Sigma terms of the baryon octet in $N_{\mathrm{f}}=2+1$ QCD with Wilson quarks

How do the other octet baryons compare to the nucleon and do we control excited states sufficiently ?

Pia Leonie Jones Petrak
Gunnar Bali, Sara Collins, Jochen Heitger, Daniel Jenkins, Simon Weishäupl

wissen.leben

Why determine the sigma terms?

- decomposition of the hadron mass
- investigate flavour symmetry breaking in the baryon octet
\Rightarrow nucleon N, lambda Λ, sigma Σ and xi Ξ (in our setup $m_{\mathrm{u}}=m_{\mathrm{d}}$)
- WIMP-nucleon scattering cross-sections (e.g. XENON1T)
- discrepancies between results for the nucleon pion sigma term from LQCD and phenomenology still to be resolved

How are the sigma terms defined?

$$
\sigma_{q B}=m_{q}\langle B| J|B\rangle
$$

We're interested in:

- baryon at rest
- the scalar current $J=\bar{q} \mathbf{1} q, q \in\{u, d, s\}$
- strange sigma terms $\sigma_{s B}$
- pion sigma terms $\sigma_{\pi B}=\sigma_{u B}+\sigma_{d B}$

How are the sigma terms defined?

$\sigma_{q B}=m_{q}\langle B| J|B\rangle$

- with the quark mass m_{q} and a current J
- In the matrix element B refers to the ground state of a baryon B.

We're interested in:

- baryon at rest
- the scalar current $J=\bar{q} 1 q, q \in\{u, d, s\}$
- strange sigma terms $\sigma_{s B}$
- pion sigma terms $\sigma_{\pi B}=\sigma_{u B}+\sigma_{d B}$
- renormalisation via normalisation factor r_{m} (determined by ALPHA [2101.10969], RQCD), the ratio of flavour non-singlet and singlet scalar density renormalisation parameters \rightarrow accounts for the mixing of quark flavours under renormalisation for Wilson fermions

How to access the matrix element

\rightarrow spectral decompositions

$$
C_{2 \mathrm{pt}}\left(t_{\mathrm{f}}\right)=\sum_{\vec{x}}\left\langle\mathcal{O}_{\text {snk }}\left(\vec{x}, t_{\mathrm{f}}\right) \overline{\mathcal{O}}_{\mathrm{src}}(\overrightarrow{0}, 0)\right\rangle=\sum_{n}\left|Z_{n}\right|^{2} e^{-E_{n} t_{\mathrm{f}}}
$$

where $Z_{n}=\langle\Omega| \mathcal{O}_{\text {snk }}|n\rangle$ (vacuum state Ω) is the overlap of the interpolator $\mathcal{O}_{\text {snk }}$ onto the state n

$$
\begin{aligned}
C_{3 \mathrm{pt}}\left(t_{\mathrm{f}}, t\right) & =\sum_{\vec{x}, \vec{y}}\left\langle\mathcal{O}_{\mathrm{snk}}\left(\vec{x}, t_{\mathrm{f}}\right) J(\vec{y}, t) \overline{\mathcal{O}}_{\mathrm{src}}(\overrightarrow{0}, 0)\right\rangle-\sum_{\vec{x}, \vec{y}}\langle J(\vec{y}, t)\rangle\left\langle\mathcal{O}_{\mathrm{snk}}\left(\vec{x}, t_{\mathrm{f}}\right) \overline{\mathcal{O}}_{\mathrm{src}}(\overrightarrow{0}, 0)\right\rangle \\
& =\sum_{n, n^{\prime}} Z_{n^{\prime}} Z_{n}^{*}\left\langle\mathbf{n}^{\prime}\right| \mathbf{J}|\mathbf{n}\rangle e^{-E_{n} t} e^{-E_{n^{\prime}}\left(t_{\mathrm{f}}-t\right)}
\end{aligned}
$$

t_{f} is the source-sink separation $\& t$ is the insertion time of the current

Connected and disconnected contributions

How to access the scalar matrix element

 ratio methodCombining the two spectral decompositions leads to the ratio

$$
R\left(t_{\mathrm{f}}, t\right)=\frac{C_{3 \mathrm{pt}}\left(t_{\mathrm{f}}, t\right)}{C_{2 \mathrm{pt}}\left(t_{\mathrm{f}}\right)}=g_{S}^{q}+c_{01} \mathrm{e}^{-\Delta \cdot t}+c_{10} \mathrm{e}^{-\Delta \cdot\left(t_{\mathrm{f}}-t\right)}+c_{11} \mathrm{e}^{-\Delta \cdot t_{\mathrm{f}}}+\ldots
$$

where $g_{S}^{q}=\langle B| J|B\rangle=\langle B| \bar{q} \mathbf{1} q|B\rangle$ is the ground-state matrix element of interest.

- energy gap between the ground state and the first excited state, $\Delta=E_{1}-E_{0}$
- baryon at rest, $c_{01}=c_{10} \equiv c_{0 \leftrightarrow 1}$ holds in this case, cannot resolve c_{11} so far
- c_{01}, c_{10}, c_{11} made up of matrix elements of different transitions such as $N_{1} \rightarrow N, N \rightarrow N_{1}$ and $N_{1} \rightarrow N_{1}$ for the nucleon
- N_{1} can be a multi-particle state

How to access the scalar matrix element

 ratio methodCombining the two spectral decompositions leads to the ratio

$$
R\left(t_{\mathrm{f}}, t\right)=\frac{C_{3 \mathrm{pt}}\left(t_{\mathrm{f}}, t\right)}{C_{2 \mathrm{pt}}\left(t_{\mathrm{f}}\right)}=g_{S}^{q}+c_{0 \leftrightarrow 1}\left(\mathrm{e}^{-\Delta \cdot t}+\mathrm{e}^{-\Delta \cdot\left(t_{\mathrm{f}}-t\right)}\right)+c_{1 \leq} \mathrm{e}^{-\Delta \cdot t_{\mathrm{f}}}+\ldots
$$

where $g_{S}^{q}=\langle B| J|B\rangle=\langle B| \bar{q} \mathbf{1} q|B\rangle$ is the ground-state matrix element of interest.

- energy gap between the ground state and the first excited state, $\Delta=E_{1}-E_{0}$
- baryon at rest, $c_{01}=c_{10} \equiv c_{0 \leftrightarrow 1}$ holds in this case, cannot resolve c_{11} so far
- c_{01}, c_{10}, c_{11} made up of matrix elements of different transitions such as $N_{1} \rightarrow N_{0}, N_{0} \rightarrow N_{1}$ and $N_{1} \rightarrow N_{1}$ for the nucleon
- N_{1} can be a multi-particle state

How to access the scalar matrix element

 summation methodsum over insertion times t

$$
\begin{aligned}
\sum_{t=c}^{t_{\mathrm{f}}-c} R\left(t_{\mathrm{f}}, t\right)=g_{S}^{q}\left(t_{\mathrm{f}}-2 c+1\right) & +\frac{2 c_{0 \leftrightarrow 1}}{1-\mathrm{e}^{\Delta}}\left(\mathrm{e}^{\Delta\left(c-t_{\mathrm{f}}\right)}-\mathrm{e}^{\Delta(1-c)}\right) \\
& +c_{11}\left(t_{\mathrm{f}}-2 c+1\right) \mathrm{e}^{-\Delta t_{\mathrm{f}}}+\ldots
\end{aligned}
$$

- BUT: only have access to a large number of insertion times for $R^{\text {dis }}$
- Summed ratio is approximately linear for large source-sink separations:

$$
\sum_{t=c}^{t_{\mathrm{f}}-c} R\left(t, t_{\mathrm{f}}\right) \rightarrow g_{S}^{q}\left(t_{\mathrm{f}}-2 c+1\right)+\mathrm{constant}
$$

- $c>0$ to preserve reflection positivity, we set c to 2

Numerical setup

- CLS gauge field ensembles employing the Lüscher-Weisz gluon action and the Sheikholeslami-Wohlert fermion action with $N_{\mathrm{f}}=2+1$
- $\operatorname{Tr} M=$ const
- five different lattice spacings
- High statistics: error estimation in the analysis via the Γ-method
[Wolff: arXiv:hep-lat/0306017]
[Ramos: arXiv:1809.01289]

Numerical setup

Connected three-point functions

- $m_{l}=m_{s}$ ensembles, the standard sequential source method,
e.g. one measurement at $t_{\mathrm{f}} / a=11$, two at $t_{\mathrm{f}} / a=[\mathbf{1 4}, \mathbf{1 6}]$ and four at $t_{\mathrm{f}} / a=19$
- stochastic method estimating a timeslice-to-all propagator [G. Bali et. al.: arXiv:1711.02384] \rightarrow enables us to obtain measurements for all baryons of interest as multiple source and insertion positions can be estimated simultaneously
- four different source-sink separations typically corresponding to $t_{\mathrm{f}} \approx[0.7 \mathrm{fm}, 0.9 \mathrm{fm}, 1 \mathrm{fm}, 1.2 \mathrm{fm}]$
- two measurements (forward and backward direction) for each t_{f} on every configuration

Numerical setup
 Disconnected three-point functions

- correlate a quark loop with a baryon two-point function
- stochastic estimation of loop, to reduce the additional noise:
- the truncated solver method
- the hopping parameter expansion technique [S. Bernardson et. al.: Comput. Phys. Commun. 78, 1993]
- 20 different spatial source positions on every configuration of the two-point function (different for $\boldsymbol{m}_{\boldsymbol{l}}=\boldsymbol{m}_{\boldsymbol{s}}$ ensembles e.g. N202: 26, J500: 27)
- A reasonable signal is obtained for t_{f} up to around 1.22 fm .

Simultaneous fits to connected \& disconnected ratios

- $\boldsymbol{\Xi}$ baryon at $a=0.076 \mathrm{fm}$
- $m_{\pi}=352 \mathrm{MeV}$ (S400)
- simultaneous fit:
$\rightarrow \chi^{2} / \chi_{\exp }^{2} \approx 0.6$
$\rightarrow \Delta \approx 720 \mathrm{MeV}$
- top:
$\rightarrow \bar{u} u$ current (left)
$\rightarrow \bar{s} s$ current (right)
- bottom:
$\rightarrow \bar{l} l$ current (left)
$\rightarrow \bar{s} s$ current (right)

Simultaneous fits to connected \& summed disconnected ratios

- $\boldsymbol{\Xi}$ baryon at $a=0.076 \mathrm{fm}$
- $m_{\pi}=352 \mathrm{MeV}$ (S400)
- simultaneous fit:
$\rightarrow \chi^{2} / \chi_{\exp }^{2} \approx 0.7$
$\rightarrow \Delta \approx 745 \mathrm{MeV}$
- top:
$\rightarrow \bar{u} u$ current (left)
$\rightarrow \bar{s} s$ current (right)
- bottom:
$\rightarrow \bar{l} l$ current (left)
$\rightarrow \bar{s} s$ current (right)

Fit form and fit range variation - the $\boldsymbol{\Xi}$ baryon ($a=0.076 \mathrm{fm}, m_{\pi}=352 \mathrm{MeV}$)

Fit form and fit range variation - the $\boldsymbol{\Xi}$ baryon ($a=0.076 \mathrm{fm}, m_{\pi}=352 \mathrm{MeV}$)

Preliminary results

Preliminary results

Preliminary chiral extrapolation at $\beta=3.55$

NNLO BChPT simultaneous fit to all baryons $\rightarrow \chi^{2} /$ d.o.f $=1.29$ [PLJP et. al.: arXiv: 2112.00586]

- fixed $F=0.446(7), D=0.731(12) \&$ $m_{0}=729(42) \mathrm{MeV}$ from a preliminary analysis of the nucleon mass and the axial charges in the chiral limit
- fit results for LECs:
$\bar{b}=0.00317(29), b_{F}=-0.000335(27)$,
$b_{D}=0.0000493(21)$
- $F_{0}=119.9(9.8) \mathrm{MeV}$ different from
$F_{0}=71(2) \mathrm{MeV}$, the preliminary value from a combined fit to the pion decay constant and the pion mass

Consistency with indirect determinations

- quark mass dependence of $\sigma_{\pi B}$ and $\sigma_{s B}$ via the Feynman-Hellmann theorem and a NNLO BChPT, FV and continuum limit fit of 47 ensembles (error bands) RQCD, see talk by S . Collins and poster of W. Söldner
- preliminary direct determinations from the ratio method (data points)

Summary and outlook

- progress in the determination of the pion-baryon and strange sigma terms for the octet baryons \checkmark
- used variations of summation and ratio methods to cross-check whether we control excited state contributions sufficiently also including priors
to do:
- investigate discrepancies between energy gap and $B(1) \pi(-1)$ and/or $B(0) \pi(0) \pi(0)$ via correlated fits, other fit forms
- additional ensembles
- chiral extrapolation to the physical pion mass and an investigation of cut-off and finite-volume effects

Chiral extrapolation

From Baryon Chiral Perturbation Theory (BChPT) we can derive the pion mass dependence expected from SU(3) flavour symmetry; we apply the Feynman-Hellmann theorem that relates sigma terms to derivatives of the baryon mass with respect to quark masses, resulting in

$$
\sigma_{\pi B}=M_{\pi}^{2}\left\{\frac{2}{3} \bar{b}-\delta b_{B}+\frac{m_{0}^{2}}{\left(4 \pi F_{0}\right)^{2}}\left[\frac{g_{B, \pi}}{2 M_{\pi}} f^{\prime}\left(\frac{M_{\pi}}{m_{0}}\right)+\frac{g_{B, K}}{4 M_{K}} f^{\prime}\left(\frac{M_{K}}{m_{0}}\right)+\frac{g_{B, \eta}}{6 M_{\eta}} f^{\prime}\left(\frac{M_{\eta}}{m_{0}}\right)\right]\right\}
$$

Chiral extrapolation

From Baryon Chiral Perturbation Theory (BChPT) we can derive the pion mass dependence expected from SU(3) flavour symmetry; we apply the Feynman-Hellmann theorem that relates sigma terms to derivatives of the baryon mass with respect to quark masses, resulting in

$$
\begin{aligned}
\sigma_{\pi B} & =M_{\pi}^{2}\left\{\frac{2}{3} \bar{b}-\delta b_{B}+\frac{m_{0}^{2}}{\left(4 \pi F_{0}\right)^{2}}\left[\frac{g_{B, \pi}}{2 M_{\pi}} f^{\prime}\left(\frac{M_{\pi}}{m_{0}}\right)+\frac{g_{B, K}}{4 M_{K}} f^{\prime}\left(\frac{M_{K}}{m_{0}}\right)+\frac{g_{B, \eta}}{6 M_{\eta}} f^{\prime}\left(\frac{M_{\eta}}{m_{0}}\right)\right]\right\}, \\
\sigma_{s} & =\left(2 M_{K}^{2}-M_{\pi}^{2}\right)\left\{\frac{1}{3} \bar{b}+\delta b_{B}+\frac{m_{0}^{2}}{\left(4 \pi F_{0}\right)^{2}}\left[\frac{g_{B, K}}{4 M_{K}} f^{\prime}\left(\frac{M_{K}}{m_{0}}\right)+\frac{g_{B, \eta}}{3 M_{\eta}} f^{\prime}\left(\frac{M_{\eta}}{m_{0}}\right)\right]\right\},
\end{aligned}
$$

where $\boldsymbol{m}_{\mathbf{0}}$ and $\boldsymbol{F}_{\mathbf{0}}$ are the octet baryon mass and pion decay constant in the chiral limit.
δb_{B} is a combination of two of the three BChPT next-to-leading order (NLO) low energy constants (LECs) $b_{D}, b_{F}, \bar{b}=-6 b_{0}-4 b_{D}$ and depends on the baryon,

$$
\begin{equation*}
\delta b_{N}=\frac{2}{3}\left(3 b_{F}-b_{D}\right), \quad \delta b_{\Lambda}=-\frac{4}{3} b_{D}, \quad \delta b_{\Sigma}=\frac{4}{3} b_{D}, \quad \delta b_{\Xi}=-\frac{2}{3}\left(3 b_{F}+b_{D}\right) . \tag{1}
\end{equation*}
$$

The couplings $g_{B, \pi}, g_{B, K}$ and $g_{B, \eta_{8}}$ are made up of different combinations of the leading order (LO) LECs F and D that also appear in the ChPT expressions for the axial charges.
δb_{B} is a combination of two of the three BChPT next-to-leading order (NLO) low energy constants (LECs) $b_{D}, b_{F}, \bar{b}=-6 b_{0}-4 b_{D}$ and depends on the baryon,

$$
\begin{equation*}
\delta b_{N}=\frac{2}{3}\left(3 b_{F}-b_{D}\right), \quad \delta b_{\Lambda}=-\frac{4}{3} b_{D}, \quad \delta b_{\Sigma}=\frac{4}{3} b_{D}, \quad \delta b_{\Xi}=-\frac{2}{3}\left(3 b_{F}+b_{D}\right) . \tag{1}
\end{equation*}
$$

The couplings $g_{B, \pi}, g_{B, K}$ and $g_{B, \eta_{8}}$ are made up of different combinations of the leading order (LO) LECs F and D that also appear in the ChPT expressions for the axial charges. f^{\prime} is the derivative of the loop function f that is set to $f(x)=-\pi x^{3}$ in Heavy BChPT or

$$
\begin{equation*}
f(x)=-2 x^{3}\left[\sqrt{1-\frac{x^{2}}{4}} \arccos \left(\frac{x}{2}\right)+\frac{x}{2} \ln (x)\right] \tag{2}
\end{equation*}
$$

in covariant BChPT in the extended on-mass-shell (EOMS) scheme

Preliminary results - pion sigma terms

$m_{\pi}[\mathrm{MeV}]$	$a[\mathrm{fm}]$	$\sigma_{\pi N}[\mathrm{MeV}]$	$\sigma_{\pi \Lambda}[\mathrm{MeV}]$	$\sigma_{\pi \Sigma}[\mathrm{MeV}]$	$\sigma_{\pi \Xi}[\mathrm{MeV}]$
411	0.064	$258.0(11.6)$	$202.4(10.9)$	$176.6(10.5)$	$133.9(10.3)$
410	0.039	$214.3(22.4)$	$162.3(18.3)$	$136.0(16.7)$	$97.2(14.2)$
352	0.076	$209.0(18.1)$	$157.3(10.5)$	$132.2(10.1)$	$101.1(9.3)$
345	0.064	$205.0(10.6)$	$146.3(7.5)$	$123.8(7.5)$	$87.1(6.5)$
284	0.064	$132.5(10.2)$	$96.9(5.3)$	$75.4(4.9)$	$55.0(4.1)$
220	0.086	$85.8(19.0)$	$67.7(10.7)$	$54.5(8.4)$	$40.9(6.3)$

Preliminary results - strange sigma terms

$m_{\pi}[\mathrm{MeV}]$	$a[\mathrm{fm}]$	$\sigma_{s N}[\mathrm{MeV}]$	$\sigma_{s \Lambda}[\mathrm{MeV}]$	$\sigma_{s \Sigma}[\mathrm{MeV}]$	$\sigma_{s \Xi[\mathrm{MeV}]}$
411	0.064	$26.3(5.0)$	$81.9(5.2)$	$107.6(5.6)$	$150.4(6.0)$
410	0.039	$9.4(6.0)$	$61.4(8.0)$	$87.8(9.6)$	$126.6(12.9)$
352	0.076	$41.4(9.5)$	$125.6(9.1)$	$158.0(8.8)$	$224.5(9.0)$
345	0.064	$26.2(8.0)$	$116.8(7.3)$	$155.3(7.3)$	$223.9(7.1)$
284	0.064	$19.6(10.0)$	$136.1(8.7)$	$175.6(9.2)$	$267.8(8.1)$
220	0.086	$32.6(32.2)$	$180.3(17.1)$	$232.2(12.4)$	$327.4(10.9)$

