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Motivation

• Pseudoscalar Transition Form Factors (TFFs) play a crucial role in the

determination of the Hadronic Light-by-Light contribution to the muon g −2.

• ‘Master equation’ relates the TFFs to pseudoscalar (p) pole contributions to aµ

(Knecht and Nyffeler, 2002)
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(
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where Q2
3 = Q2

1 +Q2
2 + 2τQ1Q2 and τ = cosθ with θ the angle between Q1 and Q2

and wi (q1,q2,τ) are known analytic weight functions.

• The TFF Fpγ∗γ∗ encodes the interaction between a pseudoscalar and two

photons. E.g. for the pion
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Motivation

1. π0-pole

• Contribution has been determined on the lattice by Mainz (Gérardin et al., 2016, 2019).

Preliminary results by ETM (Burri et al., 2022) + (Kanwar, THU 10.40) .

• Also computed in data-driven dispersive framework (Hoferichter et al., 2018).

2. η ,η ′-pole

• No lattice nor dispersive results (Burri, THU 11:30).

• TFF not well-known in relevant kinematical region.

• Challenges for lattice QCD: mixing between η ,η ′ and sizable disconnected diagrams.

Contributions Value ×1011

π0,η ,η ′-poles 93.8(4.0)

π,K -loops/boxes -16.4(0.2)

ππ scattering -8(1)

scalars + tensors -1(3)

axial vectors 6(6)

u,d ,s-loops / short distance 15(10)

c-loop 3(1)

Total 92(19)

https://muon-gm2-theory.illinois.edu/white-paper/
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Phenomenology

• Normalization of TFF related to partial decay widths Γ(p→ γγ),

Γ(p→ γγ) =
πα2

em
3
p

4
Fpγ∗γ∗ (0,0)

• Current values are:

1. Γ(π0→ γγ) = 7.802(0.117) eV (Larin et al., 2020).

2. Γ(η → γγ) = 0.516(0.18) keV (PDG, 2020).

3. Γ(η ′→ γγ) = 4.28(0.19) keV (PDG, 2020).

→ Errors are relatively small (few %), so can be really useful to combine with

lattice data, especially for η ,η ′.

• Such a constraint already tested for pion TFF in (Gérardin et al., 2019), reduced

total error on a
π−pole
µ by more than 30%.
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Experimental Data TFF η ,η ′

• A lot of experimental data avalaible for TFF in singly virtual (SV) regime at large

Q2.

• No data in regime where both photons are virtual below 6 GeV2.

• Absence of precise data at low Q2, important region for a
p−pole
µ

→ can be provided by lattice QCD.

• Combination of lattice and experimental data can also be an interesting

comparison to pure lattice result.
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Gauge Ensembles

2 + 1 + 1 dynamical staggered fermions with 4 steps of stout smearing

(same ensembles as for the LO HVP calculation (Borsanyi et al., 2021))

• Gauge ensembles at (nearly) physical pion & kaon mass.

• Exploit up to six different lattice spacings ranging between [0.0640 - 0.1315] fm.

• Consider boxes of ∼ 3,4 and 6 fm for finite-size effect studies.

• Ensembles in isosymmetric limit (→ no mixing between π0 and η(′)).
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Transition Form Factor from the Lattice

The TFF for a pseudoscalar meson is extracted from matrix elements Mµν

Mµν (p,q1) = i
∫

d4x e iq1 ·x 〈Ω|T{Jµ (x)Jν (0)}|P(~p)〉= εµναβq
α
1 q

β

2 FPγ∗γ∗ (q
2
1 ,q

2
2),

where Jµ is the EM current. (Euclidean) Matrix elements are related to 3-point

correlation function C
(3)
µν on lattice

C
(3)
µν (τ,tP) = a6

∑
~x ,~z

〈Jµ (~z ,τ + tP)Jν (~0,tP)P†(~x ,0)〉e i~p·~xe−i~q1 ·~z .

where τ is the time-separation between the two EM currents and

1. C
(3)
µν proportional to matrix elements Ãµν (τ) that are related to ME

µν as

ME
µν =

2EP

ZP

∫
∞

−∞

dτ eω1τ Ãµν (τ),

2. EP ,ZP energy and overlap of the pseudoscalar that are extracted from two-point

correlations functions.

3. q1 = (ω1,~q1) and q2 = (EP −ω1,~p−~q1)
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(Ji and Jung, 2001)

(Gérardin et al., 2016)



Correlation Function on the Lattice: Wick Contractions

C
(3)
µν (τ,tP) = a6

∑
~x ,~z

〈Jµ (~z ,τ + tP)Jν (~0,tP)P†(~x ,0)〉e i~p·~xe−i~q1 ·~z .

The correlation function receives contributions from (potentially) four different Wick

contractions

1. • For the π0

P
π0 (x) =

1√
2

(
uγ5u(x)−dγ5d(x)

)
.

! We work in the isospin limit ⇒ (2) and (4) do not contribute.

! Diagram (3) is small O(1−2%) (Gérardin et al., 2019).

2. • For the η ,η ′

Pη8
(x) =

1√
6

(
uγ5u(x) +dγ5d(x)−2sγ5s(x)

)
,

Pη0
(x) =

1√
3

(
uγ5u(x) +dγ5d(x) + sγ5s(x)

)
.

! All four diagrams contribute.

! η8 and η0 mix to create physical η ,η ′.
! Diagram (2) is large!

Some notation: Pseudoscalar is indicated by P and

vector current by V, and a ‘disconnection’ by a hyphen.

So (1) is PVV, (2) is P-VV (3) is PV-V and (4) P-V-V.
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π0 TFF: Result on a Single Ensemble

First we check the pion TFF

• Simpler than η ,η ′

• Cross-check with previous lattice computations (Gérardin et al., 2016, 2019).

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.5 1 1.5 2
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

F π
0
γ
∗
γ
∗
(−
Q

2
,−
Q

2
)

Q
2
F π

0
γ
∗
γ
∗
(−
Q

2
,−
Q

2
)

Q2 [GeV]2

|~p| = 0

|~p| = 1

π0

• L/a = 96, a = 0.0640 fm (6 fm box).

• Good agreement between ~p =~0 & ~p = 2π

L (0,0,1).

• Error on TFF grows with decreasing Q2.
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Fitting the TFF

Continuous description of the TFF can be obtained using the (modified) z−expansion,

P(Q2
1 ,Q

2
2 )F

π0γ∗γ∗ (−Q2
1 ,−Q2

2 ) =
N

∑
n,m=0

cnm

(
zn1 + (−1)N+n n

N + 1
zN+1

1

)
×(

zm2 + (−1)N+m m

N + 1
zN+1

2

)
,

where zk are conformal variables

zk =

√
tc +Q2

k −
√
tc − t0√

tc +Q2
k +
√
tc − t0

, k = 1,2,

• cnm symmetric coefficients ◦ tc = 4m2
π

• t0 free parameter ◦ P(Q2
1 ,Q

2
2 ) imposes short

distance constraints

Advantages:

→ Fit is model-independent, only systematic is choice of N.

→ Obtain TFF in whole (Q2
1 ,Q

2
2 )-plane.
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π0 TFF: Result on a Single Ensemble
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• L/a = 96, a = 0.0640 fm (6 fm box).

• Uncorrelated z-expansion with N=2, gives χ2/d.o.f. = 1.06.

• At this lattice spacing a
π−pole
µ

∣∣∣
a=0.064fm

= 63.3[2.9]×10−11

• Continuum value Mainz 2019: a
π−pole
µ = 59.7[3.6]×10−11.

11



Volume Effects π0 TFF

• Smaller volumes reduce the cost of simulations drastically.

→ Could be useful for η ,η ′ TFF where the noise/signal ration increases rapidly.

• To test this possibility we study finite size effects (FSE) for the π0 (precise data)

→ Compare signal at a = 0.0640 fm between 6fm and 3fm box
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Volume Effects π0 TFF

• We see a discrepancy between the two box sizes.

• Backward propagating pions may contribute signifcantly to correlation function if

time-exent is relatively small (for details see (Gérardin et al., 2016)).
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Volume Effects π0 TFF

• We see a discrepancy between the two box sizes.

• Backward propagating pions may contribute signifcantly to correlation function if

time-exent is relatively small (for details see (Gérardin et al., 2016)).
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• Discrepancy can be satisfactorily explained by FTE correction

• We do not observe significant FSE for the π0 and thus compute the η ,η ′ TFFs

mainly on small volumes (3fm and 4fm).
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Correlation Function on the Lattice: Wick Contractions

C
(3)
µν (τ,tP) = a6

∑
~x ,~z

〈Jµ (~z ,τ + tP)Jν (~0,tP)P†(~x ,0)〉e i~p·~xe−i~q1 ·~z .

The correlation function receives contributions from (potentially) four different Wick

contractions

1. • For the π0

P
π0 (x) =

1√
2

(
uγ5u(x)−dγ5d(x)

)
.

! We work in the isospin limit ⇒ (2) and (4) do not contribute.

! Diagram (3) is small O(1−2%).

2. • For the η ,η ′

Pη8
(x) =
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6
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uγ5u(x) +dγ5d(x)−2sγ5s(x)

)
,

Pη0
(x) =

1√
3

(
uγ5u(x) +dγ5d(x) + sγ5s(x)

)
.

! All four diagrams contribute.

! η8 and η0 mix to create physical η ,η ′.
! Diagram (2) is large!
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η Transition Form Factor Integrand

• PVV and P-VV together form the bulk of the signal.

• PV-V and P-V-V contributions are significantly smaller.

→ When computing the TFF we currently ignore the PV-V and P-V-V.
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η ′ Transition Form Factor Integrand

• PVV and P-VV together form the bulk of the signal.

• PV-V and P-V-V contributions are significantly smaller.

→ When computing the TFF we currently ignore the PV-V and P-V-V.
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• Ensemble with L/a = 32, a = 0.1315 fm (4fm box).
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η ,η ′ TFF: Result on a Single Ensemble
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• Ensemble with L/a = 32, a = 0.1315 fm.

• Good agreement between the two η(′)(~p) frames with ~p =~0 & ~p = 2π

L (0,0,1).

• Errors larger than for π0 because of difficulties mentioned before.

• Statistical error only.
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η ,η ′ TFF: Result on a Single Ensemble
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• Ensemble with L/a = 32, a = 0.1315 fm.

• Good agreement between ~p =~0 & ~p = 2π

L (0,0,1).

• Preliminary z-expansion fits with N=2 at this lattice spacing give

aη-pole
µ

∣∣∣
a=0.1315fm

= 28[5]×10−11,

aη ′-pole
µ

∣∣∣
a=0.1315fm

= 30[10]×10−11 (stat error only).
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Summary

� π0 TFF

• Level of desired precision already reached.

• Need to estimate different systematics & extrapolate to physical point.

• Estimate size of the PV-V contribution.

� η ,η ′ TFF

• Preliminary data looks good in different kinematical regimes.

• Data on several lattice spacings has been generated.

• Add at least one big volume (6fm) → FSE small but better resolution.

� π0,η ,η ′

Goal of . 10% error on a
(π0+η+η ′)-poles
µ . Combining lattice results with

experimental data can help achieving this goal.

→ Updates on the analysis for the η ,η ′ will be presented at the muon g −2

workshop in Edinburgh.
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Staggered Mesonic Operators

1. Two (taste-singlet) operators couple to the η(′) mesons (Golterman, 1986):

• 3-link operator O3 (couples to spin ⊗ taste = γ4γ5⊗1 and 1⊗ γ4γ5), defined as

(Altmeyer et al., 1993)

O3(x) =
1

6 ∑
ijk

εijk χ(x)[ηi∆i [ηj∆j [ηk∆k ]]]χ(x)≡ χ(x)Ô3χ(x),

Symmetric shift ∆µ χ(x) =
1

2

[
Uµ (x)χ(x + µ̂) +U†

µ (x− µ̂)χ(x− µ̂)
]
.

• Con: Oscillating parity partner state (scalar).

• 4-link operator O4 (couples to γ5⊗1), defined as

Used in analysis−→ O4(x) =
1

2
η4(x)

[
χ(x)Ô3χ+(x) + χ+(x)Ô3χ(x)

]
,

χ+(x) = U0(x)χ(x + 0̂).

• Con: Non-local in time.

• Pro: Parity partner state with exotic quantum number (no contribution).

2. We use the conserved vector current.
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