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Indeed, measurements at the EIC and
lattice calculations will have a high degree
of complementarity. For some quantities,
notably the x moments of unpolarized and
polarized quark distributions, a precise de-
termination will be possible both in experi-
ment and on the lattice. Using this to vali-
date the methods used in lattice calculations,
one will gain confidence in computing quan-
tities whose experimental determination is
very hard, such as generalized form factors.
Furthermore, one can gain insight into the
underlying dynamics by computing the same
quantities with values of the quark masses
that are not realized in nature, so as to reveal
the importance of these masses for specific
properties of the nucleon. On the other hand,
there are many aspects of hadron structure
beyond the reach of lattice computations, in
particular, the distribution and polarization
of quarks and gluons at small x, for which
collider measurements are our only source of
information.
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Figure 2.1: Schematic view of a parton with
longitudinal momentum fraction x and trans-
verse position bT in the proton.

Both impact parameter distributions
f(x, bT ) and transverse-momentum distri-
butions f(x,kT ) describe proton structure
in three dimensions, or more accurately in
2+ 1 dimensions (two transverse dimensions
in either configuration or momentum space,
along with one longitudinal dimension in mo-

mentum space). Note that in a fast-moving
proton, the transverse variables play very dif-
ferent roles than the longitudinal momen-
tum.

It is important to realize that f(x, bT )
and f(x,kT ) are not related to each other by
a Fourier transform (nevertheless it is com-
mon to denote both functions by the same
symbol f). Instead, f(x, bT ) and f(x,kT )
give complementary information about par-
tons, and both types of quantities can be
thought of as descendants of Wigner distri-
butions W (x, bT ,kT ) [8], which are used ex-
tensively in other branches of physics [9].
Although there is no known way to mea-
sure Wigner distributions for quarks and
gluons, they provide a unifying theoretical
framework for the di↵erent aspects of hadron
structure we have discussed. Figure 2.2
shows the connection between these di↵erent
aspects and the experimental possibilities to
explore them.

All parton distributions depend on a
scale which specifies the resolution at which
partons are resolved, and which in a given
scattering process is provided by a large mo-
mentum transfer. For many processes in
e+p collisions, the relevant hard scale is Q

2

(see the Sidebar on page 19). The evolution
equations that describe the scale dependence
of parton distributions provide an essential
tool, both for the validation of the theory
and for the extraction of parton distributions
from cross section data. They also allow one
to convert the distributions seen at high res-
olution to lower resolution scales, where con-
tact can be made with non-perturbative de-
scriptions of the proton.

An essential property of any particle is its
spin, and parton distributions can depend on
the polarization of both the parton and the
parent proton. The spin structure is particu-
larly rich for TMDs and GPDs because they
single out a direction in the transverse plane,
thus opening the way for studying correla-
tions between spin and kT or bT . Informa-
tion about transverse degrees of freedom is
essential to access orbital angular momen-
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3D Imaging of the Nucleon

4 May 2022 Bakur Parsamyan 1 

COMPASS collaboration 

25 institutions from 13 countries  
– nearly 200 physicists  

COMPASS web page: http://wwwcompass.cern.ch 

Common Muon and Proton Apparatus for Structure and Spectroscopy 

• CERN SPS north area 
• Fixed target experiment  
• Approved in 1997 
• Taking data since 2002 
 
Wide physics program 
COMPASS-I 
• Data taking 2002-2011 
• Muon  and hadron beams 
• Nucleon spin structure 
• Spectroscopy 
 
COMPASS-II  
• Data taking 2012-2022 
• Primakoff 
• DVCS (GPD+SIDIS) 
• Polarized Drell-Yan 
• Transverse deuteron SIDIS 
 

See also COMPASS talks by J.Giarra (DVCS) and J.Matousek (SIDIS) 
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Figure 3.1: The NNPDF3.1 NNLO PDFs, evaluated at µ2 = 10 GeV2 (left) and µ
2 = 104 GeV2 (right).

3.3 Parton distributions

We now inspect the baseline NNPDF3.1 parton distributions, and compare them to NNPDF3.0
and to MMHT14 [7], CT14 [6] and ABMP16 [8]. The NNLO NNPDF3.1 PDFs are displayed
in Fig. 3.1. It can be seen that although charm is now independently parametrized, it is still
known more precisely than the strange PDF. The most precisely determined PDF over most of
the experimentally accessible range of x is now the gluon, as will be discussed in more detail
below.

In Fig. 3.2 we show the distance between the NNPDF3.1 and NNPDF3.0 PDFs. According
to the definition of the distance given in Ref. [98], d ' 1 corresponds to statistically equivalent
sets. Comparing two sets with Nrep = 100 replicas, a distance of d ' 10 corresponds to a
di↵erence of one-sigma in units of the corresponding variance, both for central values and for
PDF uncertainties. For clarity only the distance between the total strangeness distributions
s
+ = s + s̄ is shown, rather than the strange and antistrange separately. We find important
di↵erences both at the level of central values and of PDF errors for all flavors and in the entire
range of x. The largest distance is found for charm, which is independently parametrized in
NNPDF3.1, while it was not in NNPDF3.0. Aside from this, the most significant distances are
seen in light quark distributions at large x and strangeness at medium x.

In Fig. 3.3 we compare the full set of NNPDF3.1 NNLO PDFs with NNPDF3.0. The
NNPDF3.1 gluon is slightly larger than its NNPDF3.0 counterpart in the x

⇠
< 0.03 region, while

it becomes smaller at larger x, with significantly reduced PDF errors. The NNPDF3.1 light
quarks and strangeness are larger than 3.0 at intermediate x, with the largest deviation seen
for the strange and antidown PDFs, while at both small and large x there is good agreement
between the two PDF determinations. The best-fit charm PDF of NNPDF3.1 is significantly

23

NNPDF, EPJ C77 (2017)

W. Armstrong et al., arXiv: 1708.00888.

Wigner distributions/
Generalized TMDs

Parton Distribution Functions 
(PDFs)

Transvers momentum distributions 
(TMDs)

Generalized parton distributions 
(GPDs)

TMD handbook 161

Figure 5.11: Tomographic scan of the nucleon via the momentum space quark density function
⌧1;@ ⌘

"(G , Æ:) , Æ() , ⇠) defined in Eq. (5.27) at G = 0.1 and ⇠ = 2 GeV. Panels are for D and 3 quarks.
The variation of color in the plot is due to variation of replicas and illustrates the uncertainty of the
extraction. The nucleon polarization vector is along Ĥ-direction. The figures are from Ref. [371].

Figure 5.12: The density distribution ⌧0

?
" of an unpolarized quark with flavor 0 in a proton polarized

along the +H direction and moving towards the reader, as a function of (:G , :H) at &2 = 4 GeV2. The
figures are from Ref. [358].

Figure 5.13: The density distribution of an unpolarized up and down quarks using Sivers functions
from Ref. [18].

Cammarota, et al. (JAM), PRD 102 (2020).

Indeed, measurements at the EIC and
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shows the connection between these di↵erent
aspects and the experimental possibilities to
explore them.

All parton distributions depend on a
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partons are resolved, and which in a given
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equations that describe the scale dependence
of parton distributions provide an essential
tool, both for the validation of the theory
and for the extraction of parton distributions
from cross section data. They also allow one
to convert the distributions seen at high res-
olution to lower resolution scales, where con-
tact can be made with non-perturbative de-
scriptions of the proton.

An essential property of any particle is its
spin, and parton distributions can depend on
the polarization of both the parton and the
parent proton. The spin structure is particu-
larly rich for TMDs and GPDs because they
single out a direction in the transverse plane,
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tion about transverse degrees of freedom is
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W(x, ⃗k T, ⃗b T)

∫ d2 ⃗k T

∫ d2 ⃗k T

∫ d2 ⃗b T ∫ d2 ⃗b T

xf(x)

Can we calculate all of them in 
lattice QCD?
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e−

P

Richard P. Feynman

P = 0

v = c

The parton model

P = ∞

x1P
x2P

x3P
x4P

…

Infinite momentum frame picture:

Light-cone picture:

v = 0

Light-cone quantization

0 < xi < 1



Simulating partons on the lattice

}
lattice size L, 
e.g., L=32,48.

Imaginary time: t → iτ

lattice 
spacing a

z + ct = 0
z − ct ≠ 0

•  hadron state?  ✘ 

• Light-cone correlations?  ✘

P = ∞ P ≪
2π
a

!

Real-time sign problem 🙁

t = 0

Nevertheless, it is possible to approach the Feynman parton picture 
by simulating a boosted hadron on the lattice 😇

e.g. Css′ 
2pt(ts; P) = ⟨πs(x0, ts)π†

s′ 
(P,0)⟩

X. Gao, N. Karthik, YZ et al., Phys.Rev.D 102 (2020).
t = 0t = ts

Gaussian momentum 
smearing

G. S. Bali et al., 
Phys.Rev.D 93 (2016).

mπ = 300 MeV



Large momentum expansion and matching

Q̃(Pz, ΛUV) = C( μ
Pz

,
ΛUV

μ ) ⊗ Q(μ) + c1
ΛQCD

Pz
+ c2

Λ2
QCD

P2
z

+ … ?Q(μ)

Q̃(Pz, ΛUV) ≡ ⟨P | Õ(ΛUV) |P⟩

: ultraviolet (UV) cutoff, ΛUV ∼
2π
a

Partonic observableEuclidean observable

Q(μ) ≡ ⟨P |O(μ) |P⟩

:  scale. No  dependence.μ MS Pz

Õ  Lorentz boost∞ O(Pz ≪ ΛUV) (Pz ≫ ΛUV)

✘ ∵  and  usually do not commute.Pz ≪ ΛUV Pz ≫ ΛUV



Q̃(Pz, ΛUV) = C( μ
Pz

,
ΛUV

μ ) ⊗ Q(μ) + c1
ΛQCD

Pz
+ c2

Λ2
QCD

P2
z

+ …

Q̃(Pz, ΛUV) ≡ ⟨P | Õ(ΛUV) |P⟩

: ultraviolet (UV) cutoff, ΛUV ∼
2π
a

Partonic observableEuclidean observable

Q(μ) ≡ ⟨P |O(μ) |P⟩

:  scale. No  dependence.μ MS Pz

Õ  Lorentz boost∞ O(Pz ≪ ΛUV) (Pz ≫ ΛUV)

Perturbative matching Power corrections

• X. Ji, Phys. Rev. Lett. 110 (2013); SCPMA57 (2014).  
• X. Ji, Y.-S. Liu, Y. Liu, J.-H. Zhang and YZ, Rev.Mod.Phys. 93 (2021).

“Large-momentum effective theory (LaMET)”:  
a recipe for systematically controlled calculation of parton physics

Large momentum expansion and matching



The gluon helicity ΔG

=
1
2

ΔΣ
2

ΔG = ?

lq + lg

ΔG(μ) =
⟨PS | (E × A)3 |PS⟩

2S+
A+=0

S̃G(Pz, μ) =
⟨PS | (E × A)3 |PS⟩

2Sz
∇⋅A=0

• X. Ji, J.-H. Zhang, and YZ, Phys. Rev. Lett. 111 (2013);  
• Y. Hatta, X. Ji and YZ, Phys.Rev.D 89 (2014); 
• X. Ji, J.-H. Zhang, and YZ, Phys.Lett.B 743 (2015).

RHIC spin program and EIC

Y.-B. Yang, R. Sufian, YZ, et al. Phys. Rev. Lett. 118 (2017)

Pz /GeV

S̃G(Pz, Q2 =10 GeV2)

The first lattice result

S̃G(Pz, μ) = C ⊗ (ΔΣ, ΔG) +𝒪(Λ2
QCD/P2

z )



Benchmark: lattice calculation of the PDFs

X. Ji, Phys. Rev. Lett. 110 (2013)

Lorentz boost
z

t
pn

z/2�z/2

� �zp
2

�zp
2

A quasi-PDF  to expand fromf̃(x, Pz)

f̃(y, Pz, ΛUV) = ∫
1

−1

dx
|x |

C ( y
x

,
μ
Pz

,
ΛUV

μ ) f(x, μ) + 𝒪 (
Λ2

QCD

P2
z )LaMET expansion:

X. Xiong, X. Ji, J.-H. Zhang and YZ, Phys.Rev.D 90 (2014).

First exploratory lattice calculation
H.W. Lin et al.,  (LP3), Phys.Rev.D 91 (2015).
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FIG. 2: The physical quark distribution u(x)�d(x) extracted
from Fig. 1 after making Mn

N/Pn
z corrections and one-loop

corrections. The red, green and cyan bands correspond to
Pz 2 {1, 2, 3} 2⇡

L . The two higher-momentum distributions
are now almost identical.

from the cuto↵ scheme is correct to the leading logarithm
but not for the numerical constant. This is a compromise
that we make at the moment and will be rectified in the
future.

At low nucleon momenta, the nucleon-mass correc-
tions are as important as the one-loop correction, if
not more. Using the operator product expansion,
the nonlocal operator in Eq. 1 can be expanded asP1

n=1 Cn(z)On(0), where the tree-level Wilson coe�-

cient Cn(z) = (iz)n�1
/ (n� 1)! + O(↵s) and On(0) =

 ̄(0)�z (iDz)n�1
 (0). The tensor On is symmetric but

not traceless, so it is a mixture of a twist-2 and higher-
twist operators with the matrix element

D
~P

���On(0)
���~P

E
= 2anP

n
z Kn +O(⇤2

QCD/P
2
z ) (4)

entirely expressible in terms of an =
R
dx x

n�1
q(x), the

n
th moment of the desired parton distribution, and Kn =

1+
Pimax

i=1 C
n�i
i (M2

N/4P 2
z )

i where C is the binomial func-

tion, and imax = n�(n mod 2)
2 . The O(⇤2

QCD/P
2
z ) term is

dynamical higher-twist correction. As one can see, the
actual nucleon-mass correction parameter is M2

N/4P 2
z .

After one-loop and nucleon-mass corrections, the re-
sulting distributions are shown in Fig. 2. For the nu-
clear momenta under consideration, both types of cor-
rection are important. As one can see, the corrected
distributions have much reduced Pz dependence, partic-
ularly for the two largest momenta. This suggests that

well known that this omits important tadpole contributions [15].
As a compromise, we take ↵s = 0.20±0.04, with the central value
determined by the prescription of Ref. [15] and the uncertainty
included as a part of the theoretical systematics.

MSTW
CJ12
Lattice
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u
-
d

FIG. 3: The unpolarized isovector quark distribution u(x)�
d(x) computed on the lattice after extrapolation in Pz is
shown as the purple band, compared with the global analyses
by MSTW [18] (brown dotted line), and CTEQ-JLab (CJ12,
green dashed line) [19] with medium nuclear correction near
(1.3 GeV)2. The negative x region is the sea quark distribu-
tion with q(x) = �q(�x). The lattice uncertainty band in
the plot reflects the 68% C.L. The global fit uncertainty is
not shown in the figure.

the corrections to the quasi-distributions will generate
a Pz-independent physical distribution. The remaining
small di↵erence between the two large-momenta results
could be due to the dynamical higher-twist corrections
O(⇤2

QCD/P
2
z ), which is expected to be smaller than the

nucleon-mass e↵ect. As for the lowest nucleon momen-
tum (430 MeV) result, the LaMET expansion might not
be very e↵ective, although the peak after corrections has
been shifted to near 0.8.

Finally, we find a Pz-independent distribution by tak-
ing into account the O(⇤2

QCD/P
2
z ) correction by extrap-

olating using the form a + b/P
2
z . The final unpolarized

distribution u(x)�d(x) is shown in Fig. 3. The distribu-
tion for the |x| > 1 region is within 2 sigma of zero; thus,
we recover the correct support for the physical distribu-
tion within error.

Our result cannot be directly compared with the ex-
perimental data because other lattice systematics are not
yet under control. To obtain the physical parton distri-
butions, we need to make a number of improvements,
including reducing the quark masses to physical ones,
increasing the number of configurations to reduce statis-
tical errors, using finer lattice spacing to accommodate
larger boosted momenta and improve the resolution, and
using larger lattice volumes to access smaller x. Nonethe-
less, we hope that the present results do provide some in-
sight into the qualitative features of the parton physics.

Also shown in Fig. 3 are the parton distributions from
the global analyses by CTEQ-JLab (CJ12) [19] and NLO
MSTW08 [18] at µ ⇡ 1.3 GeV. Note that the lattice re-

quarkantiquark



Lattice renormalization
The linear divergences became a roadblock

f̃(x, Pz, ΛUV) ∝ αsΛUV + …

• Ji, Zhang and YZ, Phys.Rev.Lett. 120 (2018); 
• Ishikawa, Ma, Qiu and Yoshida, Phys.Rev.D 96 (2017); 
• Green, Jansen and Steffens, Phys.Rev.Lett. 121 (2018).

OΓ
B(z, a) = ψ̄0(z)ΓW0[z,0]ψ0(0) = e−δm(a)|z| ZO(a)OΓ

R(z)

= δm(a) |z | ∝
|z |
a0z

Multiplicative renormalizability of the quasi-PDF operator was proven:

Non-perturbative lattice renormalization became possible:

f̃X(x, Pz, μ̃) = ∫
∞

−∞

dz
2π

eiz(xPz) lim
a→0

h̃(z, Pz, a)
ZX(z, μ̃, a)

RIMOM (fixed gauge):ZX = ⟨q |OΓ(z) |q⟩ ZX = ⟨Pz
0 |OΓ(z) |Pz

0⟩

• Constantinou and Panagopoulos, Phys.Rev.D 96 (2017); 
• C. Alexandrou et al., Nucl.Phys.B 923 (2017); 
• I. Stewart and YZ, Phys.Rev.D 97 (2018); 
• J.-W. Chen, YZ et al., (LP3), Phys.Rev.D  97 (2018).

• K. Orginos et al., Phys.Rev.D 96 (2017); 
• V. Braun, A. Vladimirov and Zhang, Phys.Rev.D 99 (2019); 
• Z. Fan, X. Gao et al., Phys.Rev.D 102 (2020).

Ratio schemes:



Encouraging results under the RIMOM scheme:

H.W. Lin, YZ, et al. (LP3), Phys.Rev.Lett. 121 (2018)

LP3

NNPDF1.1pol
JAM17
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FIG. 4: Comparison of unpolarized PDF at momenta 6⇡
L

(green band), 8⇡
L (orange band), 10⇡

L (blue band), and
ABMP16 [39] (NNLO), NNPDF [40] (NNLO) and CJ15 [38]
(NLO) phenomenological curves.

well as the phenomenological determinations CJ15 [38],
ABMP16 [39] and NNPDF31 [40]. We find that as the
momentum increases, the data approach phenomenolog-
ical results. In particular, increasing the nucleon mo-
mentum from 6⇡

L to 8⇡
L has a large e↵ect on the PDFs

shape, with the latter approaching the phenomenologi-
cal curve. Furthermore, we find a saturation of PDFs
for 8⇡

L and 10⇡
L , indicating that LaMET may be appli-

cable for P � 8⇡
L . The interplay of real and imaginary

parts of renormalized MEs leads to unphysical oscilla-
tions in quasi-PDFs, resulting from the periodicity of the
Fourier transform, and propagated through the match-
ing procedure to light-cone PDFs. The e↵ect is natu-
rally suppressed for large nucleon boosts, when MEs de-
cay to zero fast enough, before e�ixPz becomes negative.
For the currently attained momenta, the decay of renor-
malized ME is still relatively slow (cf. Fig. 3), which
manifests itself in distorted approach of the PDF to zero
for x & 0.5 and unphysical minimum in the antiquark
part, for x ⇡ �0.2. The oscillations, as expected, are
smoothened out as the momentum increases (which is vis-
ible particularly at the level of quasi-PDFs), and are more
severe in the negative region. Nevertheless, this is the
first time when clear convergence is demonstrated with
simulations using a physical pion mass value. Clearly,
momentum 6⇡

L is not high enough to reconstruct light-
cone PDFs. However, we observe a similar behavior of
the lattice data at momentum 10⇡

L as compared to phe-
nomenological results, with some overlap in the small-x
region. The slope of the two curves is compatible for the
positive-x region, and both curves go to zero for x . �0.3
and x & 1. Compatible results are extracted for h�3 , but
with increased uncertainties.

In Fig. 5, we present polarized PDFs for the three mo-
menta, together with DSSV08 [41] and JAM17 [42] phe-
nomenological data. We find a milder dependence on
the nucleon momentum, and 10⇡

L is much closer to phe-
nomenological curves with significant overlap with the
JAM17 data for 0 < x < 0.5. For the region 0.5 < x < 1,
the slope of the lattice data changes, possibly due to oscil-

lations mentioned above, but it approaches zero around
x = 1. For the negative-x region, the lattice data also
approach zero, with a dip at small-x and large uncertain-
ties, another consequence of oscillations.
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FIG. 5: Comparison of polarized PDF at momenta 6⇡
L (green

band), 8⇡
L (orange band), 10⇡

L (blue band), DSSV08 [41] and
JAM17 NLO phenomenological data [42].

Simulating at the physical point is crucial for obtain-
ing data that are close to the global analyses data. This
is demonstrated in Fig. 6. In the top panel, we compare
phenomenological estimates with results from Ref. [17] at
m⇡=375 MeV and volume 323⇥64 (B55). As the nucleon
momentum increases, one observes that the B55 data
saturate away from phenomenological curves, wrongfully
leading to discouraging conclusions for quasi-PDFs ap-
proach. In the lower panel of Fig. 6, we plot data from
this work with the B55 ensemble, both at momentum
⇠1.4 GeV. As can be seen, there is a clear pion mass
dependence and the B55 data are away from the global
analyses curves.
Conclusions:
We present the first ever lattice calculation of un-

polarized and helicity PDFs where long-standing ob-
stacles, such as large momenta, physical pion mass
and non-perturbative renormalization have been ad-
dressed. To investigate the nucleon momentum de-
pendence, we employed three values corresponding to
0.83, 1.11, 1.38 GeV, with appropriately increased num-
ber of measurements for the latter ones to keep statistical
uncertainties under control.
Lattice MEs are renormalized non-perturbatively in

the RI0 scheme and are converted to the MS-scheme
at µ=2 GeV. Light-cone PDFs are reconstructed upon
Fourier transform and matching with target mass cor-
rections. Our final results for PDFs are highlighted in
Figs. 4,5. We are able to compare with phenomenolog-
ical results for the first time, as all necessary steps of
extracting physical PDFs have been applied and no chi-
ral extrapolation is needed. As shown in Fig. 6, there
is strong pion mass dependence and a similar behavior
between lattice and phenomenology is only established
at the physical pion mass ensemble. A further investiga-
tion of possible discretization and volume e↵ects, as well
as an improved treatment of the unphysical oscillations,

Alexandrou et al. (ETMC), Phys.Rev.Lett. 121 (2018)

f̃RI(x, Pz, μ̃) = ∫
∞

−∞

dz
2π

eiz(xPz) lim
a→0

h̃(z, Pz, a)
ZRI(z, μ̃, a)

ZRI = ⟨q |OΓ(z) |q⟩

However, the RIMOM scheme introduces non-perturbative effects at large z:

X. Gao, N. Karthik, YZ, et al., Phys.Rev.D 102 (2020).

Lattice renormalization



Hybrid renormalization scheme
X. Ji, YZ, et al., Nucl.Phys.B 964 (2021).

h̃(z, Pz)

zzS zL0

Ratio schemes, e.g.,

a ≪ zS ≪ Λ−1
QCD

A “minimal” subtraction: 

h̃R(z, Pz, μR) = eδm(a)(z−zS) h̃(z, Pz, a)
h̃(zS,0,a)

Exponential decay

zL ∼ Λ−1
QCD

h̃(z, Pz, a)
h̃(z,0,a) e−Λ̄|z|



A “minimal” subtraction: 

h̃R(z, Pz, μR) = eδm(a)(z−zS) h̃(z, Pz, a)
h̃(zS,0,a)

⇒ e−m̄0(z−zS) h̃MS
0 (z, Pz, μ)

hMS
0 (zS,0,μ)

m̄0 : • UV renormalon ambiguity ( ) in the definition of  
• Leading to a linear power correction   

∼ ΛQCD h̃MS
0

∼ m̄0/Pz

X. Ji, YZ, et al., Nucl.Phys.B 964 (2021).

Gauge-invariant determination of  and : 
• Self renormalization 

• Static potential and ratios of  at different z

δm m̄0

h̃MS
0

hMS
0 (z,0,μ) = C0(αs(μ), z2μ2) + 𝒪(z2Λ2

QCD)

Wilson coefficient: 
Known to NNLO with 3-loop 
anomalous dimension

• Chen, Zhu and Wang, Phys.Rev.Lett. 126 (2021); 
• Li, Ma and Qiu, Phys.Rev.Lett. 126 (2021); 
• V. Braun and K. G. Chetyrkin, JHEP 07 (2020).

Y. Huo, et al. (LPC), Nucl.Phys.B 969 (2021).

X. Gao, YZ, et al., Phys.Rev.Lett. 128 (2022).

Utilizing OPE at short distance

z > zS

Hybrid renormalization scheme



Perturbative matching

• Rigorous derivation of the exact form of matching formula. 

• Nonsinglet NNLO matching for  and hybrid schemes. 

• Direct power expansion in parton momenta in x-space.

MS

f(x, μ) = ∫
∞

−∞

dy
|y |

C̄ ( x
y

,
μ

yPz
,

μ̃
μ ) f̃(y, Pz, μ̃) + 𝒪 (

Λ2
QCD

(xPz)2
,

Λ2
QCD

((1 − x)Pz)2 )

Reliable prediction within [xmin, xmax] at a given finite Pz !

• Chen, Zhu and Wang, Phys.Rev.Lett. 126 (2021); 
• Li, Ma and Qiu, Phys.Rev.Lett. 126 (2021); 
• X. Gao, YZ, et al., Phys.Rev.Lett. 128 (2022).

T. Izubuchi, X. Ji, L. Jin, I. Stewart, and YZ, Phys.Rev.D 98 (2018)



Short-distance factorization in coordinate space

h̃(λ = zPz, z2μ2) =
∞

∑
n=0

Cn(z2μ2)
(−iλ)n

n!
an(μ) + 𝒪(z2Λ2

QCD) ,

Model-independent calculation of the lowest moments with finite λmax=zmax pzmax.

h̃(λ, z2μ2) = ∫
1

0
dα 𝒞(α, z2μ2) h(αλ, μ) + 𝒪(z2Λ2

QCD) ,

f(x, μ) = ∫
∞

−∞

dλ
2π

e−ixλ h(λ, μ)

• Model-independent calculation of light-cone correlation  up to λmax; 
•  decays slowly (power law), needs very large λ for a controlled Fourier transform;

• With not very large λmax, needs assumptions to obtain x-dependence, e.g., 

, orthonormal polynomials, and neural networks, etc..

h(λ, μ)
h(λ, μ)

f(x) ∝ xa(1 − x)b(1 + c x + …)

OPE:

Ioffe-time pseudo distribution:

T. Izubuchi, X. Ji, L. Jin, I. Stewart, and YZ, Phys.Rev.D 98 (2018)

• A. Radyushkin, Phys.Rev.D 96 (2017); 
• K. Orginos et al., Phys.Rev.D 96 (2017).

zmax ≪ Λ−1
QCD



State-of-the-art calculation of pion valence PDF
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Global fits at NLO 
• JAM21nlo, Phys.Rev.Lett. 127 (2021); 
• xFitter (2020), Phys.Rev.D 102 (2020); 
• ASV, Phys.Rev.Lett. 105 (2010); 
• GRVPI1, Z. Phys. C 53 (1992).

Short-distance factorization 
at NLO, with same data: 
BNL20, X. Gao, N. Karthik, YZ, et al., 
Phys.Rev.D 102 (2020).

Super fine lattice spacing (a=0.04 fm and 0.06 fm), high momentum 
(Pz=2.42 GeV v.s. mπ=300 MeV), high statistics, first NNLO matching

Gao, Hanlon, Mukherjee, Petreczky, Scior, Syritsyn and YZ, PRL 128, 142003 (2022).

See Dr. Xiang Gao’s parallel talk on Wed.



Continuum extrapolation with a=0.04 fm and 0.06 fm, mπ=300 MeV and 
a=0.076 fm, mπ=140 MeV lattice ensembles, at NNLO

Gao, Hanlon, Karthik, Mukherjee, Petreczky, Scior, Shi, Syritsyn, YZ and Zhou, arXiv: 2208.02297.
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FIG. 9. hx2
i, hx4

i and hx6
i are shown as a function of a2,

for which we fitted the matrix elements M(z, Pz, P
0

z ) with
z 2 [2a, 0.61] fm. The bands are the extrapolation results
using Eq. (21) (blue) and Eq. (22) (orange). The empty boxes
are the continuum extrapolation of the physical pion mass
ensemble (see the text for more details).

FIG. 10. Our estimates for hx2
i, hx4

i and hx6
i as functions of

a2 are shown for the three ensembles. The bands are from
the a2 continuum extrapolation. For comparison, we also
show the moments evaluated from the global fit analysis of
JAM21nlo [70] and our previous estimates with a 300 MeV
pion mass using NLO kernels (BNL20) [23].

1. Ignoring the pion mass dependence and perform-
ing a continuum extrapolation using the following
forms,

hxn
ia = hxn

ia!0 + dna, (21)

or

hxn
ia = hxn

ia2!0 + dna
2. (22)

We insert the above formulas into Eq. (20) and per-
form a joint fit of all the data from the three ensem-
bles instead of directly extrapolating the extracted
moments.

2. We only perform the continuum extrapolation of
the two ensembles with a 300 MeV pion mass to
obtain the value of dn, and then apply the param-
eter dn to the physical pion ensemble (m⇡ = 140
MeV) to derive the continuum estimate at the phys-
ical point. In this procedure, we assume hxn

ia2!0

↵ � s t

Model-2p -0.45(18)(6) 0.79(42)(14)

Model-4p -0.52(12)(3) 1.08(33)(8) -0.34(33)(6) 1.82(99)(11)

TABLE III. The model parameters from the joint fit using
the three ensembles with O(a2) continuum correction at µ = 2
GeV are shown. The statistical errors are in the first brackets,
while the systematic errors are in the second brackets which
are estimated by varying zmax 2 [0.48, 0.72] fm for the fits.

could have pion mass dependence, but the values
of dn have negligible pion mass dependence.

The bands in Fig. 9 are derived from the joint fit of all the
three ensembles by applying Eq. (21) (blue) and Eq. (22)
(orange) and ignoring the pion mass di↵erence. As one
can see, the two bands overlap with each other and pass
through the data points with reasonable �2/d.o.f around
1. The pion mass dependence is indeed only mild for the
data under consideration as also observed in Ref. [3]. To
be conservative, we also apply the second strategy de-
scribed above. The extrapolated results are shown as
the boxes in Fig. 9. Limited by the number of ensembles
and the statistics, solving both the lattice spacing and
mass dependence makes the extrapolation rather unsta-
ble and produces large errors bars covering the estimates
from the first strategy. We therefore will simply ignore
the pion mass dependence. Considering that the results
from Eq. (21) overlap with Eq. (22) with only a slightly
larger error, and the fact that the Wilson-clover action is
O(a) improved, we will only give the mass independent
continuum estimate using the a2 correction of Eq. (22)
in the following analysis.
In Fig. 10, we show the moments extracted from the

three ensembles with both statistical and systematic er-
rors, estimated by varying zmax 2 [0.48, 0.72] fm. The
bands are the continuum estimate using Eq. (22). It can
be observed that the systematic errors are small com-
pared to the statistical errors, suggesting the small zmax

dependence for the data under consideration. Our previ-
ous results obtained from NLO kernels with a 300 MeV
pion (denoted by BNL20 [23]) are shown for comparison.
The good agreement between BNL20 and the new results
suggests that the NNLO corrections make only a small
di↵erence, and the NLO kernels are mostly su�cient to
describe the data evolution with current statistics. The
estimated moments are also close to the values obtained
from the global fit, JAM21nlo [70].

VII. PION VALENCE PDF FROM MODEL
DEPENDENT FITS

As discussed in Sec. VI, our lattice data is only sensi-
tive to the first few moments of the pion valence PDF.
Without prior knowledge or constraints on the higher mo-
ments, it is impossible to determine the PDFs uniquely.

Mellin moments from OPE

State-of-the-art calculation of pion valence PDF



Towards better systematic control
• Lattice simulation: larger Pz (excited states), spacing a→0 

(renormalization), physical mπ, lattice size L→∞, etc.


• Perturbative theory: all current results are obtained with fixed-order 
matching. End-point region uncertainty underestimated due to large logs.


• x-space:


• Coordinate space:


• Renormalons and power corrections: 
Renormalon resummation improves  determination and perturbative 
convergence.

m̄0

Resummation of αs ln[μ2/(2xPz)2], αs ln(1 − x)

Resummation of αs ln[μ2z2], αm
s lnn NX. Gao, K. Lee, and YZ et al., Phys.Rev.D 103 (2021).

f(x, μ) = ∫
∞

−∞

dy
|y |

C̄ ( x
y

,
μ

yPz
,

μ̃
μ ) f̃(y, Pz, μ̃) + 𝒪(

Λ2
QCD

(xPz)2
,

Λ2
QCD

((1 − x)Pz)2 )

h̃(λ = zPz, z2μ2) =
∞

∑
n=0

Cn(z2μ2)
(−iλ)n

n!
an(μ) + 𝒪(z2Λ2

QCD) ,

J. Holligan, X. Ji, et al., submitted to journal.
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f(x, μ) = ∫
∞

−∞

dy
|y |

C̄ ( x
y

,
μ

yPz
,

μ̃
μ ) f̃(y, Pz, μ̃) + 𝒪(

Λ2
QCD

(xPz)2
,

Λ2
QCD

((1 − x)Pz)2 )

h̃(λ = zPz, z2μ2) =
∞

∑
n=0

Cn(z2μ2)
(−iλ)n

n!
an(μ) + 𝒪(z2Λ2

QCD) ,

See Dr. Jack Holligan’s parallel talk on Thu.

Renormalon ambiguity

NLO+RGR+LRR

NNLO+RGR+LRR
NLO+RGR

NNLO+RGR
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Figure 5: Value of m0 parameter with original method and with LRR method.
The renormalon is fitted in the range [zmin, zmin + 0.06 fm]
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J. Holligan, X. Ji, et al., submitted to journal.



Pseudo distribution 

OPE of Compton form factor 

Heavy quark OPE (HOPE) 

Short-distance OPE of current-current correlator 

Hadronic tensor

Notable new results:
Light-cone distribution amplitudes 

Unpolarized and helicity gluon PDFs 

Light flavor separation of proton PDFs 

Strange and charm quark PDFs 

…

Other proposals:
• A. Radyushkin, Phys.Rev.D 96 (2017); 
• K. Orginos et al., Phys.Rev.D 96 (2017).

• A Chambers et al. (QCDSF), Phys.Rev.Lett. 118 (2017); 
• A Hannaford-Gunn et al. (CSSM/QCDSF/UKQCD), Phys.Rev.D 105 (2022).

• Detmold and Lin, Phys.Rev.D 73 (2006); 
• Detmold, Lin, YZ et al. (HOPE), Phys.Rev.D 104 (2021).

• Braun and Müller, Eur.Phys.J.C 55 (2008); 
• Ma and Qiu, Phys.Rev.Lett. 120 (2018).

K.-F. Liu, Phys.Rev.Lett. 72 (1994).

• Fan and Lin, Phys.Lett.B 823 (2021); 
• T. Khan et al. (HadStruc), Phys.Rev.D 104 (2021); 
• C. Erger, R. Sufian et al. (HadStruc), arXiv: 2207.08733.

• Detmold, Grebe, YZ et al. (HOPE), Phys.Rev.D 105 (2022) 
• J. Hua et al. (LPC), arXiv: 2201.09173; 
• X. Gao, N. Karthik, YZ, et al., arXiv: 2206.04084

• C. Alexandrou et al. (ETMC), Phys.Rev.D 104 (2021); 
• C. Alexandrou et al. (ETMC), Phys.Rev.Lett. 126 (2021).

• R. Zhang, H.-W. Lin and B. Yoon, Phys.Rev.D 104 (2021).

See the talks in Hadron Structure parallel session.



GPDs

F(x, ξ, t, μ) = ∫
∞

−∞

dy
|y |

C ( x
y

,
ξ
y

,
μ

yP̄z
,

μ̃
μ )F̃(y, ξ, t, P̄z, μ̃)

+𝒪 (
Λ2

QCD

(xP̄z)2
,

t
(xP̄z)2

,
Λ2

QCD

((1 − x)P̄z)2
,

t
((1 − x)P̄z)2

,
Λ2

QCD

((x ± ξ)P̄z)2 )
• Y.-S. Liu, YZ et al., Phys.Rev.D 100 (2019); 
• Ma, Zhang and Zhang, 2202.07116.

Reliable prediction of  dependence within [xmin, xmax] 
and  at given finite Pz.

(x, ξ, t)
|x ± ξ | > δ

The skewness parameter ξ ∈ ½−1; 1" since Pþ; P0þ ≥ 0. There
exists another kinematic constraint on ξ that follows from
Δ⃗2

⊥ ≥ 0:

ξ ≤ ξmaxðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−t
−tþ 4M2

r
: ð132Þ

In the following, we also assume ξ > 0 without loss of
generality. With these kinematic constraints, the GPDs can
be divided into several kinematic regions that have different
physical interpretations. As shown in Fig. 8, in the region
ξ < x < 1 (−1 < x < −ξ) the distribution describes the emis-
sion and reabsorption of a quark (antiquark), while in the
region −ξ < x < ξ it represents the creation of a quark and
antiquark pair. The first region is similar to that present in
usual PDFs and referred to as the DGLAP region, whereas the
second is similar to that in a meson DA, which is discussed
later in this section, and referred to as the Efremov-
Radyushkin-Brodsky-Lepage (ERBL) region. The easiest
way to see this is in light-cone quantization and light-cone
gauge, where the matrix element defining the GPDs can be
rewritten in terms of parton creation and annihilation oper-
ators; for details see Ji (2004).
The previously defined quark GPDs have a number of

remarkable properties [see Ji (1998, 2004), Diehl (2003), and
Belitsky and Radyushkin (2005)] that either hold or have
similar counterparts for the later-defined quark quasi-GPDs.
In addition to being physically significant, these properties
also serve as useful checks on calculations related to GPDs.
According to LaMET, the previously defined unpolarized

quark GPDs can be determined by calculating the following
quasi-GPDs:

F̃ ¼ 1

2P̄0

Z
dλ
2π

eiyλhP0S0jOγ0ðzÞjPSi

¼ 1

2P̄0
ūðP0S0Þ

"
H̃γ0 þ Ẽ

iσ0μΔμ

2M

#
uðPSÞ; ð133Þ

where we have again suppressed the arguments ðy; ξ̃; t; P̄z; μÞ
of F̃, H̃, and Ẽ. The operator Oγ0ðzÞ ¼ ψ̄ðz=2Þ×
γ0Wðz=2;−z=2Þψð−z=2Þ is the same operator as that defining
the unpolarized quark quasi-PDF, and λ ¼ zP̄z. As in the
quasi-PDF case, the momentum fraction y extends from −∞
to ∞. The skewness parameter for the quasi-GPD

ξ̃ ¼ −
P0z − Pz

P0z þ Pz ¼ −
Δz

2P̄z ¼ ξþO
$

M2

ðP̄zÞ2
;

t
ðP̄zÞ2

%
ð134Þ

differs from the light-cone skewness ξ by power-suppressed
corrections. Moreover, the constraint from Δ⃗2

⊥ ≥ 0 becomes
(Ji, Schäfer et al., 2015)

ξ̃ ≤
1

2P̄z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−t½ðP̄zÞ2 þM2 − t=4"

M2 − t=4

s

; ð135Þ

which differs from the constraint in Eq. (132) by corrections of
O(M2=ðP̄zÞ2; t=ðP̄zÞ2). We can replace ξ̃ with ξ and attribute
the difference to generic power-suppressed contributions.
The previously defined quasi-GPDs can be renormalized by

observing that their UV divergence depends only on the
operators defining them, not on the external states. Since
Oγ0ðzÞ is multiplicatively renormalized, we can choose the
same renormalization factor as for the quasi-PDF (Stewart and
Zhao, 2018; Liu et al., 2020) to renormalize the quasi-GPD.
After renormalization, the quasi-GPD can then be matched to
the usual GPD through a factorization formula.
The factorization of quasi-GPDs was first proposed and

verified at one-loop order by Ji, Schäfer et al. (2015) and
Xiong and Zhang (2015), where a transverse-momentum
cutoff and a quark mass were used as the UVand IR regulator,
respectively. Later a detailed derivation based on OPE was
given by Liu et al. (2019a). In comparison to the OPE for the
quasi-PDF, a crucial difference here is that the total derivative
of operators can come into play, as it simply gives momentum
transfer factors when sandwiched between nonforward exter-
nal states, and therefore is nonvanishing. In other words, the
local twist-2 operators in Eq. (97) will mix under renormal-
ization with operators with total derivatives. The RGE that
governs the mixing reads (Braun, Korchemsky, and Müller,
2003)

μ2
d
dμ2

Oμ0μ1'''μnðμÞ

¼
X½n=2"

m¼0

Γnm½i∂ðμ1 ' ' ' i∂μ2m ψ̄γμ0 iD
↔μ2mþ1 ' ' ' iD

↔μnÞ
ψ − trace";

ð136Þ

where Γnm is the anomalous dimension of the associated

operators D
↔

¼ ðD⃗ − D⃖Þ=2, with D⃗ (D⃖) denoting the covariant
derivative acting to the right (left). Equation (136) can be
diagonalized by choosing an appropriate operator basis. Such
an operator basis has been studied in the literature and is
known as “renormalization group improved” conformal oper-
ators (Müller, 1994; Braun, Korchemsky, and Müller, 2003).
In terms of the matrix elements of these operators, we have

FIG. 8. Parton interpretation of the GPDs in different kinematic regions.

Xiangdong Ji et al.: Large-momentum effective theory

Rev. Mod. Phys., Vol. 93, No. 3, July–September 2021 035005-27

Similar to the calculation of PDFs:



First lattice calculations using the RIMOM scheme and NLO matching:

4

and within the reported uncertainties. Convergence is
also observed for E-GPD for the two highest momenta
and the region x > 0. We note that the statistical errors
on E-GPD are larger than those of the H-GPD, a fea-
ture already observed in FE . We refer the Reader to the
supplement for more details.
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FIG. 1: H-GPD (blue band) and unpolarized PDF (violet
band) for P3 = 1.67 GeV and zero skewness.
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FIG. 2: eH-GPD (blue band) and helicity PDF (violet band)
for P3 = 1.67 GeV and zero skewness.

Our final results for P3 = 1.67 GeV, t = �0.69 GeV2,
and zero skewness are shown in Fig. 1 and Fig. 2 for
the unpolarized and helicity GPDs, respectively. For
each case, we compare the GPDs with the corresponding
PDFs, that is f1(x) for the unpolarized, and g1(x) for
the helicity. We observe that the GPDs are suppressed
in magnitude as compared to their respective PDFs for
all values of x . 0.7. In fact, eH-GPD has a steeper slope
at small x values. The smaller magnitude of the GPDs
is a feature also observed in the standard FFs, which
decay with increasing �t. For the large-x region, both
distributions decay to zero in the same way. The large-x
behavior of the unpolarized GPD is in agreement with
the power counting analysis of Ref. [121]. For the anti-
quark region, we find that the GPDs are compatible with

the corresponding PDFs. We note that the statistical un-
certainties of GPDs are similar to the PDFs, allowing for
such qualitative comparison.

The extraction of the GPDs for ⇠ 6= 0 di↵ers from the
one for ⇠ = 0, as a di↵erent matching kernel is required.
Also, unlike the ⇠ = 0 case, both helicity GPDs con-
tribute to the matrix element, and therefore a decom-
position is required. The comparison between the zero
and non-zero skewness is shown in Fig. 3 and Fig. 4, for
P3 = 1.25 GeV. The main feature of the GPDs at ⇠ 6= 0
is that an ERBL region (|x| < 1/3 in our case) appears,
di↵erentiating it from the DGLAP region (|x| > 1/3).
The behavior of the GPDs as a function of t for a fixed
x is as expected; increasing �t suppresses the GPDs.
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FIG. 3: H-GPD for ⇠ = 0 (blue band) and ⇠ = |1/3| (green
band), as well as the unpolarized PDF (violet band) for P3 =
1.25 GeV. The area between the vertical dashed lines is the
ERBL region.
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FIG. 4: eH-GPD for ⇠ = 0 (blue band) and ⇠ = |1/3| (green
band), as well as the helicity PDF (violet band) for P3 = 1.25
GeV. The area between the vertical dashed lines is the ERBL
region.

Concluding remarks. We presented first results on the
unpolarized and helicity GPDs for the proton, employ-
ing the quasi-distribution approach, which has been very

C. Alexandrou et al. (ETMC), Phys.Rev.Lett. 125 (2020). H.-W. Lin, Phys.Rev.Lett. 127 (2021).
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FIG. 4: (Left) Nucleon tomography: three-dimensional impact parameter–dependent parton distribution as a function of x and
b using lattice H at physical pion mass. (Right) The two-dimensional impact-parameter–dependent distribution for x = 0.3,
0.5 and 0.7.

special limit ⇠ = 0. There are residual lattice system-
atics are not yet included in the current calculation: In
our past studies, we found the finite-volume e↵ects to be
negligible for isovector nucleon quasi-distributions cal-
culated within the range Mval

⇡ L 2 {3.3, 5.5}. We an-
ticipate such systematics should be small compared to
the statistical errors. The lattice discretization has been
studied by MSULat collaboration in Refs. [89, 105] with
multiple lattice spacings in the LaMET study of pion
and kaon distribution amplitudes and PDFs; similarly,
a comparison of nucleon isovector PDFs with 0.045 and
0.12 fm lattice spacing is shown in supplementary ma-
terials. There was mild lattice-spacing dependence for a
majority of the Wilson-link displacements studied with
similar largest boost momenta with same valence/sea lat-
tice setup. EMTC also report LaMET isovector nucleon
PDFs in Ref. [140] using twisted-mass fermion actions
and reports di↵erent findings. Future work will investi-
gate ensembles with smaller lattice spacing to reach even
higher boost momentum (either directly or with the aid
of machine learning [106]) so that we can push toward
reliable determination of the smaller-x and antiquark re-
gions.
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J. Hořeǰsi, Fortsch. Phys. 42, 101 (1994), arXiv:hep-
ph/9812448 .

[2] X.-D. Ji, Phys. Rev. Lett. 78, 610 (1997), arXiv:hep-
ph/9603249 [hep-ph] .

[3] A. Radyushkin, Phys. Lett. B 380, 417 (1996),
arXiv:hep-ph/9604317 .

[4] M. Burkardt, Phys. Rev.D62, 071503 (2000), [Erratum:
Phys. Rev.D66,119903(2002)], arXiv:hep-ph/0005108
[hep-ph] .

[5] X.-D. Ji, Phys. Rev. D55, 7114 (1997), arXiv:hep-
ph/9609381 [hep-ph] .

[6] B. Kriesten, S. Liuti, L. Calero-Diaz, D. Keller,
A. Meyer, G. R. Goldstein, and J. Osvaldo
Gonzalez-Hernandez, Phys. Rev. D 101, 054021 (2020),
arXiv:1903.05742 [hep-ph] .

[7] E. National Academies of Sciences and Medicine, An
Assessment of U.S.-Based Electron-Ion Collider Sci-
ence (The National Academies Press, Washington, DC,
2018).

[8] X. Chen, PoS DIS2018, 170 (2018), arXiv:1809.00448
[nucl-ex] .

[9] X. Chen, F.-K. Guo, C. D. Roberts, and R. Wang
(2020) arXiv:2008.00102 [hep-ph] .

[10] J. Abelleira Fernandez et al. (LHeC Study Group),
J. Phys. G 39, 075001 (2012), arXiv:1206.2913
[physics.acc-ph] .

[11] P. Agostini et al. (LHeC, FCC-he Study Group),
(2020), arXiv:2007.14491 [hep-ex] .

[12] X. Ji, Phys. Rev. Lett. 110, 262002 (2013),
arXiv:1305.1539 [hep-ph] .

[13] X. Ji, Sci. China Phys. Mech. Astron. 57, 1407 (2014),
arXiv:1404.6680 [hep-ph] .

[14] X. Ji, J.-H. Zhang, and Y. Zhao, Nucl. Phys. B924,
366 (2017), arXiv:1706.07416 [hep-ph] .

[15] H.-W. Lin, PoS LATTICE2013, 293 (2014).
[16] H.-W. Lin, J.-W. Chen, S. D. Cohen, and X. Ji, Phys.

Rev. D91, 054510 (2015), arXiv:1402.1462 [hep-ph] .
[17] J.-W. Chen, S. D. Cohen, X. Ji, H.-W. Lin, and J.-H.

Zhang, Nucl. Phys. B911, 246 (2016), arXiv:1603.06664
[hep-ph] .

Recent advancement in extracting GPDs from less computationally 
expensive lattice matrix elements in the asymmetric frame.

First attempt for twist-3 GPDs also made:

See Dr. Shohini Bhattacharya and Martha 
Constantinou’s parallel talks on Thu.
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What? Why? How?

Background

All 
momentum transfer to source

• Perform Lattice QCD calculations of GPDs in asymmetric frames

Resolution:

Bhattacharya, Cichy, Constantinou, Dodson, Gao, Metz, Mukherjee, 
Scapellato, Steffens, and YZ, work in progress.
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GPDs



TMDs
• Lorentz invariant method 

• Primary efforts focused on ratios of TMD x-moments


• Quasi TMDs 
• One-loop studies of quasi beam and soft functions 

• Method to calculate the Collins-Soper kernel 

• Method to calculate the soft function, and thus the x and bT 
dependence of TMDs


• Derivation of factorization formula
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Quasi TMD
• Beam function : 

• Soft function :
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• Quasi beam function :
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Figure 2.1: Graphs of the Wilson line structure ,@(1⇠ , 0) of the unsubtracted TMD PDF 5
0 (u)
8/? (left) and

of , (1)) for the soft function (
0
=0=1

(right), defined in Eqs. (2.37) and (2.38). The Wilson lines (solid)
extend to infinity in the directions indicated. Adapted from [107].

Here the brackets [· · · ]� denote that the operators inside are considered with an additional
rapidity regulator �, where the details on methods for how this is done are left to Sec. 2.4
below. Note that by Poincaré invariance, the proton matrix element in Eq. (2.37) only depends
on the difference 1

⇠ � 0 = 1
⇠ of the positions of the quark fields. In parts of the literature,

the correlator is defined as #̄0
8
(0),@(0, 1⇠)✏

+

2 #0
8
(1⇠), which thus is related to our convention

by 1
⇠ ! �1⇠. In particular, this also reverses the sign in the Fourier transform.

In Eqs. (2.37) and (2.38) we have 1
⇠ = (0, 1�, b)), and the staple shaped Wilson lines

,@(1⇠, 0) and , (1)) are defined by products of straight line segments,

,@(1⇠, 0) = ,[0 ! �1=1 ! �1=1 + b) ! 1]
= ,=1

(1⇠;�1, 0),
1̂)

�
�1=1 ; 0, 1)

�
,=1

(0⇠; 0,�1) , (2.39)

, (1)) = ,[0 ! �1=1 ! �1=1 + b) ! b) ! �1=0 + b) ! �1=0 ! 0]
= ,=0

(1) ; 0,�1),=1
(1) ;�1, 0),

1̂)

(�1=1 ; 0, 1))
⇥,=1

(0; 0,�1),=0
(0;�1, 0),

1̂)

(�1=0 ; 1) , 0) , (2.40)

with 1̂
⇠
)
= 1

⇠
)
/1) . For later use we also define a generalized version of the first product of

Wilson lines, where we take G
⇠ = (0, G�, x)) and H

⇠ = (0, H�, y)) as the two endpoints,

,@(G⇠, H⇠) = ,[G ! �1=1 + G ! �1=1 + H ! H]
= ,=1

(G⇠;�1, 0),�̂

�
�1=

⇠
1
+ H

⇠
)
; 0, |x) � y) |

�
,=1

(H⇠; 0,�1) , (2.41)

and here �̂⇠ = (G) � H))⇠/|x) � y) |. Here the Wilson line along a generic path ✏ is defined by
the path-ordered exponential

,[✏] = % exp

�8 60

π
✏

dG⇠�20
⇠ (G) C2

�
, (2.42)
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Factorization relation

Matching coefficient: 

• Independent of spin; 

• No quark-gluon or flavor mixing, which makes gluon 
calculation much easier.

× f [s]
i/p (x, bT, μ, ζ){1 + 𝒪[ 1

(xP̃zbT)2
,

Λ2
QCD

(xP̃z)2 ]}

f̃ naive[s]
i/p (x, bT, μ, P̃z)

Sq
r (bT, μ)

= C(μ, xP̃z) exp[ 1
2

K(μ, bT)ln
(2xP̃z)2

ζ ]

• Vladimirov and Schäfer, Phys.Rev.D 101 (2020); 
• Ebert, Schindler, Stewart and YZ, JHEP 09 (2020); 
• Ji, Liu, Schäfer and Yuan, Phys.Rev.D 103 (2021).

One-loop matching for gluon TMDs: 
Ebert, Schindler, Stewart and YZ, JHEP 08 (2022). 

Reduced soft function ✓
X. Ji, Y.-S. Liu and Y. Liu, Nucl.Phys.B 955 (2020),  
Phys.Lett.B 811 (2020). : Collins-Soper evolution kernelK(μ, bT)



Lattice calculations of TMD physics

✴Collins-Soper kernel; 

✴Flavor separation; 

✴Spin-dependence, e.g., Sivers function; 

✴Full TMD kinematic dependence in . 

✴Twist-3 PDFs from small bT expansion of TMDs.

(x, bT)

K(μ, bT) =
d

d ln P̃z
ln

f̃ naive[s]
i/p (x, bT, μ, P̃z)

C(μ, xP̃z)

f [s]
i/p(x, bT)

f [s′ ]
j/p (x, bT)

=
f̃ naive[s]

i/p (x, bT)

f̃ naive[s′ ]
j/p (x, bT)

Ji, Liu, Schäfer and Yuan, PRD 103 (2021).

× f [s]
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f̃ naive[s]
i/p (x, bT, μ, P̃z)

Sq
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Comparison between lattice results and global fits

MAP22: Bacchetta, Bertone, Bissolotti, et al., 2206.07598 
SV19: I. Scimemi and A. Vladimirov, JHEP 06 (2020) 137 
Pavia19: A. Bacchetta et al., JHEP 07 (2020) 117 
Pavia 17: A. Bacchetta et al., JHEP 06 (2017) 081 
CASCADE: Martinez and Vladimirov, 2206.01105

Collins-Soper kernel for TMD evolution

Approach Collaboration

Quasi beam 
functions

P. Shanahan, M. Wagman and YZ 
(SWZ21),  

Phys. Rev.D 104 (2021)

Quasi TMD 
wavefunctions

Q.-A. Zhang, et al. (LPC20), 
Phys.Rev.Lett. 125 (2020).

Y. Li et al. (ETMC/PKU 21), 
Phys.Rev.Lett. 128 (2022).

M.-H. Chu et al. (LPC22), 
arXiv: 2204.00200

Moments of 
quasi TMDs

Schäfer, Vladmirov et al. 
(SVZES21), 

JHEP 08 (2021)
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FIG. 2. Comparison of CS kernels extracted from differ-

ent combinations of the pseudo-data. The top plot shows all

possible (twelve) combinations of pseudo-data with different

kinematics, listed in the table I. The bottom plot show ex-

tractions made with different input collinear PDFs. The solid

lines are the central values. The shaded areas are the statis-

tical uncertainty. The oscillations at b ⇠ 4� 6GeV
�1

are due

to the finite bin size in the qT -space. The gray dashed line in

the lower plot shows the effect of incomplete cancellation of

parton’s momentum if PDFs in the comparing cross-section

are different (here, CT18 vs. CASCADE).

tions of CS kernel is shown in fig.3. The CASCADE
extraction lightly disagrees with the perturbative curve
(b < 1GeV�1), but in agreement with the SV19 [10] and
Pavia17 [7] for 1 < b < 3GeV�1.

The fit of the large-b part by a polynomial gives

D(b, µ) ⇠ [(0.069± 0.031)GeV]⇥ b, (11)

with a negligible quadratic part. We conclude that the
CASCADE suggests a linear asymptotic, which was also
used in the SV19 series of fits [9, 10, 37], and supported
by theoretical estimations [14, 38]

Conclusions. We have presented the method of di-
rect extraction of the CS kernel from the data, using the
proper combination of cross-sections with different kine-
matics. For explicitness, we considered the case of the
Drell-Yan process, but the method can be easily gener-
alized to other processes such as SIDIS, semi-inclusive
annihilation, Z/W-boson production, and their polarized
versions.
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FIG. 3. Comparison of the CS kernels obtained in different

approaches. CASCADE curve is obtained in this work. The

curves SV19, MAP22, Pavia19 and Pavia17 are obtained from

the fits of Drell-Yan and SIDIS data in refs. [39], [10], [11],

and [7], correspondingly. Dots represent the computations of

CS kernel on the lattice, with SVZES, ETMC/PKU, SVZ,

LPC20 and LPC22 corresponding to refs.[16], [40], [17], [41],

and [42].

The method is tested using the pseudo-data gener-
ated by the CASCADE event generator, and the corre-
sponding CS kernel is extracted. Amazingly, all expected
properties of the CS kernel (such as universality) are ob-
served in the CASCADE generator. This non-trivially
supports both the TMD factorization and the PB ap-
proaches and solves an old-stated problem of comparison
between non-perturbative distributions extracted within
these approaches [43, 44].

The procedure can be applied to the real experimental
data without modifications. In this case, the uncertain-
ties of extraction will be dominated by the statistical un-
certainties of measurements since many systematic uncer-
tainties cancel in the ratio. Thus the method is feasible
for modern and future experiments, such JLab [45, 46],
LHC [47], and EIC [48, 49]. They can be applied to al-
ready collected data after a rebinning. Importantly, the
procedure is model-independent and provides access to
the CS kernel based on the first principles.

Acknowledgments. We thank Hannes Jung and
Francesco Hautmann for discussions, and also Qi-An
Zhang and Alessandro Bacchetta for providing us with
their extractions. A.V. is funded by the Atracción de Tal-
ento Investigador program of the Comunidad de Madrid
(Spain) No. 2020-T1/TIC-20204. This work was par-
tially supported by DFG FOR 2926 “Next Generation
pQCD for Hadron Structure: Preparing for the EIC”,
project number 430824754

−K(b⊥, μ)



Reduced soft factor for full TMD calculation

Q.-A. Zhang, et al. (LPC), Phys.Rev.Lett. 125 (2020).
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TMDWF,

C2(b?, P
z; pz, `, t) =

1

L3
p
ZE(2`, b?)

X

x

Trei
~P ·~x

⇥ hS
†
w(~x+~b, t, 0;�~p)W(~b, `)�5��Sw(~x, t, 0;P

z
� ~p)i

=
Aw(pz)Ap

2E
e
�Et

�`(0, b?, P
z
, `)(1 + c0e

��Et), (15)

where again we parameterize the mixing with one excited
state. Ap is the matrix element of the point sink pion in-
terpolation field. It will be removed when we normalize
�`(0, b?, P z

, `) with �`(0, 0, P z
, 0). We choose �� = �

t
�5

to define the wave function amplitude in Eq. (4). Based
on the quasi-TMDPDF study in Ref. [25, 27] with a sim-
ilar staple-shaped gauge link operator, the mixing e↵ect
could be sizable when summing various contributions. In
the supplemental material, we report a similar simulation
but using the A654 ensemble. We find that the mixing
e↵ects can reach order 5% for the transverse separation
b? ⇠ 0.6fm. These e↵ects will be included in the fol-
lowing analysis as one of the systematic uncertainties,
while a comprehensive study on the mixing e↵ects will
be conducted in the future.

FIG. 2. Results for the ` dependence of the quasi-TMDWF
with z = 0, and also the square root of the Wilson loop
which is used for the subtraction, taking the {P z, b?, t} =
{6⇡/L, 3a, 6a} case as a example. All the results are normal-
ized with their values at ` = 0.

The dispersion relation of the pion state, statistical
checks for the measurement histogram, and information
on the autocorrelation between configurations can be
found in the supplemental materials [28].

Numerical Results. Fig. 2 shows the dependence of
the norm of quasi TMDWFs on the length ` of the
Wilson-line. As one can see from this figure, with
{P

z
, b?, t} = {6⇡/L, 3a, 6a}, both the quasi-TMDWF

�`(0, b?, P z
, `) and the square root of the Wilson loop

ZE decay exponentially with length `, but the subtracted
quasi-TMDWF is length independent when ` � 0.4 fm.
Some other cases with larger P z, b?, and t can be found
in the supplemental materials [28]. Based on this ob-
servation, we will use ` = 7a = 0.686 fm as asymptotic

results for all cases in the following calculation.

FIG. 3. The ratios C3(b?, P
z, tsep, t)/C2(0, P

z, 0, tsep) (data
points) which converge to the ground state contribution at
t, tsep ! 1 (gray band) as function of tsep and t, with
{P z, b?} = {6⇡/L, 3a}. As in this figure, our data in gen-
eral agree with the predicted fit function (colored bands).

We performed a joint fit of the form factor and
quasi-TMDWF with the same P

z and b? with the
parameterization in Eqs. (14) and (15). The ra-
tios C3(b?, P z

, tsep, t)/C2(0, P z
, 0, tsep) with di↵erent tsep

and t for the {P
z
, b?} = {6⇡/L, 3a} case are shown in

Fig. 3, with ground state contribution (gray band) and
the fitted results at finite t2 and t (colored bands). In this
calculation, the excited state contribution is properly de-
scribed by the fit with �

2
/d.o.f. = 0.6. The details of the

joint fit, and also more fit quality checks are shown in the
supplemental materials [28], with similar fitting quality.

FIG. 4. The intrinsic soft factor as a function of b? with
b?,0 = a as in Eq. (9). With di↵erent pion momentum P z,
the results are consistent with each other. The dashed curve
shows the result of the 1-loop calculation, see Eq. (7), with the
strong coupling constant ↵s(1/b?). The shaded band corre-
sponds to the scale uncertainty of ↵s: µ 2 [1/

p
2,
p
2]⇥1/b?.

The systematic uncertainty from the operator mixing has
been taken into account.

The resulting soft factor as function of b? is plotted in
Fig. 4, at �= 2.17, 3.06 and 3.98, which corresponds to
P

z = {4, 6, 8}⇡/L = {1.05, 1.58, 2.11} GeV respectively.
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Figure 2. The lattice results of S(b⊥) for various momenta,
together with the one-loop perturbative result S1−loop

MS
and its

variant S′1−loop
MS

with ↵s including up to 4 loops. The scale µ

in Eq. (17) is set as µ = 2 GeV.

cancelling the dominant higher-twist e↵ects, the results
become much more consistent. The residual deviations
serve as measure of important systematic e↵ects to be
controlled in future studies.

Results of the soft function – After checking the
consistency among the various improved pion matrix ele-
ments, we use the choice of 1

2
(F�5�1 + F�1) as an example

to present the results of S(b⊥) for various momenta P z

and pion masses m⇡
vi.

In Fig. 2, S(b⊥, P z
) is shown together with the one-

loop perturbative curve [35],

S
MS
(b⊥, µ) = 1 − ↵sCF

⇡
ln

µ2b2⊥
4e−2�E

+O(↵2

s), (17)

where one-loop and four-loop values of ↵s are used at the
physically most relevant scale of S(b⊥), i.e. 1�b⊥. The
scale µ is set as µ = 2 GeV. We note that the lattice re-
sults agree qualitatively with the perturbative function
at around b⊥ ∼ 0.2 fm, particularly at the largest boost
and when the higher-order e↵ects are partially included
via ↵s. At larger b⊥, non-perturbative features start to
set in and the decay of S(b⊥) is slower than the pertur-
bative prediction. It is also noteworthy that the conver-
gence of the lattice results in P z clearly increases with
b⊥ – the results from the two largest P z are compatible
for b⊥ � 0.2 fm, while smaller transverse separations will
need yet larger boosts to establish convergence.

In Fig. 3, we examine the pion mass dependence of
the soft function. Although S(b⊥) is extracted from pion
matrix elements which depend on the detailed process
of ⇡(P z

) → ⇡(−P z
), the factorization allows us to can-

cel this process dependence. Performing the calculation
at four pion masses, we find that the lattice results are
generally consistent within statistical errors, although a
small systematic increase is found when decreasing m⇡.
This observation supports the statement from the factor-
ization [17] that the soft function does not depend on the

Figure 3. The intrinsic soft function S(b⊥) for the pion masses
ranging from 827 MeV to 350 MeV. Here, we show results
calculated at the momentum P

z = 5 2⇡
L

as an example.

detailed hadronic information from the initial/final state.
Results for the Collins-Soper kernel – The

Collins-Soper kernel K(b⊥, µ) governs the rapidity evo-
lution of the TMDPFs. In LaMET, the quasi-TMDPDF
is factorized into the light-cone TMDPDF and a
K(b⊥, µ) ln(⇣z�⇣) factor, where ⇣z = 2(xP z

)
2, with P z

playing the role of the rapidity, while ⇣ is the light-cone
counterpart of ⇣z [36]. Thus, by taking the ratio of quasi-
TMDPDFs at di↵erent values of P z, one can extract
K(b⊥, µ). This ratio can also be expressed in terms of
the quasi-TMDWFs [18] as

K(b⊥, µ) = lim
l→∞

1

ln(P z
1
�P z

2
)
ln �

�(b⊥, l, P z
1
)�E1

�(b⊥, l, P z
2
)�E2

�

=
1

ln(P z
1
�P z

2
)
ln
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Cwf
��
(b⊥, P z

1
)

Cwf
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(b⊥, P z

2
)

Cwf
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Cwf
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1
)
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. (18)

Figure 4. The lattice results for the Collins-Soper kernel
K(b⊥, µ) from various calculations, described by the color of
yellow [20], blue [19], green [18] and red. The results from
a same calculation are shifted horizontally to make an easier
comparison.

In Fig. 4, the lattice results of K(b⊥, µ) from this work

Y. Li et al. (ETMC/PKU), Phys.Rev.Lett. 128 (2022).

a = 0.10 fm, mπ = 547 MeV, Pz
max = 2.11 GeV a = 0.09 fm, mπ = 827 MeV, Pz

max = 3.3 GeV

⟨π(−P) | j1(bT)j2(0) |π(P)⟩ Pz≫mπ= Sr
q(bT, μ)∫ dxdx′ H(x, x′ , μ)

× Φ†(x, bT, Pz)Φ(x′ , bT, Pz)

: Quasi-TMD wave functionΦ

Both calculations were done at LO accuracy.



Conclusion

Indeed, measurements at the EIC and
lattice calculations will have a high degree
of complementarity. For some quantities,
notably the x moments of unpolarized and
polarized quark distributions, a precise de-
termination will be possible both in experi-
ment and on the lattice. Using this to vali-
date the methods used in lattice calculations,
one will gain confidence in computing quan-
tities whose experimental determination is
very hard, such as generalized form factors.
Furthermore, one can gain insight into the
underlying dynamics by computing the same
quantities with values of the quark masses
that are not realized in nature, so as to reveal
the importance of these masses for specific
properties of the nucleon. On the other hand,
there are many aspects of hadron structure
beyond the reach of lattice computations, in
particular, the distribution and polarization
of quarks and gluons at small x, for which
collider measurements are our only source of
information.

y

xp

x
z

bΤ

Figure 2.1: Schematic view of a parton with
longitudinal momentum fraction x and trans-
verse position bT in the proton.

Both impact parameter distributions
f(x, bT ) and transverse-momentum distri-
butions f(x,kT ) describe proton structure
in three dimensions, or more accurately in
2+ 1 dimensions (two transverse dimensions
in either configuration or momentum space,
along with one longitudinal dimension in mo-

mentum space). Note that in a fast-moving
proton, the transverse variables play very dif-
ferent roles than the longitudinal momen-
tum.

It is important to realize that f(x, bT )
and f(x,kT ) are not related to each other by
a Fourier transform (nevertheless it is com-
mon to denote both functions by the same
symbol f). Instead, f(x, bT ) and f(x,kT )
give complementary information about par-
tons, and both types of quantities can be
thought of as descendants of Wigner distri-
butions W (x, bT ,kT ) [8], which are used ex-
tensively in other branches of physics [9].
Although there is no known way to mea-
sure Wigner distributions for quarks and
gluons, they provide a unifying theoretical
framework for the di↵erent aspects of hadron
structure we have discussed. Figure 2.2
shows the connection between these di↵erent
aspects and the experimental possibilities to
explore them.

All parton distributions depend on a
scale which specifies the resolution at which
partons are resolved, and which in a given
scattering process is provided by a large mo-
mentum transfer. For many processes in
e+p collisions, the relevant hard scale is Q

2

(see the Sidebar on page 19). The evolution
equations that describe the scale dependence
of parton distributions provide an essential
tool, both for the validation of the theory
and for the extraction of parton distributions
from cross section data. They also allow one
to convert the distributions seen at high res-
olution to lower resolution scales, where con-
tact can be made with non-perturbative de-
scriptions of the proton.

An essential property of any particle is its
spin, and parton distributions can depend on
the polarization of both the parton and the
parent proton. The spin structure is particu-
larly rich for TMDs and GPDs because they
single out a direction in the transverse plane,
thus opening the way for studying correla-
tions between spin and kT or bT . Informa-
tion about transverse degrees of freedom is
essential to access orbital angular momen-
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Theory development:  
• Renormalization;  
• Perturbative matching, higher 

order correction and resummation;  
• Power corrections (and 

renormalons).
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