_s and m_l , respectively. Unfortunately, because a large fraction of $\Delta M_{K^0}^2$ is unphysical, and removed when constructing $(M_{K^0}^2)^{\gamma}$ in the renormalization step, the resulting systematic error in $(M_{K^0}^2)^{\gamma}$ [or equivalently ϵ_{K^0} , Eq. (5)] is relatively large (~35%). The result is particularly sensitive to the uncertainty in the derivative B_s .

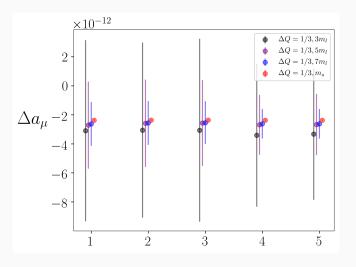
This is similar to what we see at m_s . δ_d has large errors when extrapolated to m_l . We're thinking about ways to reduce the error on δ_d and what other schemes (like ETM) might have better systematics.

Crosschecks at m_s - ϕ meson



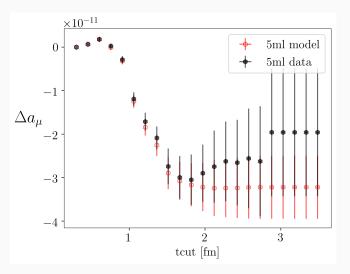
Varying the fitting range

Coarse ensemble, binsize=2, fitrange=[tmin, T-tmin+1]

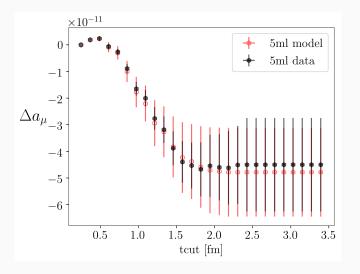


tcut dependence

5ml Very Coarse ensemble, tmin=2, binsize=2, $\Delta Q = 2/3$



5ml Coarse ensemble, tmin=2, binsize=2, $\Delta Q = 2/3$



tcut dependence

5ml Fine ensemble, tmin=2, binsize=1, $\Delta Q = 2/3$

