A determination of the gradient flow scale t_{0} on $N_{f}=2+1$ CLS ensembles

Gunnar S. Bali, Sara Collins, Piotr Korcyl, Andreas Schäfer, Enno E. Scholz, Jakob Simeth, Wolfgang Söldner, Simon Weishäupl, Daniel Jenkins ...

RQCD Collaboration

For details of this analysis and others see: poster, Wolfgang Söldner

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 813942.

Precision determinations of the scale are needed: m_{N}, m_{Ω}, the leptonic decay constants f_{π} and f_{K}, \ldots have been used.

Intermediate or "theory" scales such as the gradient flow scales t_{0} and w_{0}. are also employed.

Generally, these are observables that depend on the gauge fields, such that the dependence on m_{q} is mild and they can also be computed very precisely.
Gradient flow equation [Lüscher,1006.4518]:

$$
a^{2} \frac{d}{d t} V_{t}(x, \mu)=-\left.g_{0}^{2} \cdot \partial_{x, \mu} S_{G}\left(V_{t}\right) \cdot V_{t}(x, \mu) \quad V_{t}(x, \mu)\right|_{t=0}=U(x, \mu)
$$

where S_{G} is the lattice gauge action. Flow time t has dimensions a^{2}.
Define the gradient flow time t_{0} in terms of the average action density $E(t)$

$$
\left.t^{2} E(t)\right|_{t=t_{0}}=c=0.3, \quad E(t)=\frac{1}{V_{4}} \int_{V_{4}} d^{4} x \frac{1}{4} G_{\mu \nu}^{a}(x, t) G_{\mu \nu}^{a}(x, t)
$$

where $G_{\mu \nu}^{a}(x, t)$ is the field strength tensor evaluated using V_{t}.
Determine $t_{0, p h}$ via $\left(\sqrt{t_{0}} M \equiv\right)^{\text {latt }}=\left(\sqrt{t_{0}} M \equiv\right)^{\text {phys }}$. Why m_{\equiv} ? Statistically precise. Simultaneously fit baryon octet ($N, \wedge, \Sigma, \equiv$) with SU(3) BChPT (a lot of data fitted with few parameters).

CLS ensembles: m_{π} vs a^{2}

$N_{f}=2+1$ flavours of non-perturbatively $O(a)$ improved Wilson fermions on tree level Symanzik improved glue.
High statistics: typically 6000-8000 MDUs, 1000-2000 configurations.
Aim to control all main sources of systematics (a, m_{q} and V): Six lattice spacings:
$a=0.1-0.04 \mathrm{fm}, L m_{\pi} \gtrsim 4$ with additional smaller volumes, $m_{\pi}=410 \mathrm{MeV}$ down to $m_{\pi}^{\text {phys }}$.

$2 m_{\ell}+m_{s}=$ const.

$m_{s}=$ const.

$$
m_{\ell}=m_{s}
$$

$a<0.06 \mathrm{fm}$: open-boundary (ob) conditions in time. $a>0.06 \mathrm{fm}$: mixture of ensembles with periodic and ob conditions.

CLS ensembles: $m_{\ell-} m_{s}$ plane

Three trajectories: good control over the quark mass dependence. Can correct for mis-tuning of the trajectories. Observables sensitive to m_{s}, e.g. m_{\equiv}, are tightly constrained.
$2 m_{\ell}+m_{s}=$ const.: investigate $S U(3)$ flavour breaking (flavour average quantities roughly constant), approach to physical point involves $m_{\pi} \downarrow$ and $m_{K} \uparrow$.
$m_{\ell}=m_{s}$: important for determination of SU(3) ChPT low energy constants (and renormalisation factors).
$t_{0, p h}, t_{0}^{*}$ and $t_{0, c h}$
t_{0} depends (mildly) on the quark mass: [Bär and Golterman,1312.4999]

$$
t_{0}(\bar{M}, \delta M)=t_{0, \mathrm{ch}}\left(1+k_{1} \frac{3 \bar{M}^{2}}{\left(4 \pi F_{0}\right)^{2}}\right) \approx t_{0, \mathrm{ch}}\left(1+\tilde{k}_{1} 8 t_{0} \bar{M}^{2}\right)
$$

Define the scale t_{0}^{*} at the point along the symmetric line $m_{s}=m_{\ell}$ where

$$
\phi_{4}^{*}=8 t_{0}^{*}\left(M_{K}^{2}+\frac{M_{\pi}^{2}}{2}\right)=12 t_{0}^{*} M_{\pi}^{2}=1.110
$$

Only requires an interpolation. Useful for representing relative change in the lattice spacing.

From a global fit to t_{0} :

$$
\tilde{k}_{1}=-0.0466(62), \quad t_{0}^{*}=0.9655(46) t_{0, \mathrm{ch}}, \quad t_{0}^{*}=0.99947(7) t_{0, \mathrm{ph}} .
$$

Extrapolation of baryon multiplets

Extracting meson and baryon masses: poster, Wolfgang Söldner
Determine $t_{0, p h}$ using m_{\equiv} by performing a continuum, quark mass and finite volume extrapolation of the baryon octet (and decuplet) masses.
$\bar{M}^{2}=\frac{1}{3}\left(2 M_{K}^{2}+M_{\pi}^{2}\right) \propto \bar{m}=\frac{1}{3}\left(2 m_{\ell}+m_{s}\right), \quad \delta M^{2}=2\left(M_{K}^{2}-M_{\pi}^{2}\right) \propto \delta m=m_{s}-m_{\ell}$
Rescale all masses by $\sqrt{8 t_{0}}: B \in\left\{N, \Lambda, \Sigma, \equiv, \Delta, \Sigma^{*}, \Xi^{*}, \Omega\right\}$

$$
\overline{\mathbb{M}}=\sqrt{8 t_{0}} \bar{M}, \quad \delta \mathbb{M}=\sqrt{8 t_{0}} \delta M, \quad \mathrm{~m}_{B}=\sqrt{8 t_{0}} m_{B}, \quad \mathrm{a}=\frac{a}{\sqrt{8 t_{0}^{*}}}
$$

Extrapolation performed using the fit form

$$
\begin{aligned}
\mathrm{m}_{B}\left(\mathrm{M}_{\pi}, \mathbb{M}_{K}, L, a\right)=\left[\mathrm { m } _ { B } \left(\mathbb{M}_{\pi},\right.\right. & \left.\left., \mathbb{M}_{K}, \infty, 0\right)+\delta m_{B}^{F V}\left(\mathbb{M}_{\pi}, \mathbb{M}_{K}, L\right)\right] \\
\times & {\left[1+\mathrm{a}^{2}\left(c+\bar{c} \overline{\mathbb{M}^{2}}+\delta c_{B} \delta \mathbb{M}^{2}\right)\right] }
\end{aligned}
$$

Simultaneous fit to baryon multiplets with all correlations taken into account.
Discretisation coefficients: 6 parameters for the octet and decuplets baryons separately.
Natural choice for $\mathrm{m}_{B}\left(\mathrm{M}_{\pi}, \mathrm{M}_{K}, \infty, 0\right)$ is to use $\mathrm{SU}(3)$ baryon ChPT (and in a finite volume for $\left.\delta m_{B}^{F V}\right)$.

NNLO BChPT: octet baryons

BChPT: $O\left(p^{3}\right)$ baryon ChPT [Ellis et al.,nucl-th/9904017] with EOMS regularisation:

$$
\begin{aligned}
m_{O}\left(M_{\pi}, M_{K}, \infty, 0\right)= & m_{0}+\bar{b} \bar{M}^{2}+\delta b_{O} \delta M^{2} \\
& +\frac{m_{0}^{3}}{\left(4 \pi F_{0}\right)^{2}}\left[g_{O, \pi} f_{O}\left(\frac{M_{\pi}}{m_{0}}\right)+g_{O, K} f_{O}\left(\frac{M_{K}}{m_{0}}\right)+g_{O, \eta_{8}} f_{O}\left(\frac{M_{\eta_{8}}}{m_{0}}\right)\right],
\end{aligned}
$$

where

$$
f_{O}(x)=-2 x^{3}\left[\sqrt{1-\frac{x^{2}}{4}} \arccos \left(\frac{x}{2}\right)+\frac{x}{2} \ln (x)\right] .
$$

and $M_{\eta_{8}}^{2}=\left(4 M_{K}^{2}-M_{\pi}^{2}\right) / 3$.
Depends on 6 low energy constants (LECs): m_{0},
\bar{b} and δb_{O} (depending only on b_{0}, b_{F} and b_{D} due to $\operatorname{SU}(3)$ constraints), $g_{0, \pi, K, \eta_{8}}$ (depending only on F and D, also appearing in ChPT expressions for g_{A}^{O}), appear in combination with F_{0}.
Heavy baryon limit (HBChPT) [Jenkins and Manohar,Phys. Lett. B 255 (1991) 558.]: $f(x)=-x^{3}+\mathcal{O}\left(x^{4}\right)$.

BChPT in a finite volume (FV) gives the finite volume dependence of m_{B} (see e.g. [Ren et al.,1209.3641]). No additional LECs!

NNLO BChPT fit to the baryon octet: m_{q} dependence

Finite a and V terms included in the fit. 12 parameters to fit the 4 octet baryon masses.

Curves show $\mathrm{m}_{O}\left(\mathrm{M}_{\pi}, \mathbb{M}_{K}, \infty, 0\right)$, while the data points are shifted to correct for finite a, finite V and mis-tuning of the trajectory.
$t_{0, p h}$ determined via an iterative procedure with QCD "expt." values for $M_{\pi, p h}$, $M_{K, p h}$ and $m_{\equiv, p h} . \sqrt{8 t_{0, p h}} \sim 0.409 \mathrm{fm}$.

Discretisation and finite volume effects

The data points are shifted to the physical point ($M_{\pi, p h}, M_{K, p h}$).

Discretisation effects are mild: $1+\mathrm{a}^{2}\left(c+\bar{c} \overline{\mathrm{M}}^{2}+\delta c_{O} \delta \mathrm{M}^{2}\right)$. Around 3% from $a=0.1 \mathrm{fm}$ to $a=0$.
$a^{2} \delta c_{O} \delta \mathrm{M}^{2}$ terms are small. Higher order terms are not significant.
Finite volume effects are small, however, including FV terms in the fit (which involves no extra coefficients) improves the fit quality.

Assess the systematics of the fits: cuts on the data

m_{q} dependence: ($\mathrm{SU}(3) \mathrm{BChPT}$) include $\bar{M}^{2}<498^{2} \mathrm{MeV}^{2}$ and impose further cuts $\bar{M}^{2}<466^{2} \mathrm{MeV}^{2}, \bar{M}^{2}<440^{2} \mathrm{MeV}^{2}$.

Finite V : start with $L>2.3 \mathrm{fm}$ and impose further cuts $L M_{\pi}>3.5$ and $L M_{\pi}>4.0$.
Finite a : include six lattice spacings $(0.04 \leq a \leq 0.1 \mathrm{fm})$ and only consider cut $a<0.09 \mathrm{fm}$.

Variation with cuts on the data

$a_{\max }$	$L M_{\pi}$	$12 t_{0} \bar{M}^{2}$
$[\mathrm{fm}]$		
0.10	2.8	1.60
0.09		
0.10	3.5	
0.09		
0.10	4.0	
0.09		
0.10	2.8	1.40
0.09		
0.10	3.5	
0.09		
0.10	4.0	
0.09		
0.10	2.8	1.25
0.09		
0.10	3.5	
0.09		
0.10	4.0	
0.09		

$\chi^{2} /$ d.o.f improves with cuts on \bar{M}^{2}. Note, $73 \leq N_{\text {DF }, j} \leq 125$
Values of $\sqrt{8 t_{0, p h}}$ obtained are consistent. Agreement of m_{N} with QCD "expt." value improves with cuts on \bar{M}^{2}.

Grey bands indicate the weighted average of the results using a modified AIC (following $\left.[\mathrm{BMWc}, 2002.12347]) w_{j}=A \exp \left[-\frac{1}{2}\left(\chi_{j}^{2}-N_{\mathrm{DF}, j}\right)\right)\right]$
Final result: $\sqrt{8 t_{0, p h}}=0.4098_{(25)}^{(20)} \mathbf{f m}$

Variation with the continuum fit form and discretisation terms

Quality of the fit varies depending on the fit form, however, the results for $\sqrt{8 t_{0, p h}}$ are very stable (m 三 is tightly constrained).

The variations are well within overall error for final value of $\sqrt{8 t_{0, p h}}$.
Including FV terms in the fit improves the fit quality.

Low lying baryon spectrum

- Octet baryon spectrum from BChPT, finite a and FV fits (determine $\left.\sqrt{8 t_{0, p h}}\right)$ Agreement with QCD "expt." masses within 1% overall uncertainty. \triangle Octet and decuplet masses from SSE BChPT, finite a and FV fits.

Unstable decuplet baryons: grey bands indicate the expt. Breit-Wigner width. Proper treatment via the Lüscher formalism required.

Comparison with other determinations of $\sqrt{t_{0, p h}}$

```
FLAG 21
ETM 21 (f
CalLat 20 (m\Omega)
MILC }15(\mp@subsup{f}{\pi}{},\mp@subsup{f}{K}{}
HPQCD }13(\mp@subsup{f}{\pi}{}
RQCD 22 (m\Xi)
CLS 21 (fm, f
FLAG 21
Bruno et al. 16 (f
QCDSF/UKQCD 15 ( mo, M
RBC/UKQCD 14 ( }\mp@subsup{m}{\Omega}{}
BMW 12 (m\Omega)
```


Previous determinations on the $N_{f}=2+1$ CLS ensembles, [Bruno et al.,1608.08900] and [CLS 21,2112.06696] (preliminary).

Baryon sigma terms: $\sigma_{\pi B}$ and $\sigma_{s B}$

The sigma terms, can be obtained via the Feynman-Hellmann theorem.

$$
\sigma_{q B}=m_{q}\left[\frac{\langle B| \bar{q} \mathbb{1} q|B\rangle}{\langle B \mid B\rangle}-\langle\Omega| \bar{q} \mathbb{1} q|\Omega\rangle\right]=m_{q} \frac{\partial m_{B}}{\partial m_{q}},
$$

where $|\Omega\rangle$ denotes the vacuum. Consider $\sigma_{\pi B}=\sigma_{u B}+\sigma_{d B}$ and $\sigma_{s B}$.
Using the Gell-Mann-Oakes-Renner (GMOR) relation: $M_{P S}^{2} \approx B_{0}\left(m_{q 1}+m_{q 2}\right)$

$$
\sigma_{\pi B} \approx \tilde{\sigma}_{\pi B}=M_{\pi}^{2} \frac{\partial m_{B}}{\partial M_{\pi}^{2}} \quad \sigma_{s B} \approx \tilde{\sigma}_{s B}=M_{s \bar{s}}^{2} \frac{\partial m_{B}}{\partial M_{s \bar{s}}^{2}}
$$

where $M_{s \bar{s}}^{2}=2 M_{K}^{2}-M_{\pi}^{2}$.
Difficult to determine $\sigma_{s N}$ via indirect (FH) approach (in particular if m_{s} is kept roughly constant).

Baryon octet sigma terms

Weighted avg.	$\tilde{\sigma}_{\pi N}$	$\tilde{\sigma}_{\pi \Lambda}$	$\tilde{\sigma}_{\pi \Sigma}$	$\tilde{\sigma}_{\pi \equiv}$
MeV	$44.0_{(4.7)}^{(4.4)}$	$27.6_{(4.9)}^{(4.3)}$	$24.9_{(5.0)}^{(4.6)}$	$10.1_{(5.4)}^{(4.4)}$
	$\tilde{\sigma}_{s N}$	$\tilde{\sigma}_{s \Lambda}$	$\tilde{\sigma}_{s \Sigma}$	$\tilde{\sigma}_{s \equiv}$
MeV	$3.7_{(00.8)}^{(59.3)}$	$112.7_{(59.9)}^{(63.3)}$	$194.1_{(60.7)}^{(67.8)}$	$266.69_{(68.4)}^{(70.3)}$

cf. [BMWc,1109.4265] (more precise results for the nucleon in [BMWc,151.08013] and [BMWc,2007.03191])

	$\sigma_{\pi N}$	$\sigma_{\pi \Lambda}$	$\sigma_{\pi \Sigma}$	$\sigma_{\pi \equiv}$
MeV	$39(4)_{(7)}^{(18)}$	$29(3)_{(5)}^{(11)}$	$23(3)_{(3)}^{(19)}$	$15(2)_{(3)}^{(8)}$
	$\sigma_{s N}$	$\sigma_{s \Lambda}$	$\sigma_{s \Sigma}$	$\sigma_{s \equiv}$
MeV	$67(27)_{(47)}^{(55)}$	$180(26)_{(77)}^{(48)}$	$245(29)_{(72)}^{(50)}$	$312(32)_{(77)}^{(72)}$

and [Shanahan et al.,1205.5365] (single lattice spacing)

	$\sigma_{\pi N}$	$\sigma_{\pi \Lambda}$	$\sigma_{\pi \Sigma}$	$\sigma_{\pi \Xi}$
MeV	$47(6)(5)$	$26(3)(2)$	$20(2)(2)$	$8.9(7)(4)$
	$\sigma_{s N}$	$\sigma_{s \wedge}$	$\sigma_{s \Sigma}$	$\sigma_{s \Xi}$
MeV	$22(6)(0)$	$141(8)(1)$	$172(8)(1)$	$239(8)(1)$

Comparison with other determinations of $\sigma_{\pi N}$

$\tilde{\sigma}_{\pi B} \longrightarrow \sigma_{\pi B}: \partial M_{\pi} / \partial m_{\ell}, \partial M_{K} / \partial m_{\ell}, \partial M_{K} / \partial m_{s}$ obtained from fit of $m_{\ell, s}$ w.r.t. M_{π} and M_{K} using $O\left(p^{4}\right) \mathrm{SU}(3) \mathrm{ChPT}$, see talk by G. Bali, Wed. 14:00.

FLAG 21
BMW 20
ETM 19
ETM 14
RQCD 22
Gupta et al. 21
FLAG 21
JLQCD 18
χ QCD 15
BMW 15
Shanahan et al. 12
FLAG 21
RQCD 16
ETM 16
QCDSF 12
Ruiz de Elvira et al. 17
Hoferichter et al. 15
Chen et al. 12

Some tension between the lattice results and the phenomenological results of [Hoferichter et al.,1506.04142] obtained using $N \pi$ scattering data.
Direct determination by [Gupta et al.,2105.12095] is also larger.
Consistency with direct determinations: talk by Pia Petrak, Tues. 18:10

Summary and outlook

Determination of Wilson flow scale at the physical point with 0.5% uncertainty via m_{\equiv} :

$$
\sqrt{8 t_{0, p h}}=0.4098_{(25)}^{(20)} \mathrm{fm}
$$

* Utilising data along three trajectories in the quark mass plane means mistuning of the trajectories can easily be corrected. Provided tight constraints on m_{\equiv} at the physical point.
* Discretisation and finite volume effects are mild for our ensembles.
* Covariant BChPT provided a reasonable description of the data for our range of M_{π} and $M_{K}\left(\bar{M}^{2}<440^{2}\left[\mathrm{MeV}^{2}\right]\right)$. (Large $N_{D F}$ for the fits).
* QCD "expt." octet baryon spectrum reproduced to within 1% uncertainties.
\star As a by product extract the sigma terms $\sigma_{\pi B}$ and $\sigma_{s B}$.
* Also extracted the LECs which are not well known for $\operatorname{SU}(3) \mathrm{BChPT}$.

In the future:

* Improve the $t_{0, p h}$ determination: e.g. already have additional measurements on many ensembles, which are not included in the current analysis.
* Test ChPT further through determination of LECs via simultaneous fits to related observables, e.g. $M_{\pi, K}, m_{\ell, s}$ and $F_{\pi, K}$ and m_{B} and g_{A}^{B}.

Correcting expt. masses for electrical and quark mass

 isospin breaking effectsQCD values for M_{π} and M_{K} from [FLAG 16,1607.00299].

mass	value $/ \mathrm{MeV}$	Expt. $/ \mathrm{MeV}$	mass	value/MeV	Expt./MeV
M_{π}	$134.8(3)$	$134.98\left(\pi^{0}\right)$			
M_{K}	$494.2(3)$	$497.61\left(K^{0}\right)$			
m_{N}	$937.53(6)$	$938.27(p)$	m_{Δ}	$1231(60)$	$1231(56)\left(\Delta^{0}\right)$
m_{Λ}	$1115.68(1)$	1115.68	$m_{\Sigma^{*}}$	$1383(20)$	$1383(18)\left(\Sigma^{*+}\right)$
m_{Σ}	$1190.67(12)$	$1192.64\left(\Sigma^{0}\right)$	$m_{\Xi^{*}}$	$1532(5)$	$1532(5)\left(\Xi^{* 0}\right)$
m_{\equiv}	$1316.9(3)$	$1314.86\left(\Xi^{0}\right)$	m_{Ω}	$1669.5(3.0)$	$1672.45(29)$

For the octet: convention that neutral particles do not receive QED corrections.
Assume same charge-isospin breaking effects for the whole octet $\Delta m_{N}-\Delta m_{\Sigma}-\Delta m_{\equiv}=0$, Coleman-Glashow theorem (verified to within 0.13 MeV by [BMWc,1406.4088]),

$$
\begin{array}{rlrl}
\Delta m_{N} & =m_{p}-m_{n} \approx-\delta m^{Q C D}+\delta m^{\mathrm{QED}}, & \Delta m_{\Sigma}=m_{\Sigma^{+}}-m_{\Sigma-} \approx-2 \delta m^{\mathrm{QCD}} \\
\Delta m_{\equiv}=m_{\equiv 0}-m_{\equiv-} \approx-\delta m^{\mathrm{QCD}}-\delta m^{\mathrm{QED}}, & m_{\equiv}=\frac{1}{2}\left(m_{\equiv 0}+m_{\equiv-}-\delta m^{\mathrm{QED}}\right)
\end{array}
$$

$\delta m^{Q C D} \approx 4 \mathrm{MeV}$ and $\delta m^{\text {QED }} \approx 3 \mathrm{MeV}$. Assume same $\delta m^{\text {QED }}$ for m_{Ω}.
For the unstable decuplet baryons, the Breit-Wigner mass is given with an error of $\Gamma / 2$ (with rounding).

Variation of $\tilde{\sigma}_{\pi N}$ with cuts on the data

NNLO BChPT, continuum limit, finite volume fits to the baryon octet.

Variation of $\tilde{\sigma}_{\pi N}$ with the continuum fit form

