HVP WITH C* BOUNDARY CONDITIONS

PART II

Anian Altherr, Roman Gruber

RC* collaboration: Anian Altherr, lucius Bushnaq, Isabel Campos-Plasencia, Marco Catillo, Alessandro Cotellucci, Madeleine Dale, Roman Gruber, Patrick Fritzsch, Javad Komijani, Jens Luecke, Marina Marinkovic, Sofie Martins, Agostino Patella, Joao Pinto Barros, Nazario Tantalo and Paola Tavella

INTRO / OVERVIEW

- Part I
- Strategy of calculation
- Sources
- Vector masses
- Introduction to C* boundary conditions

■ Part II

- Implications of C* boundary conditions
- HVP in dynamical QCD+QED conditions
- Outlook

■ Other related talks/posters

- Sofie Martins: Finite-Size Effects of the Hadronic Vacuum Polarization Contribution to the Muon ($g-2$) with C* Boundary Conditions (talk in this session at 09:40 AM)
- Jens Lücke: An update on QCD+QED simulations with C* boundary conditions (talk in session "Hadron Spectroscopy and Interactions" on Fri 4:40 PM)
- Paola Tavella: Strange and charm contribution to the HVP from C* boundary conditions (poster on Tue 8:00 PM)
- Alessandro Cotellucci: Tuning of QCD+QED simulations with C* boundary conditions (poster on Tue 8:00 PM)

IMPLICATIONS OF C* BOUNDARY CONDITIONS

C* BOUNDARY CONDITIONS

Figure: Fermions $\psi(x)$, QCD links $U_{\mu}(x)$, QED photon field $A_{\mu}(x)$.
■ periodic boundaries on extended lattice, i.e. $\psi\left(x+2 L_{1} \hat{1}\right)=\psi(x)$

C* BOUNDARY CONDITIONS

Pros

+ simulation of dynamical QED from first principles.

Cons

- lattice volume doubled by introducing a mirror lattice.

C* BOUNDARY CONDITIONS

ψ and $\bar{\psi}$ not independent anymore ${ }^{1}$
periodic boundary
Action:

$$
\sum_{x \in \Lambda_{\text {phys }}} \bar{\psi}(x) D \psi(x)
$$

Integration measure:
$[\mathcal{D} \psi]_{\Lambda_{\text {phys }}}[\mathcal{D} \bar{\psi}]_{\Lambda_{\text {phys }}}$
$\operatorname{det}(D)$
$\psi(x) \bar{\psi}(y)=D^{-1}(x \mid y)$

C* boundary
$\longrightarrow \sum_{x \in \Lambda_{\text {phys }}+\text { mirror }}-\frac{1}{2} \psi^{\top}(x) C T D \psi(x)$
$\longrightarrow \quad[\mathcal{D} \psi]_{\Lambda_{\text {phys }} \text { miriror }}$
$\longrightarrow \quad \operatorname{Pf}(C T D)$
$\longrightarrow \quad \overline{\psi(x)}^{\top}(y)=-D^{-1}(x \mid y) T C^{-1}$

- C: charge-conjugation matrix
- T : translation operator flips physical \leftrightarrow mirror lattice

$$
\begin{aligned}
T \psi\left(x_{\text {phys }}\right) & =\psi\left(x_{\text {phys }}+L_{1} \hat{1}\right) \\
T \psi\left(x_{\text {mirr }}\right) & =\psi\left(x_{\text {mirr }}-L_{1} \hat{1}\right)
\end{aligned}
$$

[^0]
C* BOUNDARY CONDITIONS

Vector correlator turns into the usual expression (with modified Dirac operator)

$$
\left\langle j_{\mu}(x) j_{\nu}(y)\right\rangle=\operatorname{tr} c D\left[\gamma_{\mu} D^{-1}(x \mid y) \gamma_{\nu} D^{-1}(y \mid x)\right]
$$

HVP IN DYNAMICAL QCD+QED SIMULATIONS

OPENQ*D CODE

RG…〇Y

Publicly available under https://gitlab.com/rcstar/openQxD.
■ open source (GNU GPLv2),

- see Campos et al., (2020) [3] for an introduction.
- available solvers:
- conjugate gradient on the normal equations (CGNE)
- generalized conjugate residual using Schwarz alternating procedure $(S A P+G C R)^{3}$
- (inexact) deflation-accelerated solver (DFL+SAP+GCR) ${ }^{4}$

[^1]
USED ENSEMBLES / PARAMETERS

Ensemble	A400	A360	A380
flavors	$3(\mathrm{u} / \mathrm{d} / \mathrm{s})+1(\mathrm{c})$	$1(\mathrm{u})+2(\mathrm{~d} / \mathrm{s})+1(\mathrm{c})$	$1(\mathrm{u})+2(\mathrm{~d} / \mathrm{s})+1(\mathrm{c})$
α	0.0	0.04	$1 / 137$
$m_{\pi}[\mathrm{MeV}]$	400	360	380

$\mathrm{QCD} \leftrightarrow \mathrm{QCD}+\mathrm{QED}$

Figure: Relative error comparison. $G\left(x_{0}\right) \sim \sum_{k=1}^{3} \sum_{\vec{x}}\left\langle j_{k}\left(x_{0}, \vec{x}\right) j_{k}(0, \overrightarrow{0})\right\rangle$

HVP WITH QCD+QED

■ At large times, signal/noise dominates \Longrightarrow cutoff at $x_{\text {cut }}$, remaining part is modeled using a model function.
■ single-exponential, m_{0} taken from mass spectroscopy, amplitude A taken from 1-parameter fit to correlator.

$$
G\left(x_{0}\right)= \begin{cases}G^{\text {lattice }}\left(x_{0}\right) & x_{0}<x_{\text {cut }} \\ A e^{-m_{0} x_{0}} & x_{0} \geq x_{\text {cut }}\end{cases}
$$

HVP WITH QCD+QED

Figure: Integrand for $g-2$ for $\alpha \approx 1 / 137$, conserved-local current: regions left of vertical line use lattice data, right of vertical line use single-exponential fit.

HVP WITH QCD+QED

Preliminary results with conserved-local current, blinded $\left(Z_{V}=1\right)$

ensemble	flavor	$a_{\mu}^{H V P} \times 10^{10}$
A400 $\alpha=0$	up/down/strange	$319(8)$
	charm	$10.0(1)$
A360 $\alpha=0.04$	up	down/strange
	charm	$309(11)$
	up	down/strange
	charm	$10.6(1)$
		$331(7)$
	$83(2)$	
	$9.8(1)$	

ERROR CONTRIBUTIONS

for $\alpha \approx 1 / 137, m_{\pi}=380 \mathrm{MeV}$, up flavor, conserved-local current

	variation w.r.t.	relative error
statistical	jackknife	1.21%
	vector mass	1.36%
	relative scale setting ${ }^{56}$	0.92%
systematic	fit range	0.14%
	cutoff	0.03%
	excited states	1.20%
total		$\mathbf{2 . 3 7 \%}$

unaccounted errors: physical pion mass, scale setting, continuum extrapolation.
$\begin{aligned} & 5 \\ & \text { by error propagation } \\ & { }^{6} \text { input } \Delta a / a=0.53 \% \text {, sensitivity to lattice scaling agrees with Della Morte et al. (2017) [6] }\end{aligned}$,

ISOSPIN CORRECTIONS

QCD

$$
\begin{aligned}
& S=S_{F}[U]+S_{G}[U] \\
& U \in S U(3)
\end{aligned}
$$

QCD + QED

$$
\begin{aligned}
& S=S_{F}\left[U, A_{\mu}\right]+S_{G}[U]+S_{\gamma}\left[A_{\mu}\right] \\
& U \in \operatorname{SU}(3), e^{-i A_{\mu}} \in U(1)
\end{aligned}
$$

■ only effects due to $m_{u} \neq m_{d}$ need to be included \Longrightarrow needs 1 more inversion per source and flavor.

Finite size EFFECTS

Hansen-Patella method7:
■ expansion in $e^{-|\mathbf{n}| m_{\pi} L}$, with $\mathbf{n} \in \mathbb{Z}^{4}$ due to 2-pion states.
\square periodic boundary conditions: $\mathcal{O}\left(e^{-m_{\pi} L}\right)$.
■ Leading order vanishes for C* boundary conditions . ${ }^{8}$
finite size effects due to QED

- expansion in $1 / \mathrm{L}$ due to 1-photon states.

■ For hadron masses effects are smaller than with $\mathrm{QED}_{L}{ }^{9}$.

[^2]
OUTLOOK

■ model part: include excited states.
■ Variance reduction

- Low mode averaging
- Extended/stochastic sources (for vector masses)
- Chiral extrapolation

■ Continuum extrapolation
■ Disconnected contributions

We acknowledge access to Piz Daint at the Swiss National Supercomputing Centre, Switzerland under the ETHZ's share with the project IDs s1101, eth8 and go22.

REFERENCES I

[1] B. Lucini, A. Patella, A. Ramos, and N. Tantalo, "Charged hadrons in local finite-volume QED+QCD with C* boundary conditions", JHEP 02, o76 (2016), arXiv:1509.01636.
[2] A. Patella, C* boundary conditions in openQ*D code, URL: gitlab.com/rcstar/openQxD/-/blob/master/doc/cstar.pdf.
[3] I. Campos et al., "openQ*D code: a versatile tool for QCD+QED simulations: RC* collaboration", European Physical Journal C 80, 195 (2020).
[4] M. Lüscher, "Lattice QCD and the Schwarz alternating procedure", Journal of High Energy Physics 2003, 052 (2003), arXiv:0304007,
[5] M. Lüscher, "Deflation acceleration of lattice QCD simulations", Journal of High Energy Physics 2007, 011 (2007), arXiv:0710.5417,
[6] M. Della Morte et al., "The hadronic vacuum polarization contribution to the muon $g-2$ from lattice QCD", JHEP 2017, 20 (2017), arXiv:1705.01775,
[7] A. Duncan, E. Eichten, and H. Thacker, "Electromagnetic Splittings and Light Quark Masses in Lattice QCD", Physical Review Letters 76, 3894 (1996), arXiv:9602005 [hep-lat],
[8] G. M. D. Divitiis et al., "Isospin breaking effects due to the up-down mass difference in lattice QCD", JHEP 2012, 1-30 (2012),
[9] P. Boyle et al., "Isospin breaking corrections to meson masses and the hadronic vacuum polarization: a comparative study", JHEP 2017, 153 (2017), arXiv:1706.05293,
[10] M. T. Hansen and A. Patella, "Finite-volume and thermal effects in the leading-HVP contribution to muonic $g-2$ ", Journal of High Energy Physics 2020, 29 (2020), arXiv:2004.03935.
[11] J. C. Collins, A. V. Manohar, and M. B. Wise, "Renormalization of the vector current in QED", Physical Review D 73, 105019 (2006),

Used ensembles / parameters

Ensemble	A400	A360	A380
flavors	$3(\mathrm{u} / \mathrm{d} / \mathrm{s})+1(\mathrm{c})$	$1(\mathrm{u})+2(\mathrm{~d} / \mathrm{s})+1(\mathrm{c})$	$1(\mathrm{u})+2(\mathrm{~d} / \mathrm{s})+1(\mathrm{c})$
β	3.24	3.24	3.24
α	0.0	$0.04063(6)$	$0.00708(2) \approx 1 / 137$
$m_{\pi}[\mathrm{MeV}]$	$399(3)$	$359(3)$	380
$a[\mathrm{fm}]$	$0.05393(24)$	$0.05054(27)$	$0.05323(28)$
size	$32 \times 32 \times 32 \times 64$	$32 \times 32 \times 32 \times 64$	$32 \times 32 \times 32 \times 64$
\#configs	200	181	200

RENORMALIZATION

■ For QCD: conserved-local current requires renormalization.

$$
j_{\mu}^{\text {ren }}(x)=Z_{\vee} j_{\mu}^{\text {local }}(x)+\mathcal{O}(a) .
$$

Use ratio between conserved-local and local-local correlator:

$$
z_{v}=\left\langle\frac{\left\langle j_{\mu}^{\mathrm{ps}}(x) j_{\mu}^{\mathrm{loc}}(0)\right\rangle}{\left\langle j_{\mu}^{\mathrm{loc}}(x) j_{\mu}^{\mathrm{loc}}(0)\right\rangle}\right\rangle .
$$

- For QCD+QED: even conserved current is subject to renormalization. ${ }^{10}$

$$
j_{\mu}^{\mathrm{ren}}(x)=j_{\mu}^{\mathrm{ps}}(x)+\frac{1-Z_{3}^{-1}}{e_{\mathrm{o}}} \partial_{\nu} F^{\nu \mu}
$$

[^3]
[^0]: ${ }^{1}$ compare Lucini et al. (2016) [1], Patella (2017) [2]
 ${ }^{2}$ See poster by Alessandro Cotellucci (Tue 8:00 pm)

[^1]: ${ }^{3}$ Lüscher (2003) [4]
 4Lüscher (2007) [5]

[^2]: ${ }^{7}$ See Hansen and Patella (2020) [10]
 ${ }^{8}$ See talk by Sofie Martins (this session at 09:40) for details.
 ${ }^{9}$ see Lucini et al., JHEP (2016) [1].

[^3]: ${ }^{10}$ See Collins et al. PRD (2006) [11], e_{0} is bare electric charge, Z_{3} renormalization constant of $A_{\mu}(x)$.

