Improving Lattice QCD Calculation of the Collins-Soper Kernel

<u>Artur Avkhadiev</u> (virtual presenter),¹ Phiala Shanahan,¹ Michael Wagman,² and Yong Zhao³

¹Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA, USA ²Fermi National Accelerator Laboratory, Batavia, IL, USA ³Physics Division, Argonne National Laboratory, Lemont, IL, USA

The Collins-Soper (CS) Kernel

Transverse motion of partons in hadrons gives rise

The CS Kernel with Lattice QCD

Using Large-Momentum Effective Theory (LaMET), the CS kernel may be computed with Lattice QCD via space-like $\mathcal{O}_{\Gamma}(b^{\mu}, z^{\mu}, \ell) = \bar{q}(z^{\mu} + b^{\mu})\frac{\Gamma}{2}\widetilde{W}(\ell; b^{\mu}; z^{\mu})q(z^{\mu})$ One possible observable is a **<u>quasi-TMD wavefunction (WF)</u>** with $\Gamma \in \{\gamma^z \gamma^5, \gamma^t \gamma^5\}$ from two-point correlation functions: $\ell = 2\eta - b_z$ $\tilde{\psi}(b^z, \mathbf{b}_{\mathrm{T}}, \ell, P^z) \propto \langle 0 | \mathcal{O}_{\Gamma}(b^{\mu}, -P^z, \ell) | \pi(P^z) \rangle.$ With bare matrix elements computed, the ratio yields the CS kernel after: $\gamma_{\zeta}^{q}(\mu, b_{\mathrm{T}}) = \frac{1}{\ln(P_{1}^{z}/P_{2}^{z})} \ln \left| \right|$

$\int \mathrm{d}b^z e^{ib^z x P_1^z} P_1^z \lim_{\ell \to \infty} \tilde{\psi}_{\pi}^{\mathrm{ren.}}(\mu, b^z, \mathbf{b}_{\mathrm{T}}, \ell, P_1^z)$

Fourier Transform

Yes

Yes

N/A

N/A

Yes

Yes

N/A

Operator

Mixing

/

/

1

X

X

1

X

10-1

 10^{-2}

10-3

Projected Improvements

Physical Pion Mass and Reduced Systematics from the Fourier Transform

Robust Non-Local Operator Renormalization

Recent formal and code developments increase computational efficiency, which enables calculations at ~ physical $m_{-}^{\rm val}$ to remove partial quenching and suppress power corrections.

Figure from **LPC 22**, 2204.00200 [modified for clarity]

Preliminary figure from this work (different normalization)

Greater computational efficiency also allows to reduce systematic uncertainties from the Fourier transform by increasing data frequency and range in $|P^z b^z|$ (right panel) – which requires a greater number of and longer staple configurations, respectively.

Figure from Shanahan, Wagman, and Zhao, PRD 101 (2020) guenched

Preliminary figure from this work (different ensemble and renormalization scale)

With the auxiliary-field approach, the renormalization of extended staple-shaped operators is simplified to that of point-like objects. In the RIx-MOM scheme¹ (right panel, log scale), compared to the usual RI'-MOM scheme (left panel, linear scale), mixing effects are both reduced and in better agreement with one-loop lattice perturbation theory² (white circles).

¹ Green, Jansen, and Steffens, PRL 121 (2018) and PRD 101(2020). ² Constantinou, Panagopoulos, and Spanoudes, PRD 99 (2019) and PRD 96 (2017).