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We present a first-principles lattice QCDþ QED calculation at physical pion mass of the leading-order
hadronic vacuum polarization contribution to the muon anomalous magnetic moment. The total
contribution of up, down, strange, and charm quarks including QED and strong isospin breaking effects
is aHVP LO

μ ¼ 715.4ð18.7Þ × 10−10. By supplementing lattice data for very short and long distances with
R-ratio data, we significantly improve the precision to aHVP LO

μ ¼ 692.5ð2.7Þ × 10−10. This is the currently
most precise determination of aHVP LO

μ .

DOI: 10.1103/PhysRevLett.121.022003

Introduction.—The anomalous magnetic moment of the
muon aμ is defined as the deviation of the Landé factor gμ
from Dirac’s relativistic quantum mechanics result,
aμ ¼ ½ðgμ − 2Þ=2&. It is one of themost precisely determined
quantities in particle physics and is currently known both
experimentally (BNL E821) [1] and from a standard model
theory calculation [2] to approximately1=2parts permillion.
Interestingly, the standard model result aSMμ deviates

from the experimental measurement aexptμ at the 3–4σ level,
depending on which determination of the leading-order
hadronic vacuum polarization aHVP LO

μ is used. One finds
[3–6]

aexptμ − aSMμ ¼ 25.0ð4.3Þð2.6Þð6.3Þ × 10−10 ½3; 4&;
31.8ð4.1Þð2.6Þð6.3Þ × 10−10 ½4; 5&;
26.8ð3.4Þð2.6Þð6.3Þ × 10−10 ½4; 6&; ð1Þ

where the quoted errors correspond to the uncertainty in
aHVP LO
μ , aSMμ − aHVP LO

μ , and aexptμ . This tension may hint at
new physics beyond the standard model of particle physics
such that a reduction of uncertainties in Eq. (1) is highly
desirable. New experiments at Fermilab (E989) [7] and
J-PARC (E34) [8] intend to decrease the experimental

uncertainty by a factor of 4. First results of the E989
experiment may be available before the end of 2018 [9]
such that a reduction in uncertainty of the aHVP LO

μ con-
tribution is of timely interest.
In the following, we perform a complete first-principles

calculation of aHVP LO
μ in lattice QCDþ QED at physical

pion mass with nondegenerate up and down quark masses
and present results for the up, down, strange, and charm
quark contributions. Our lattice calculation of the light-
quark QED correction to aHVP LO

μ is the first such calcu-
lation performed at physical pion mass. In addition, we
replace lattice data at very short and long distances by
experimental eþe− scattering data using the compilation of
Ref. [10], which allows us to produce the currently most
precise determination of aHVP LO

μ .
Computational method.—The general setup of our non-

perturbative lattice computation is described in Ref. [11].
We compute

aμ ¼ 4α2
Z

∞

0
dq2fðq2Þ½Πðq2Þ − Πðq2 ¼ 0Þ&; ð2Þ

where fðq2Þ is a known analytic function [11] and Πðq2Þ is
defined as

P
xe

iqxhJμðxÞJνð0Þi ¼ ðδμνq2 − qμqνÞΠðq2Þ
with sum over space-time coordinate x and JμðxÞ ¼
i
P

f Q fΨ̄fðxÞγμΨfðxÞ. The sum is over up, down, strange,
and charm quark flavors with QED charges Q up;charm ¼ 2=3
and Q down;strange ¼ −1=3. For convenience we do not
explicitly write the superscript HVP LO. We compute
Πðq2Þ using the kernel function of Refs. [12,13]
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Pure lattice result and dispersive result with reduced ππ dependence (window method)

Aaron Meyer (BNL → LBNL) & Mattia Bruno (BNL → CERN → Milano) joined since this 2018 paper
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Lattice QCD – Time-Moment Representation

Starting from the vector current Jµ(x) = i
∑

f Qf Ψf (x)γµΨf (x) we may
write

aHVP LO
µ =

∞∑
t=0

wtC (t)

with

C (t) =
1

3

∑
~x

∑
j=0,1,2

〈Jj(~x , t)Jj(0)〉

and wt capturing the photon and muon part of the HVP diagrams
(Bernecker-Meyer 2011).

The correlator C (t) is computed in lattice QCD+QED at physical pion
mass with non-degenerate up and down quark masses including up,
down, strange, and charm quark contributions. The missing bottom
quark contributions are computed in pQCD.
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Window method (introduced in RBC/UKQCD 2018)

We also consider a window method. Following Meyer-Bernecker 2011
and smearing over t to define the continuum limit we write

aµ = aSDµ + aWµ + aLDµ

with

aSDµ =
∑
t

C (t)wt [1−Θ(t, t0,∆)] ,

aWµ =
∑
t

C (t)wt [Θ(t, t0,∆)−Θ(t, t1,∆)] ,

aLDµ =
∑
t

C (t)wtΘ(t, t1,∆) ,

Θ(t, t ′,∆) = [1 + tanh [(t − t ′)/∆]] /2 .

All contributions are well-defined individually and can be computed from
lattice or R-ratio via C (t) = 1

12π2

∫∞
0

d(
√
s)R(s)se−

√
st with

R(s) = 3s
4πα2σ(s, e+e− → had).

aWµ has small statistical and systematic errors on lattice!
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I In last few years, we reported on our progress for the complete
result (improved bounding method, (ππ)I=1 phase shift study,
improvements for disconnected/QED/SIB diagrams), this talk
focuses entirely on progress on the Euclidean time window
(RBC/UKQCD 2018) in the isospin symmetric limit with t0 = 0.4
fm, t1 = 1.0 fm, ∆ = 0.15 fm.

I This quantity promises reduced systematic lattice uncertainties,
however, currently exhibits tensions between different lattice and
R-ratio results:

KNT 2018/Lattice
ETMC 2022
Mainz 2022

ChiQCD 2022 OV/HISQ
ChiQCD 2022 OV/DWF

Aubin et al. 2022
ETMC 2021

LM 2020
BMW 2020 v1

Aubin et al. 2019
RBC/UKQCD 2018

195 200 205 210 215
aµ, ud, conn, isospin, W-0.4-1.0-0.15 × 1010
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What will we calculate in our next update:

I aSDµ for t0 = 0.1, 0.2, 0.3, . . . , 2.5 fm

I aWµ for t0 = 0.1, 0.2, 0.3, . . . , 2.5 fm and t1 = t0 + 0.1 fm

I aWµ for all combinations of t0 = 0.3, 0.4, 0.5 fm and
t1 = 1.0, 1.3, 1.6, 1.9, 2.2, 2.5 fm

I ∆ = 0.15 fm for all of the above

Calculate in two definitions of the isospin symmetric world:

I World 1 (RBC/UKQCD 2018): mπ = 0.135 GeV,
mK = 0.4957 GeV, mΩ = 1.67225 GeV

I World 2 (BMW 2020): mπ = 0.13497 GeV, mss∗ = 0.6898
GeV, w0 = 0.17236 fm
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Our extended list of ensembles, all with mπ = 135± 5 MeV:

 3
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 4.5
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 5.5

 6

 6.5

 7

 0  0.005  0.01  0.015  0.02  0.025  0.03  0.035  0.04

m
πL

a2 / fm2

Iwasaki Nf 2+1
Iwasaki+DSDR Nf 2+1

96I

64I 48I

24D

32D

48D

RBC/UKQCD 2018
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New Mobius ensembles tuned to precision HVP (including
Nf = 2 + 1 + 1 ensembles):

id a−1 / GeV mπ / GeV mK / GeV mDs / GeV mπL Ls
1 1.73 0.210 0.530 – 3.8 24
3 1.73 0.210 0.600 – 3.8 24
4 1.73 0.280 0.530 – 3.8 24
2 1.73 0.280 0.530 – 3.8 32
A 1.73 0.280 0.530 – 3.8 8
5 1.73 0.280 0.530 1.9 3.8 24
7 1.73 0.280 0.530 1.3 3.8 24
8 2.359 0.280 0.530 1.9 3.8 12
B 1.73 0.140 0.500 – 2.5 24
C 1.73 0.140 0.500 – 5.0 24
D 1.73 0.280 0.500 – 5.0 24
E 3.5 0.280 0.530 – 3.8 12

48I 1.73 0.140 0.500 – 3.8 24
64I 2.359 0.140 0.500 – 3.8 12
96I 2.7 0.135 0.500 – 4.8 12

New ensembles and HVP running on Booster (Germany), Summit & Perlmutter (US); Just now data complete for
next update
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Overview of improvements:

I 4x statistics on 48I and 64I

I Add third, finer lattice spacing (a−1 = 2.7 GeV) at physical
pion mass; fourth at a−1 = 3.5 GeV is in progress

I Add local-conserved correlators in addition to local-local
correlators (check for consistent continuum limit)

I Explicit calculation of parametric derivatives at physical point
(master field)

I Concluding study of missing charm determinant (2+1 →
2+1+1) and mres effects from first principles

I 5d (space-time+Markov) master-field statistical error analysis

8 / 22



Ratio of local-local to local-conserved correlators (here 96I):

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20

LC / LL

Separate local-local (LL) and Local-conserved (LC) continuum limits
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The Nf = 2 + 1 and Nf = 2 + 1 + 1 ensembles are matched to the same
pion and kaon masses and the Wilson-Flowed energy density at
long-dinstance. Clear signal of charm effects in energy density at shorter
distances.

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0  0.5  1  1.5  2  2.5  3

t

t E(t), Nf=2+1
t E(t), Nf=2+1+1, mDs

=1.9 GeV
t E(t), Nf=2+1+1, mDs

=1.3 GeV

Then measure the sea charm effects to the HVP (in particular for
short-distance windows)
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Blinding

I 2 analysis groups for ensemble parameters (not blinded)

I 5 analysis groups for vector-vector correlators (blinded, to
avoid bias towards other lattice/R-ratio results)

I Blinded vector correlator Cb(t) relates to true correlator C0(t)
by

Cb(t) = (b0 + b1a
2 + b2a

4)C0(t) (1)

with appropriate random b0, b1, b2, different for each analysis
group. This prevents complete unblinding based on previously
shared data on coarser ensembles.

Still blinded, following is result of my analysis groups for
ensemble+vector-vector correlators, still preliminary
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Ensemble parameters:
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Lattice cutoff a−1/GeV in isospin symmetric worlds:
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Fit of relative difference

Isospin limit 1: mπ = 0.135 GeV, mK = 0.4957 GeV, mΩ = 1.67225 GeV
Isospin limit 2: mπ = 0.13497 GeV, mss∗ = 0.6898 GeV, w0 = 0.17236 fm
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Improved continuum extrapolation:Improved continuum extrapolation:

 0  0.002  0.004  0.006  0.008  0.01  0.012  0.014
a2 / fm2

phat ll
phat lc

p ll
p lc

 0  0.002  0.004  0.006  0.008  0.01  0.012  0.014
a2 / fm2

phat ll
phat lc

p ll
p lc

Statistical error in continuum 0.3% (2018 paper had 0.7%)
Left side: m⇡ = 0.135 GeV, mK = 0.4957 GeV, m⌦ = 1.67225 GeV
Right side: m⇡ = 0.13497 GeV, mss⇤ = 0.6898 GeV, w0 = 0.17236 fm
ll: local-local vector correlator
lc: local-conserved vector correlator
p: use continuum momentum in construction of wt
phat: use lattice momentum p̂ = 2 sin(p/2) in construction of wt
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Relative unblinding in progress, here for standard window:

 0.988

 0.99

 0.992

 0.994

 0.996

 0.998

 1

 1.002

 1.004

 1.006

 1.008

 1.01

R C I N U

t0 = 0.4 fm, t1 = 1.0 fm, ∆ = 0.15fm

Inner error bar is statistical, outer error bar is statistical and systematic added in quadrature.
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Short-distance windows (1/2)
Short-distance correlator is insensitive to quark mass

0

 0  2  4  6  8  10  12  14  16

t/a

C(t,mπ = 140 MeV) t3

C(t,mπ = 280 MeV) t3

(C(t,mπ = 140 MeV) - C(t,mπ = 280 MeV)) t3

Therefore we generate pairs of ensembles with mπ and 2mπ to
compute

aµ(mπ) = aµ(mπ)− aµ(2mπ)︸ ︷︷ ︸
δaµ

+aµ(2mπ) . (2)

This allows the costly term δaµ to be calculated at coarser lattice
spacings compared to aµ(2mπ). We proposed this in Snowmass
2021 LOI.
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Short-distance windows (2/2)
SD windows can also be computed in perturbative QCD at 5 loops
(O(α4

s ), Chetyrkin-Maier 2010).
Stability plot of

aSDµ (t0 = 0.4fm) = aSD,pQCD
µ (t0 = tp) + aWµ (t0 = tp, t1 = 0.4fm) (3)

0

-0.1 -0.05  0  0.05  0.1  0.15  0.2  0.25  0.3
tp / fm

O(α4) QCD PT
Lattice

Sum
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Conclusions and Outlook

I Still blinded, current target for unblinding is end of August

I 4x statistics on 48I and 64I

I Add third, finer lattice spacing (a−1 = 2.7 GeV) at physical pion
mass

I Add local-conserved correlators in addition to local-local correlators
(check for consistent continuum limit)

I Explicit calculation of parametric derivatives at physical point
(master field)

I Concluding study of missing charm determinant (2+1 → 2+1+1)
and mres effects from first principles

I 5d (space-time+Markov) master-field statistical error analysis

I For complete HVP analysis data set almost complete as well (still
finishing distillation data on 96I, a lot of new data also on
QCD+QED, see Mattia Bruno’s talk)
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Backup
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Master-field calculation of gradients

For a local observable

O =
1

V

∑
y

Oy (4)

we can define the truncated master-field covariance

CovR(O,A) ≡ 1

V

∑
x ,y ,|y |≤R

(
〈OxAx+y 〉β − 〈Ox〉β〈Ax+y 〉β

)
(5)

such that, e.g., the β-derivative of O is given by

〈O〉β+ε − 〈O〉β
ε

= 6 lim
R→∞

CovR(O,A) . (6)

In practice use exponential approach to plateau for R →∞.
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We isolate the dependence on sea-quark mass m of an observable
O by studying

〈O〉m ≡
∫

det(D(m))OP∫
det(D(m))P

(7)

with Dirac matrix D(m) and residual weight P. Can show that

〈O〉m+ε − 〈O〉m
ε

= Cov(O,Tr[D−1
4d (m)]) +O(ε) . (8)

Finally, for DWF an additional flavor enters as

det(D(m)D−1(1)) (9)

such that for m = 1 the factor is trivial and we can view adding an
additional flavor as changing the sea-quark mass down from m = 1
to the target value.
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Example for wilson-flowed energy density (96I, t0 ≈ 2)

 0  5  10  15  20  25  30

R/a

Cov of Tr[D(0.8)-14d] and wilson-flowed energy density

 0  5  10  15  20  25  30

R/a

β derivative of wilson-flowed energy density

Computed in similar way also derivatives of, e.g., VV and PP
correlators.

22 / 22


