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Transversity parton distribution function

▪ Parton distribution functions (PDFs) [1] are crucial inputs for interpreting
experimental data collected at high-energy colliders such as the EIC

▪ Transversity PDF describes correlation between the transverse polarization of the
nucleon and its quark constituents → important for describing the spin structure of
the nucleon [2]

▪ Less constrained from experiments compared to helicity or unpolarized PDF because it is chiral odd → coupling to other
chiral-odd quantities to be measured in experiments [3-5] (spin-asymmetries in e.g. SIDIS or Drell-Yan [6,7])

▪ Recent theoretical developments [8-13] made lattice QCD calculation of 𝑥-dependence of transversity PDF [14-16] 
possible → several calculations using LaMET [9-10,17] or the pseudo-PDF [13] approach

▪ Purpose of this work: reliable prediction for isovector quark transversity PDF of the proton (using LaMET) 
that uses proper renormalization and is valid in continuum and physical mass limit
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▪ Transversity parton distribution function

▪ CLS ensembles

▪ Extraction of quasi-LF correlation in LaMET

▪ Renormalization in hybrid scheme

▪ Fourier-transformation to momentum space

▪ Perturbative matching

▪ Continuum, chiral and infinite momentum extrapolation
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Ensemble 𝒂 (fm) 𝑳𝟑 × 𝑻 𝒎𝝅 (MeV) 𝒎𝝅𝑳 𝑷𝒛 (GeV)

X650 0.098 483 × 48 338 8.1 0, 1.84, 2.37, 2.63

H102 0.085 323 × 96 354 4.9 0, 1.82, 2.27, 2.73

H105 323 × 96 281 3.9 0, 1.82

C101 483 × 96 222 4.6 0, 1.82

N203 0.064 483 × 128 348 5.4 0, 1.62, 2.02, 2.43, 2.83, 3.24

N302 0.049 483 × 128 348 4.2 0, 2.09, 2.62

Table 1: Details of the simulation setup, including lattice spacing 𝑎, lattice size 𝐿3 × 𝑇, and pion masses [19].
Proton momenta 𝑃𝑧 used in lattice determination of quasi-transversity PDF.

▪ Lüscher-Weisz gauge action with tree-level coefficients

▪ 𝑁𝑓 = 2 + 1

▪ Fermions: 𝑂(𝑎)-improved Wilson Dirac operator

▪ Ensembles with various lattice spacings and pion masses → continuum and chiral extrapolation

18: M. Bruno et al., 1411.3982
19: G. S. Bali et al., in preparation

Coordinated Lattice Simulation ensembles [18]

▪ Multiple nucleon momenta 𝑃𝑧 on each ensemble → infinite momentum extrapolation
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𝛿𝑞 𝑥, 𝜇 = ∫
𝑑 𝜉−

4 𝜋
𝑒𝑖𝑥𝑃

+𝜉− 𝑃𝑆⊥ ത𝜓 0 𝛾+𝛾⊥𝛾5𝑊 0, 𝜉− 𝜓 𝜉− 𝑃𝑆⊥

𝑊 0, 𝜉− : gauge link along the light-cone direction

𝛿 ෤𝑞 𝑥, 𝑃𝑧, 1/𝑎 = 𝑁∫
𝑑 𝑧

4 𝜋
𝑒𝑖𝑥𝑧𝑃𝑧 ෨ℎ 𝑧, 𝑃𝑧 , 1/𝑎

෩𝒉 𝒛, 𝑷𝒛, 𝟏/𝒂 = 𝑷𝑺⊥ ഥ𝝍 𝒛 𝜸𝒕𝜸⊥𝜸𝟓𝑾 𝒛, 𝟎 𝝍 𝟎 𝑷𝑺⊥ : equal-time / quasi-light-front correlation

Leading-twist quark transversity PDF of the proton [2]:

|𝑃𝑆⊥⟩: transversely polarized proton (polarization 𝑆⊥) with momentum 𝑃 along 𝑧 direction

𝑥: momentum fraction carried by the quark, 𝜇: renormalization scale in the MS scheme

𝜉± = (𝜉𝑡 ± 𝜉𝑧)/ 2: light-cone coordinates

Transversity quasi-PDF:

→ flavor combination 𝛿 ෤𝑢 𝑥 − 𝛿 ሚ𝑑 𝑥 to eliminate disconnected contributions

Extraction of quasi-LF correlation in LaMET

2: R. L. Jaffe and X.-D. Ji, Phys. Rev. Lett. 67, 552 (1991)

𝜆 = 𝑧𝑃𝑧: quasi light-cone distance



Figure 1: Schematic figure of three-point function.
𝑡sep: source-sink separation, 𝑡: insertion time.

𝑡
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Lattice calculation of two-point and three-point functions

▪ momentum smearing [22] to improve signal-to-noise ratio of
calculations with high-momentum nucleon states

▪ calculate 𝐶2pt 𝑃𝑧, 𝑡sep and 𝐶Γ
3pt

𝑃𝑧, 𝑡, 𝑡sep on the lattice to

extract ground state matrix element ෩𝒉 𝒛, 𝑷𝒛, 𝟏/𝒂

𝑝(𝑃𝑧) 𝑝(𝑃𝑧)▪ LQCD calculations performed using the Chroma software suite
[20] and IDFLS solver [21]
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20: R. G. Edwards et al., hep-lat/0409003
21: M. Lüscher, 0710.5417
22: G. S. Bali et al., 1602.05525

Extraction of quasi-LF correlation in LaMET
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▪ Decomposition of correlation functions

𝐶2pt 𝑃𝑧, 𝑡sep = |𝐴0|
2𝑒−𝐸0𝑡sep + |𝐴1|

2𝑒−𝐸1𝑡sep + …

𝐶Γ
3pt

𝑃𝑧, 𝑡, 𝑡sep = |𝐴0|
2 𝟎|𝑶𝚪|𝟎 𝑒−𝐸0𝑡sep

+|𝐴1|
2 1 𝑂Γ 1 𝑒−𝐸1𝑡sep

+𝐴1𝐴0
∗ 1 𝑂Γ 0 𝑒−𝐸1(𝑡sep−𝑡)𝑒−𝐸0𝑡

+𝐴0𝐴1
∗ 0 𝑂Γ 1 𝑒−𝐸0(𝑡sep−𝑡)𝑒−𝐸1𝑡 + …

𝟎 𝑶𝚪 𝟎 = ෩𝒉 𝒛, 𝑷𝒛, 𝟏/𝒂 : ground state matrix element

Ensemble 𝑵𝐜𝐨𝐧𝐟. 𝒕𝐬𝐞𝐩 / 𝒂 𝑵𝐦𝐞𝐚𝐬. / 𝑵𝐜𝐨𝐧𝐟.

X650 1000 7, 8, 9 1

H102 500 7, 8, 9 2

H105 500 7, 8, 9 2

C101 500 6, 7, 8, 9 2

N203 500 10, 11, 12,
13,

14, 15

4
8

16

N302 500 10, 12,
14,

16, 18

4
8

16

Table 2: Details of the correlator calculation, including number of
configurations 𝑁conf., source-sink separation 𝑡sep and number of

measurements 𝑁meas. per configuration.

▪ Calculation of multiple source-sink separations for each ensemble

Extraction of quasi-LF correlation in LaMET
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Extraction of ground state matrix elements from lattice-calculated correlators by two-state combined fit: 

𝐶2pt 𝑡sep ≈ 𝑐4𝑒
−𝐸0𝑡sep(1 + 𝑐5𝑒

−Δ𝐸𝑡sep)

𝑅Γ 𝑧, 𝑡, 𝑡sep ≡
𝐶3pt(𝑧, 𝑡, 𝑡sep)

𝐶2pt(𝑡sep)
≈
𝒄𝟎 𝒛 + 𝑐1 𝑧 𝑒−Δ𝐸 𝑡sep−𝑡 + 𝑒−Δ𝐸𝑡 + 𝑐3 𝑧 𝑒−Δ𝐸𝑡

1 + 𝑐5𝑒
−Δ𝐸𝑡sep

▪ 𝒄𝟎 𝒛 = 𝟎 𝑶𝜞 𝟎 = ෩𝒉 𝒛, 𝑷𝒛, 𝟏/𝒂 : ground state matrix element

▪ Results from fits with different sets of 𝑡sep indicate that excited-state contamination is under control

▪ Neglected contributions beyond ground state and first excited state

Extraction of quasi-LF correlation in LaMET
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Figure 2: Demonstration of fitting the two-point correlation function 𝐶2pt 𝑡sep and the ratio 𝑅Γ 𝑧, 𝑡, 𝑡sep for H102. The data in the 𝑅Γ plot are slightly shifted in ±𝑡

direction for clarity. 𝑅Γ is only shown for 0 ≤ 𝑧 ≤ 9 for demonstration.

▪ Good agreement between data and fitting

Extraction of quasi-LF correlation in LaMET

(𝑎 = 0.085 fm, 𝑚𝜋 = 354 MeV)
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− 𝑧 = 𝑧𝑠 = 0.3 fm separates short and long distances

෨ℎ𝑅 𝑧, 𝑃𝑧 =
෨ℎ 𝑧, 𝑃𝑧, 1/𝑎

෨ℎ 𝑧, 𝑃𝑧 = 0, 1/𝑎
𝜃 𝑧𝑠 − 𝑧 + 𝜂𝑠

෨ℎ 𝑧, 𝑃𝑧, 1/𝑎

𝑍𝑅 𝑧, 1/𝑎
𝜃( 𝑧 − 𝑧𝑠)

▪ Bare quasi-LF correlation contains linear and logarithmic UV divergences → need to be removed by non-perturbative
renormalization

▪ Various approaches suggested and implemented in literature [23-28], but: renormalization distorts IR behaviour [29]

→ Hybrid scheme [29]: quasi-LF correlations at short and long distances renormalized separately

− short distances: dividing by matrix element in rest frame (as in ratio scheme [26]) 

− long distances: self-renormalization [30]: 𝑍𝑅 𝑧, 1/𝑎 obtained by fitting bare matrix elements at 
multiple lattice spacings to a perturbative-QCD-dictated functional form

− 𝜂𝑠 = 𝑍𝑅(𝑧𝑠, 1/𝑎)/෨ℎ(𝑧𝑠, 𝑃𝑧 = 0, 1/𝑎): ensures continuity of renormalized quasi-LF correlation at 𝑧 = 𝑧𝑠

23: J.-W. Chen et al., 1609.08102
24: T. Izubuchi et al., 1801.03917
25: C. Alexandrou et al., 1706.00265
26: A. Radyushkin, 1801.02427

27: V. M. Braun et al., 1810.00048
28: Z.-Y. Li et al., 1809.01836
29: X. Ji et al., 2008.03886
30: Y.-K. Huo et al., 2103.02965

Renormalization in hybrid scheme
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Figure 3: Real (top) and imaginary (bottom) parts of the renormalized matrix elements across different ensembles as functions of 𝜆 = 𝑧𝑃𝑧 at scale 𝜇 = 2 GeV.

▪ Renormalized quasi-LF correlation for ensembles with nearly same 𝑚𝜋 (≈ 340 − 350 MeV)

▪ For all ensembles: Good convergence as 𝑃𝑧 increases

Renormalization in hybrid scheme
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▪ Renormalized quasi-LF correlations on ensembles with
same lattice spacing (𝑎 = 0.085 fm), but different pion
masses

Figure 4: Real (top) and imaginary (bottom) parts of the
renormalized matrix elements across different ensembles with
𝑎 = 0.085 fm and 𝑃𝑧 = 1.82 GeV.

▪ Dependence on 𝑚𝜋 only very mild

Renormalization in hybrid scheme
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→ Physics-based extrapolation form [29] at large 
quasi-LF distance

𝐻𝑚
R 𝑧, 𝑃𝑧 =

𝑐1
𝑖𝜆 𝑎 + 𝑒−𝑖𝜆

𝑐2
−𝑖𝜆 𝑏 𝑒−𝜆/𝜆0

− 𝑒−𝜆/𝜆0: correlation function has finite correlation length 𝜆0 at 
finite momentum

▪ Quasi-PDF defined as Fourier transform of the quasi-LF correlation

29: X. Ji et al., 2008.03886
17: X. Ji et al., 2004.03543

▪ FT to momentum space requires quasi-LF correlation at all distances 𝑧, but uncertainty grows at large 𝑧

▪ Brute-force truncation and FT would lead to unphysical oscillations in momentum space distribution

− [… ]: power-law behaviour of transversity PDF in endpoint region

Fourier-transformation to momentum space

▪ Details of extrapolation mainly affect final results in region where
LaMET expansion breaks down [17] Figure 5: Renormalized matrix elements ෨ℎR(𝜆, 𝑃𝑧) for N203 for

one small (left) and large (right) momentum with extrapolation
to large 𝜆. The extrapolation reproduces the data in moderate 𝜆
region and yields smooth correlations in large 𝜆 region.
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▪ Extraction of transversity PDF by perturbative matching (similar calculations in [31, 32])

𝛿 ෤𝑞 𝑥, 𝑃𝑧 = න
−1

1 𝑑𝑦

𝑦
𝐶

𝑥

𝑦
,
𝜇

𝑦𝑃𝑧
𝛿𝑞 𝑦, 𝜇 + 𝑂

Λ𝑄𝐶𝐷
2

𝑦𝑃𝑧
2 ,

Λ𝑄𝐶𝐷
2

1 − 𝑦 𝑃𝑧
2

▪ Factorization formula in momentum space:

▪ One-loop matching kernel in momentum space in hybrid scheme

𝐶ℎ 𝑥,
𝜇

𝑝𝑧
, 𝜆𝑠 = 𝐶𝑟 𝑥,

𝜇

𝑝𝑧
+ 𝛿𝐶 𝑥,

𝜇

𝑝𝑧
, 𝜆𝑠 = 𝐶𝑟 𝑥,

𝜇

𝑝𝑧
+
𝛼𝑠𝐶𝐹
𝜋

−
1

1 − 𝑥
+
2Si 1 − 𝑥 𝜆𝑠

𝜋 1 − 𝑥
+

▪ Matching kernel in ratio scheme:

𝐶𝑟 𝑥,
𝜇

𝑝𝑧
= 𝛿 1 − 𝑥 +

𝛼𝑠𝐶𝐹
2𝜋

[ 2𝑥
1−𝑥

ln 𝑥
𝑥−1

−
2

1−𝑥
]+ 𝑥 > 1

2𝑥
1−𝑥 ln4𝑝𝑧

2

𝜇2
+ ln𝑥 1−𝑥 + 2

+
0 < 𝑥 < 1

[− 2𝑥
1−𝑥 ln

𝑥
𝑥−1 +

2
1−𝑥]+ 𝑥 < 0

Perturbative matching

31: V. M. Braun et al., 2108.03065 
32: C.-Y. Chou and J.-W. Chen, 2204.08343
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𝛿𝑞 𝑥, 𝑃𝑧, 𝑎,𝑚𝜋 = 𝛿𝑞0 𝑥 + 𝑎2𝑓 𝑥 +
𝑔 𝑥, 𝑎

𝑃𝑧
2 1 + 𝑚𝜋

2𝑘 𝑥

− 𝛿𝑞 𝑥 ≡ 𝛿𝑞0(𝑥) 1 + 𝑚𝜋,phys
2 𝑘 𝑥 : desired transversity PDF

− 𝑚𝜋-extrapolation follows from the form used in [33]

33: G. S. Bali et al., 1903.12590

▪ Extracted transversity PDF still contains lattice artifacts

▪ Calculations not done at infinite momentum

▪ Calculations not done at 𝑚𝜋 = 𝑚𝜋,phys

simultanous extrapolation to
continuum, infinite momentum
and physical point

▪ Functional form including 𝒂,𝑷𝒛 and 𝒎𝝅:

− 𝑎2𝑓 𝑥 term: leading discretization error (coefficient of terms like 𝑎2𝑃𝑧
2 close to zero)

−
𝑔 𝑥,𝑎

𝑃𝑧
2 term: leading higher-twist contribution

Continuum, chiral and infinite momentum extrapolation
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▪ Final result for isovector quark transversity PDF 
(normalized to 𝑔𝑇) lies between global analyses
JAM20 [34] and JAM22 [7]

34: J. Cammarota et al., 2002.08384
7:   L. Gamberg et al., 2205.00999

▪ Error band includes statistic and 
systematic uncertainties

Continuum, chiral and infinite momentum extrapolation

Figure 6: Final proton isovector transversity PDF at renormalization scale 𝜇 = 2 GeV,
extrapolated to continuum, physical and infinite momentum limit, compared with JAM20
[34] and JAM22 [7] global fits.

▪ Grey bands: endpoint regions ( 𝑥 ≤ 0.1, 𝑥 ≥ 0.9) 
where LaMET predictions are not reliable

− Renormalization scale dependence
− Choice of 𝑧𝑠
− Extrapolation to large 𝜆
− Combined extrapolation

▪ Result consistent with zero at negative 𝑥

▪ For previous lattice QCD calculations of
transversity PDF see [14-16]

16:   C. Egerer et al., 2111.0180814: C. Alexandrou et al., 1807.00232
15: Y.-S. Liu et al., 1810.05043
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▪ Calculation of isovector quark transversity PDF with LaMET at various 𝑎,𝑚𝜋, 𝑃𝑧 with extrapolation to
continuum, physical mass and infinite momentum limit

▪ Multi-state analysis with multiple source-sink separations to remove excited-state contamination

▪ State-of-the-art renormalization (hybrid scheme) and matching

▪ Reliable lattice prediction of the isovector quark transversity PDF in the proton → will offer guidance to
relevant measurements at JLab and EIC

▪ Large proton momenta 𝑃𝑧 very important for calculations with LaMET → fine lattices crucial

▪ Possibly analyze even finer lattices, e.g. J501 (𝑎 ≈ 0.039 fm)

Summary and Outlook

Summary:

Outlook:
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Backup slides: Dispersion relation

Figure 7: The dispersion relation of CLS ensembles at four different lattice
spacings used in this work. In the upper subfigure we compare ensembles with
different lattice spacing but roughly the same 𝜋 mass: 𝑚𝜋 ≈ 340 MeV, while
in the lower subfigure we compare ensembles with the same lattice spacing
𝑎 ≈ 0.085 fm but different 𝑚𝜋.𝑃𝑧 [GeV]

▪ Effective mass extracted by fitting the two-point 
correlation function

▪ Fit effective mass to

𝐸 𝑃𝑧 = 𝑚2 + 𝑃𝑧
2 + 𝑐2𝑎2𝑃𝑧

4

− quadratic term in 𝑎 included to
parametrize the discretization error

▪ Extracted effective masses are consistent with
dispersion relation within 3𝜎 error

B1
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Backup slides: Renormalization

Figure 8: Bare matrix elements in the rest frame. Their imaginary part is
consistent with zero.

Short distances: 𝒛 < 𝒛𝒔

෨ℎ𝑅 𝑧, 𝑃𝑧 =
෨ℎ 𝑧, 𝑃𝑧, 1/𝑎

෨ℎ 𝑧, 𝑃𝑧 = 0, 1/𝑎

▪ Renormalization factor: inverse of the
nucleon matrix element in the rest frame

B2
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Backup slides: Renormalization

Long distances: 𝒛 > 𝒛𝒔

▪ 𝜂𝑠 = 𝑍𝑅(𝑧𝑠, 1/𝑎)/෨ℎ(𝑧𝑠, 𝑃𝑧 = 0, 1/𝑎): similar to a scheme conversion factor, guarantees continuity of the
renormalized matrix element at 𝑧 = 𝑧𝑠

෨ℎ𝑅 𝑧, 𝑃𝑧 = 𝜂𝑠
෨ℎ 𝑧, 𝑃𝑧, 1/𝑎

𝑍𝑅 𝑧, 1/𝑎

▪ Self-renormalization factor 𝑍𝑅 𝑧, 1/𝑎 is obtained by fitting the bare matrix elements in the rest frame to
the following perturbative-QCD-dictated functional form [30]

ln෨ℎ 𝑧, 1/𝑎 =
𝑘𝑧

𝑎 ln(𝑎ΛQCD)
+ 𝒈 𝒛 + 𝑓 𝑧 𝑎2 +

3𝐶𝐹
11 − 2𝑁𝑓/3

ln
ln[1/(𝑎ΛQCD)]

ln[𝜇/ΛQCD]
+ ln 1 +

𝑑

ln 𝑎ΛQCD

30: Y.-K. Huo et al., 2103.02965

−
𝑘𝑧

𝑎 ln(𝑎ΛQCD)
: linear divergence

− 𝑔 𝑧 = 𝒈𝟎 𝒛 + 𝑚0𝑧: nonperturbative physics 𝑔0 𝑧 we are interested in + renormalon ambiguity term

− 𝑓 𝑧 𝑎2: discretization effects

− Last two terms come from resummation of leading an sub-leading logarithmic divergences

(B1)

− Treat 𝑑 and ΛQCD as fitting parameters to partially account for higher-order pert. effects and remaining lattice artifacts

B3
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Backup slides: Renormalization

Figure 9: Fit of the bare nucleon transversity matrix elements in the rest
frame. Colorful points represent the bare matrix elements from lattice
calculation and blue bands are fitted values using eq. (B1). The paramters 𝑘
and 𝜆QCD are fitted to be 𝑘 = 4.356 GeV−1fm−1 and 𝜆QCD = 0.1 GeV.

B4
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Backup slides: Renormalization

▪ Renormalization factor given by

𝑍𝑅 𝑧, 1/𝑎 =
෨ℎ(𝑧, 1/𝑎)

෨ℎ𝑅 (𝑧)

෨ℎ𝑅 𝑧 = exp 𝑔 𝑧 −𝑚0𝑧 = exp[𝑔0(𝑧)]

▪ ෨ℎ𝑅 𝑧 required to be equal to the continuum
perturbative MS result at short distances

𝑍MS 𝑧 = 1 +
𝛼𝑠𝐶𝐹
2𝜋

(2 ln 𝑧2𝜇2𝑒2𝛾𝐸/4 + 2)
(one-loop)

Figure 10: The 𝑚0 fit. Red points are 𝑔 𝑧 − ln 𝑍MS(𝑧) at small-𝑧 region. The blue
band is the fit to 𝑚0𝑧 + 𝑏, where we tune the parameter 𝑑 to minimize |𝑏|. The
fitting gives 𝑚0 = 0.57 fm−1, 𝑑 = −0.663 and 𝑏 = 0.00185.

B5

(one-loop)
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Backup slides: Renormalization

Figure 11: The renormalized matrix element ෨ℎ(𝑧, 𝑃𝑧 = 0, 𝑎)/𝑍𝑅(𝑧, 𝑎, 𝜇) (colorful
points) and the fitting renormalized matrix element exp[𝑔 𝑧 − 𝑚0𝑧] (blue band)
are entirely coincident. We have slightly shifted X650, H102 and N302 data to ±𝑥
direction for clarity. The renormalized matrix elements overlap nicely with the
perturbative one-loop result 𝑍MS(𝑧) at short distances, except at very small 𝑧
where higher-order corrections get important.

Comparison of renormalized matrix element
with perturbative one-loop 𝐌𝐒 result

▪ Agreement very good at short distances
(except at very small 𝑧 where higher-order 
corrections get important)

▪ 𝑧 = 𝑧𝑠 = 0.3 fm chosen in analysis

▪ 𝑧𝑠 varied down to 0.18 fm (shaded region) to
account for systematic uncertainties related to
the choice of 𝑧𝑠
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Backup slides: Large 𝜆 extrapolation

Figure 5: Renormalized matrix elements ෨ℎR(𝜆, 𝑃𝑧) for N203 for one small (left) and large (right)
momentum with extrapolation to large 𝜆. The extrapolation reproduces the data in moderate 𝜆
region and yields smooth correlations in large 𝜆 region.

▪ 𝜆 ≥ 7 chosen for the extrapolation

▪ 𝜆 varied down to 𝜆 ≥ 4 to estimate the
systematic error from extrapolation
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B8

Coordinate space

▪ Calculation done in Feynman gauge

▪ Consider transversity quasi-LF correlation with on-shell and massless external quark state

෨ℎ 𝑧, 𝑝𝑧, 𝜇 = ⟨𝑝| ത𝜓 𝑧 𝛾𝑡𝛾𝑥𝛾5𝑊[𝑧, 0]𝜓(0)|𝑝⟩

− 𝑝𝜇 = (𝑝0, 0,0, 𝑝𝑧): quark momentum

▪ Factorization in coordinate space:

෨ℎ 𝑧, 𝜆 = 𝑧𝑝𝑧, 𝜇 = න
0

1

𝑑𝛼𝑍 𝛼, 𝑧2, 𝜇2 ℎ 𝛼𝜆, 𝜇 + h. t.

− h.t.: higher-twist terms

− Matching kernel in MS scheme at one-loop level:

𝑍 𝛼, 𝑧2𝜇2 = 𝛿 1 − 𝛼 +
𝛼𝑠𝐶𝐹
2𝜋

−
2𝛼

1 − 𝛼
+

ln
𝑧2𝜇2𝑒2𝛾𝐸

4
+ 1 −

4 ln 1 − 𝛼

1 − 𝛼
+

𝜃 𝛼 𝜃 1 − 𝛼

+
𝛼𝑠𝐶𝐹
2𝜋

2 ln
𝑧2𝜇2𝑒2𝛾𝐸

4
+ 2 𝛿(1 − 𝛼)
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B9

▪ Begin with ratio scheme to obtain one-loop matching in the hybrid scheme

▪ Quasi-LF correlation at zero momentum and short distance given by

𝑍0 𝑧, 𝜇 = 1 +
𝛼𝑆𝐶𝐹
2𝜋

2 ln
𝑧2𝜇2𝑒2𝛾𝐸

4
+ 2

▪ Thus, one-loop matching in ratio scheme:

𝑍𝑟 𝛼, 𝑧2𝜇2 = 𝛿 1 − 𝛼 +
𝛼𝑠𝐶𝐹
2𝜋

−
2𝛼

1 − 𝛼
+

ln
𝑧2𝜇2𝑒2𝛾𝐸

4
+ 1 −

4 ln 1 − 𝛼

1 − 𝛼
+

𝜃 𝛼 𝜃 1 − 𝛼

▪ From this, obtain one-loop matching kernel in hybrid scheme:

𝑍ℎ 𝛼, 𝑧2𝜇2,
𝑧2

𝑧𝑠
2 = 𝑍𝑟 𝛼, 𝑧2𝜇2 +

𝛼𝑠𝐶𝐹
𝜋

ln
𝑧2

𝑧𝑠
2 𝛿 1 − 𝛼 𝜃( 𝑧 − 𝑧𝑠)

− Reduces to ratio scheme matching when 𝑧𝑠 → ∞
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Momentum space

B10

▪ Transversity quasi-PDF defined as a Fourier transform of the quasi-LF correlation

𝛿 ෤𝑞 𝑥,
𝜇

𝑝𝑧
= න

−∞

∞ 𝑑𝜆

2𝜋
𝑒𝑖𝑥𝜆 ෨ℎ 𝜆,

𝜇2𝜆2

𝑝𝑧
2

▪ Thus, matching kernel in momentum space related to that in coordinate space by double FT:

𝐶 𝑥,
𝜇

𝑝𝑧
= න

−∞

∞ 𝑑𝜆

2𝜋
𝑒𝑖𝑥𝜆න

−1

1

𝑑𝛼𝑒−𝑖𝛼𝜆𝑍(𝛼,
𝜇2𝜆2

𝑝𝑧
2 )

▪ Using this and the factorization formula, gives the result in ratio scheme

and hybrid scheme

𝐶ℎ 𝑥,
𝜇

𝑝𝑧
, 𝜆𝑠 = 𝐶𝑟 𝑥,

𝜇

𝑝𝑧
+ 𝛿𝐶 𝑥,

𝜇

𝑝𝑧
, 𝜆𝑠 = 𝐶𝑟 𝑥,

𝜇

𝑝𝑧
+
𝛼𝑠𝐶𝐹
𝜋

−
1

1 − 𝑥
+
2Si 1 − 𝑥 𝜆𝑠

𝜋 1 − 𝑥
+

𝐶𝑟 𝑥,
𝜇

𝑝𝑧
= 𝛿 1 − 𝑥 +

𝛼𝑠𝐶𝐹
2𝜋

[ 2𝑥1−𝑥 ln
𝑥

𝑥−1 −
2

1−𝑥]+ 𝑥 > 1

2𝑥
1−𝑥

ln4𝑝𝑧
2

𝜇2
+ ln𝑥 1−𝑥 + 2

+
0 < 𝑥 < 1

[− 2𝑥
1−𝑥 ln

𝑥
𝑥−1 +

2
1−𝑥]+ 𝑥 < 0
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The pion mass dependence of the extracted PDF on different ensembles with the
same lattice spacing 𝑎 = 0.085 fm and nucleon momentum 𝑃𝑧 = 1.82 GeV. Only
statistical errors.

B11

▪ Pion mass dependence after NLO matching

▪ Only very small pion mass dependence
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The momentum dependence of the extracted PDF on H102. Only statistical errors.
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The 𝑎-dependence of the extracted PDF for different ensembles. Only statistical errors.

B13

▪ Difficult to have the same momentum
across different ensembles

▪ Illustrate 𝑎-dependence by plotting the
PDFs obtained using the largest available
momentum for each ensemble

▪ Good convergence

▪ X650 data shows large discretization
artifacts, which is reflected in large errors
(systematic uncertainties not even
included here!) → very coarse lattices
could be problematic for LaMET
applications
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B14

▪ Transversity at negative 𝑥 can be interpreted as the antiquark transversity via the relation

𝛿ത𝑞 𝑥, 𝜇 = −ത𝑞(−𝑥, 𝜇)
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B15

▪ Sequential source method with fixed sink to
calculate the quark three-point correlator

Illustration of the sequential source method. The time direction is from source
to sink. Propagators 𝑆1,2 are combined to construct the sequential source. The
inversion with sequential source gives propagator 𝑆4. 𝑆4, 𝑆3, gauge link 𝑊 and
necessary projectors are assembled to get the three-point correlator.
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[2004.03543]

𝛾 = 𝑃𝑧/𝑀: boost factor
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▪ Combined extrapolation to continuum, infinite momentum and physical mass

▪ Extrapolation to large 𝝀

▪ Choice of 𝒛𝒔 in hybrid renormalization scheme

▪ Renormalization scale dependence

− Estimated by varying the scale from 2 GeV to 3 GeV

− Dominant systematic error in region 𝑥 > 0.2

− Chose 𝑧𝑠 = 0.3 fm, varied down to 𝑧𝑠 = 0.18 fm → difference as systematic error

− Different regions for extrapolation chosen to estimate the error

− Mainly affects the small-𝑥 region −0.2 < 𝑥 < 0.2

− Error is relatively small


