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Evidence for dark matter II

Large scale structure: N-body simulations only match galaxy surveys with a

sufficient amount of cold dark matter 1980s

Cosmic microwave background: temperature variations �T/T ⇠ 10�5 too

small for a purely baryonic universe 1990s

Microlensing searches: dark matter cannot be in form of compact objects 1990s

Baryon content of the Universe: light element abundances imply ⌦b . 5% 1990s
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Motivation-Dark Matter

Planck Collaboration: The cosmological legacy of Planck

-160 160 µK0.41 µK

Fig. 6. Planck CMB sky. The top panel shows the 2018 SMICA temperature map. The middle panel shows the polarization field
as rods of varying length superimposed on the temperature map, with both smoothed to 5�. This smoothing is done for visibility
purposes; the enlarged region presented in Fig. 7 shows that the Planck polarization map is still dominated by signal at much smaller
scales. Both CMB maps have been masked and inpainted in regions where residuals from foreground emission are expected to be
substantial. This mask, mostly around the Galactic plane, is delineated by a grey line in the full resolution temperature map. The
bottom panel shows the Planck lensing map (derived from r�, that is, the E mode of the lensing deflection angle), specifically a
minimum variance, Wiener filtered, map obtained from both temperature and polarization information; the unmasked area covers
80.7 % of the sky, which is larger than that used for cosmology.
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Gravitational Lensing

Rotation Curves of Galaxies
Plot from arXiv:2104.1148

Cosmic Microwave Background 

Simulation of Galaxy Structures

Evidence
for

Dark Matter

Plot from V. Springel, C. S. Frenk, S. D. White, 
The large-scale structure of the Universe, 
Nature, 440 (2006) 1137. 
arXiv:astro-ph/0604561 

Credit: NASA/CXC/CfA/M. Markevitch et al.; NASA/STScI; Magel- lan/U.Arizona/D. 
Clowe et al.; NASA/STScI; ESO WFI 

Plot from Y. Akrami, et al., Planck 2018 results. I. Overview
and the cosmological legacy of Planck, 
arXiv:1807.06205. 

Figure 2: Average rotation velocity of spiral galaxies as a function of the reduced radius for
di↵erent luminosities. The plain lines correspond to the best fits to the observational data,
the dotted lines to the contribution from the disc and the dashed lines to the contribution
from the halo. From [8].

where ✓E is the Einstein angular radius, M the mass of the lens, DL the distance to the
lens and DS the distance to the source.

Gravitational lensing is therefore often used to weigh galaxy clusters, and numerous
studies are consistent and tend to demonstrate that the visible mass represents only 10-
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DM Direct Searches
• DM Candidate: WIMP
• WIMP-Nucleus-Scattering

• Rate WIMP-Nucleus 
Scattering

• depends on Sigma-Term 
• Crucial input for interpretation of experiments
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How to search for dark matter?

Assume dark matter exists and is a weakly

interacting massive particle (WIMP)

Search strategies: direct, indirect, collider

Direct detection: search for WIMPs scattering

off nuclei in the large-scale detectors

Ingredients for interpretation:

Dark matter halo: velocity distribution

Nucleon matrix elements: WIMP–nucleon

couplings

Nuclear structure factors: embedding into

target nucleus
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Direct detection of dark matter: schematics

XENON1T 2018
Rate for WIMP–nucleus scattering

dR
dEr

=
�SI
�N

m�µ2
N| {z }

particle + hadronic physics
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+ (q2)
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nuclear physics
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astrophysics

Decomposition into the three terms follows from EFT
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R ⇠ �SI

M�µ2
N

⇥ (Nuclear Physics)⇥ (Astrophysics) (1)

1
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M�µ2
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⇥ (Nuclear Physics)⇥ (Astrophysics) (1)

1

Plot from E. Aprile et al,
Dark Matter Search Results from a One Tonne×Year
Exposure of XENON1T 
arXiV:1805.12562
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Sigma-Term 
• No scalar probe!
• Phenomenologically via Pion-Nucleon-

Scattering (Chang-Dashen-Theorem + extrap.)
• Lattice calculation

Directly or via Mass
• Some tension between

Roy-Steiner based estimate
and Lattice

R ⇠ �SI

M�µ2
N

⇥ (Nuclear Physics)⇥ (Astrophysics) (1)

�⇡N = mlhN |ūu+ d̄d|Ni = ml
@mN

@ml
(2)

1

Figure 47: Lattice results and FLAG averages for the nucleon sigma term, �⇡N , for the
Nf = 2, 2 + 1, and 2 + 1 + 1 flavour calculations. Determinations via the direct approach
are indicated by squares and the Feynman-Hellmann method by triangles. Results from
calculations which analyze more than one lattice data set within the Feynman-Hellmann
approach [1000, 1006–1014] are shown for comparison (pentagons) along with those from
recent analyses of ⇡-N scattering [990–992, 1015] (circles).

However, there is some fluctuation in the central values, in particular, when taking the
lattice results as a whole into account, and we caution the reader that the averages may
change as new results become available.

Also shown for comparison in the figures are determinations from the FH method
which utilize more than one lattice data set [1000, 1006–1014] as well as results for �⇡N

obtained from recent analyses of ⇡-N scattering [990–992, 1015]. There is some tension,
at the level of three to four standard deviations, between the lattice average for Nf = 2+1
and Hoferichter et al. [992] (Hoferichter 15 in Fig. 47), who quote a precision similar to
that of the average.

Finally we remark that, by exploiting the heavy-quark limit, the light- and strange-
quark sigma terms can be used to estimate �q for the charm, bottom and top quarks [978–
980]. The resulting estimate for the charm quark, see, e.g. the RQCD 16 Nf = 2 analysis
of Ref. [864] that reports fTc = 0.075(4) or �c = 70(4) MeV is consistent with the di-
rect determinations of ETM 19 [964] for Nf = 2 + 1 + 1 of �c = 107(22) MeV, ETM
16A [868] for Nf = 2 of �c = 79(21)(128 ) MeV and �QCD 13A [880] for Nf = 2 + 1 of
�c = 94(31) MeV. BMW in BMW 20A [996] employing the Feynman-Hellmann approach
obtain fTc = �c/mN = 0.0734(45)(55) for Nf = 1 + 1 + 1 + 1. MILC in MILC 12C [108]
find hN |c̄c|Ni = 0.056(27) in the MS scheme at a scale of 2 GeV for Nf = 2 + 1 + 1 via
the hybrid method. Considering the large uncertainty, this is consistent with the other
results once multiplied by the charm quark mass.

275



www.hi-jena.de
www.hi-mainz.de

Direct Determination

• Connected part
– Sequential Source 
– Zero Momentum at sink

• Disconnected part
– Loops All-to-All: OET+HPE+HP
– Noisy:
→ Additional two-point functions
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ID � T �a L�a M⇡[MeV] M⇡L tsep[fm] Ncfg

H102 3.40 96 32 352(4) 4.93 0.9, 1.0, 1.2, 1.4 2005

H105 3.40 96 32 278(4) 3.90 1.0, 1.2, 1.4 1027

C101 3.40 96 48 223(3) 4.68 1.0, 1.2, 1.4 2000

S400 3.46 128 32 350(5) xxx 1.1, 1.2, 1.4, 1.5 2873

N451 3.46 128 48 xxx xxx 1.0, 1.2, 1.3, 1.4 1011

D450 3.46 128 64 220 xxx 1.0, 1.2, 1.3, 1.4 500

D452 3.46 128 64 220 xxx 1.0, 1.2, 1.3, 1.4 1000

N203 3.55 128 48 347(4) 5.42 1.0, 1.2, 1.3, 1.4, 1.5 1543

N200 3.55 128 48 283(3) 4.42 1.0, 1.2, 1.3, 1.4 1712

D200 3.55 128 64 203(3) 4.23 1.0, 1.2, 1.3, 1.4 2000 (1000)

E250 3.55 192 96 130(1) 4.04 1.0, 1.2, 1.3, 1.4 400

S201 3.55 128 32 293 4.04 1.0, 1.2, 1.3, 1.4 2093 (2092)

N302 3.70 128 48 353(4) 4.28 1.0, 1.1, 1.2, 1.3 1177

J303 3.70 192 64 257() 4.28 1.0, 1.1, 1.2, 1.3 1073

TABLE I. Details of CLS ensembles used in this work.

and spatially APE-smeared gauge links in the covariant Laplacian � [11]. The parameters
G and NG are tuned so that a smearing radius rG ∼ 0.5 fm [12] is realized.

Wick contractions for the three-point function lead to the connected and disconnected
contributions. For the connected part, we employ extended propagators in the “fixed-sink”
method, requiring additional inversions for each value of ts studied while allowing the mo-
mentum transfer to be varied via a phase factor at the point of the current insertion [13]. In
order to reduce the cost of the inversions, we apply the truncated solver method with bias
correction [14–16]. Also, the projection matrices �′,� read

�′ = � = 1

2
(1 + �0)(1 + i�5�3). (7)

The disconnected three-point function is constructed from the quark loop and the nucleon
two-point function (see Fig. 1):

C
disc
3 (t, ts;q) = �e

−iqx
LS(q, z0) ⋅C2(p

′
, y0, x;�

′
)�, (8)

where LS denotes the trace over the light- or strange-quark loop. Note that for forward
scalar matrix elements (q = 0), the vacuum expectation value of the current insertion needs
to be subtracted:

C
disc
3 (t, ts;0) = �LS(0, z0) ⋅C2(p

′
, y0, x;�

′
)� − �LS(0, z0)� ⋅ �C2(p

′
, y0, x;�

′
)�. (9)

Additionally, we consider all three di↵erent polarizations:

�′i = 1

2
(1 + �0)(1 + i�5�i), i = 1,2,3. (10)

2

I. INTRODUCTION

The scalar matrix element of the nucleon �N �mq q̄q�N� is one of the important physics
observables, which plays a central role in interpreting the results of dark-matter direct-
detection experiments. In particular, for models in which the WIMP-nucleus interaction is
mediated by the Higgs boson, the spin-independent cross-section for WIMP-nucleus scat-
tering is sensitive to the values of such a matrix element [1]. The light-quark scalar matrix
element, also known as the pion-nucleon sigma term �⇡N , is of special interest. A tension
of roughly three standard deviations has emerged between the lattice results (see, e.g. [2])
and the most recent dispersive determination of �⇡N [3].

In this work, we perform a direct determination of the nucleon sigma terms from the
lattice calculation of the two- and three-point correlation functions.

II. SIMULATION DETAILS

We make use of the CLS Nf = 2 + 1 ensembles [5] of non-perturbatively O(a)-improved
Wilson fermions [6] and the tree-level improved Lüscher-Weisz gauge action [7]. Topological
freezing is prevented by imposing open boundary conditions on the gauge field in the time
direction [8]. The reweighting factors needed to correct for the treatment of the strange quark
determinant during the gauge field generation are obtained using the method of Ref. [9].
Table I gives details of the ensembles used in this work1. In particular, lattice spacings
range from 0.050 fm to 0.086 fm.

The two-point and three-point functions, needed to extract the scalar matrix elements of
the nucleon, have the form

C2(t;p) = �↵��
x
e
−ipx
� �(x, t) ↵(0)�, (1)

C3(t, ts;q) = �
′
↵��

x,y
e
iqy
� �(x, ts)OS(y, t) ↵(0)�, (2)

where OS denotes the scalar density

OS(x) = q̄q, q = u, d, s. (3)

The projection matrices �,�′ will be specified below. Further, in our setup, the nucleon at
the sink is at rest, i.e. for a momentum transfer q the initial and final nucleon states have
3-momenta

p
′
= 0, p = −q. (4)

The interpolating operator for the proton,

 ↵(x) = ✏abc �ũ
T
a (x)C�5d̃b(x)� ũc,↵(x) , (5)

is built using Gaussian-smeared quark fields [10]

q̃ = (1 + G�)
NGq , q = u, d, (6)

1For ensembles E250, D450 and N451, periodic boundary conditions in time are imposed.
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Excited States – Summation
• Usual Ratio (forward limit): 

Excited states ~𝑒!"# , 𝑒!" #!!#

• Summed correlator:

Excited states parametrically suppressed

4

These steps were undertaken to improve the signal for the disconnected three-point functions.
Traces over the quark loops are stochastically estimated using four-dimensional noise

vectors ⌘. For a local current

O
q
= q̄(x)1q(x), (11)

the trace over the quark loop reads

L
q
(q, z0) = −�

z∈⇤
e
iq⋅zTr �Dq

(z; z)−1 1� , (12)

with

D
q
 = ⌘, (13)

where Dq denotes the Dirac operator for the light or strange quark, and the sum is taken
over the spatial volume ⇤. In order to reduce the contribution to the variance induced by
the random noise, a frequency splitting combined with a hopping expansion of the quark
propagator were used [17].

The ground-state matrix element is extracted from the ratio

R(t, ts) =
C3(t, ts)

C2(ts)
. (14)

In practice, we form such ratios separately for the connected and disconnected contributions.
We improve the signal for the latter by averaging over three polarizations and forwards and
backwards propagating nucleons, see Eq. (??).

Performing the spectral decomposition in Eq. (14) and taking the limit t, (ts − t)� 0, we
obtain

ReR(t, ts)
t,(ts−t)�0
�����→ GS . (15)

The quantity GS denotes the scalar form factor at vanishing momentum transfer. It is also
convenient to introduce the e↵ective form factor:

G
e↵
S (t, ts) = ReR(t, ts). (16)

In the following, we compute errors using the bootstrap method on data with a bin size
of 2. For the conversion to physical units, the lattice spacing determination of Ref. [24] is
used.

III. EXCITED-STATE SYSTEMATICS

In order to extract the ground-state matrix element, the limit in Eq. (15) should be
performed. In practice, taking such a limit is not feasible, partially due to the notorious
signal-to-noise problem in the nucleon correlation functions. The latter su↵er from a strong
exponential growth of the relative statistical noise when the distance in Euclidean time
between operators is increased [18]. Hence, for typical source-sink separations which are used
in current lattice calculations, the ratio in Eq. (14) will be contaminated by exponentially
suppressed terms associated with resonances and multi-hadron states. These states have the
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ID a [fm] T/a L/a M⇡[MeV] M⇡L tsep[fm] Ncfg

H102

0.086

96 32 352 4.93
0.35, 0.43, 0.52, 0.6, 0.69,

0.78, 0.86, 0.95, 1.04, 1.12,

1.21, 1.3, 1.38, 1.47

2005

H105 96 32 278 3.90 1027

C101 96 48 223 4.68 2000

N101 128 48 279 5.86 1596

S400

0.076

128 32 350 4.33

0.31, 0.46, 0.61, 0.76, 0.92,

1.07, 1.22, 1.37, 1.53, 1.68

2873

N451 128 48 287 5.32 1011

D450 128 64 215 5.33 500

D452 128 64 153 3.79 1000

N203

0.064

128 48 347 5.42

0.26, 0.39, 0.51, 0.64, 0.77,

0.9, 1.03, 1.16, 1.29, 1.41

1543

N200 128 48 283 4.42 1712

D200 128 64 203 4.23 2000

E250 192 96 130 4.05 400

S201 128 32 293 3.05 2093

N302

0.050

128 48 353 4.28
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,

0.9, 1., 1.1, 1.2, 1.3, 1.39

2201

J303 192 64 262 4.23 1073

E300 192 64 175 4.24 569
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M�µ2
N

⇥ (Nuclear Physics)⇥ (Astrophysics) (1)

�⇡N = mlhN |ūu+ d̄d|Ni = ml
@mN

@ml
(2)

S(ts) =
ts�tcX
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S(ts) = (�⇡N +m11e
��ts) (1 + ts � 2tc) + e��ts

2m10
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�

e� � 1
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Excited States – Summation
• Usual Ratio (forward limit): 

Excited states ~𝑒!"# , 𝑒!" #!!#

• Summed correlator:

Excited states parametrically suppressed
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Excited States – Summation
• Usual Ratio (forward limit): 

Excited states ~𝑒!"# , 𝑒!" #!!#

• Summed correlator:

Excited states parametrically suppressed
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These steps were undertaken to improve the signal for the disconnected three-point functions.
Traces over the quark loops are stochastically estimated using four-dimensional noise

vectors ⌘. For a local current

O
q
= q̄(x)1q(x), (11)

the trace over the quark loop reads

L
q
(q, z0) = −�

z∈⇤
e
iq⋅zTr �Dq

(z; z)−1 1� , (12)

with

D
q
 = ⌘, (13)

where Dq denotes the Dirac operator for the light or strange quark, and the sum is taken
over the spatial volume ⇤. In order to reduce the contribution to the variance induced by
the random noise, a frequency splitting combined with a hopping expansion of the quark
propagator were used [17].

The ground-state matrix element is extracted from the ratio

R(t, ts) =
C3(t, ts)

C2(ts)
. (14)

In practice, we form such ratios separately for the connected and disconnected contributions.
We improve the signal for the latter by averaging over three polarizations and forwards and
backwards propagating nucleons, see Eq. (??).

Performing the spectral decomposition in Eq. (14) and taking the limit t, (ts − t)� 0, we
obtain

ReR(t, ts)
t,(ts−t)�0
�����→ GS . (15)

The quantity GS denotes the scalar form factor at vanishing momentum transfer. It is also
convenient to introduce the e↵ective form factor:

G
e↵
S (t, ts) = ReR(t, ts). (16)

In the following, we compute errors using the bootstrap method on data with a bin size
of 2. For the conversion to physical units, the lattice spacing determination of Ref. [24] is
used.

III. EXCITED-STATE SYSTEMATICS

In order to extract the ground-state matrix element, the limit in Eq. (15) should be
performed. In practice, taking such a limit is not feasible, partially due to the notorious
signal-to-noise problem in the nucleon correlation functions. The latter su↵er from a strong
exponential growth of the relative statistical noise when the distance in Euclidean time
between operators is increased [18]. Hence, for typical source-sink separations which are used
in current lattice calculations, the ratio in Eq. (14) will be contaminated by exponentially
suppressed terms associated with resonances and multi-hadron states. These states have the
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Summation

• Excited State Fits need priors for gap Δ (like explicit 2-state-Fit)
• Linear Fits:
• Not trustworthy for small 𝑡"
• Error increases with larger starting 𝑡"
• Several possibilities

• Choose one, use weights according to AIC, p-values, …
• Define a fit-range in physical units (see Talks by J. Koponen, 

M. Salg) → Window

New 𝑡!

5

same quantum numbers as the nucleon. Several approaches were developed to have a better
control over the excited-state systematics (for a review, see [19]). The summation method
[20–22] and multi-state fits [22, 23] are most widely used among them.

In the summation method, the ground-state matrix element is determined from the
summed ratio

S(ts) =

ts−a
�
t=a G

e↵
S (t, ts), (17)

It can be shown that such a ratio has a simple asymptotic behaviour in ts:

S(ts) = (GS +m11 exp−�ts) (1 + ts − 2tc) + 2m10 exp−
�ts

2
csch

�

2
sinh

1

2
(1 + ts − 2tc) + . . .

(18)

where � denotes the energy gap between the lowest excited state and the ground state, while
m10 and m11 are matrix elements of the current between first excited to ground state and
excited to excited state, respectively. The excited-state contributions, which are contained
in the exponential terms of Eq. (18), are parametrically suppressed by � ⋅ ts. We have
extended the number of source-sink separations compared to our analysis of the isovector
vector form factor [] to include smaller source-sink separations. This enables us to monitor
the range of ts where the linear extrapolation of Eq. (18), i.e. ignoring terms proportional
to m10 and m11, stabilizes. Moreover we performed fits to the summed correlator including
the first excited state. The fit is however not stable and we need to use priors for the energy
gap � between ground and first excited state. Even with a prior for the energy gap we are
not able to resolve the excited-excited contribution m11 with good accuracy and we resort
to a simplified fit ansatz without this term.

Instead of taking the value above a threshold in ts we perform an average of the summation
data with the weight function

wi =
1

2
tanh

ts − tlo

�t
−
1

2
tanh

ts − tup

�t
. (19)

The choice of lower (tlo) and upper (tup) bound constrains the excessive influence of excited
states at small values of ts and the exponentially increasing noise at larger values, respec-
tively. Moreover the extraction via a single value at a given threshold is very sensitive to
statistical fluctuation in the data. We find the choices

tlo = 0.8 fm, tup = 1.0 fm and �t = 0.08 fm, (20)

to give reasonable estimates for the ground state matrix element using linear fits to the
summed correlator. Using the weighting function of Eq. (19) leads to estimates compatible
to fitting what might be identified as a plateau in the extraction of the ground state matrix
element for di↵erent values of ts (see Fig. 1).

In addition to the analysis of the summed coreelators we performed fits using a two-state
ansatz for the e↵ective form factor. The fit function reads

G
e↵
S = GS +m10 exp [−�t] +m10 exp [−�(ts − t)] +m11 exp [−�ts] . (21)

Similar to the analysis of the summed correlators, we cannot fit the gap of the first excited
state and we are forced to use priors. We use twice the ensemble pion mass as the central
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• Instead of one particular starting 𝑡" use window
function as weights with

for all ensembles
• Close to „plateau“ average for every ensemble
• Less affected by single-point-estimate-fluctuation
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Comparison of Methods

• Two-State Direct Fit uses:

Needs gaussian priors Δ = 2𝑚" (5% width)
• Summation Two-State:

• Fits to summed correlator including first excited state (excluding 𝑚##)
• Needs gaussian priors Δ = 2𝑚" (5% width)
• Single starting 𝑡! (no average)

• Summation Window:
• Fits to summed correlator no excited states
• Window average
• No priors

• For all ensembles Summation Window compatible within 2 𝝈
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D452 128 64 153 3.79 1000

N203

0.064

128 48 347 5.42

0.26, 0.39, 0.51, 0.64, 0.77,

0.9, 1.03, 1.16, 1.29, 1.41

1543

N200 128 48 283 4.42 1712

D200 128 64 203 4.23 2000

E250 192 96 130 4.05 400

S201 128 32 293 3.05 2093

N302

0.050

128 48 353 4.28
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,

0.9, 1., 1.1, 1.2, 1.3, 1.39

2201

J303 192 64 262 4.23 1073

E300 192 64 175 4.24 569
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Lattice Setup

• Enlarged range in 𝑡!"#
→ Monitor excited state contribution

• Roughly same statistics at every 𝑡!"# (setup see talk K. Ottnad)
→ Number of sources adapted to 𝑡!"#

• Chiral/Continuum/Finite-Size extrapolation possible

ID a [fm] T/a L/a M⇡[MeV] M⇡L tsep[fm] Ncfg

H102

0.086

96 32 354 4.96
0.35, 0.43, 0.52, 0.6, 0.69,

0.78, 0.86, 0.95, 1.04, 1.12,

1.21, 1.3, 1.38, 1.47

2005

H105 96 32 280 3.93 1027

C101 96 48 225 4.73 2000

N101 128 48 281 5.91 1596

S400

0.076

128 32 350 4.33

0.31, 0.46, 0.61, 0.76, 0.92,

1.07, 1.22, 1.37, 1.53

2873

N451 128 48 286 5.31 1011

D450 128 64 216 5.35 500

D452 128 64 153 3.79 1000

N203

0.064

128 48 346 5.41

0.26, 0.39, 0.51, 0.64, 0.77,

0.9, 1.03, 1.16, 1.29, 1.41

1543

N200 128 48 281 4.39 1712

D200 128 64 203 4.22 2000

E250 192 96 129 4.04 400

S201 128 32 293 3.05 2093

N302

0.050

128 48 348 4.22
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,

0.9, 1., 1.1, 1.2, 1.3, 1.39

2201

J303 192 64 260 4.19 1073

E300 192 64 174 4.21 570

2
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Results

• For ensembles < 250 MeV
Two-State analysis (including priors for Δ)
generally slightly above

• Two-State analysis very sensitive to priors
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CCF-extrapolation
• Chiral Expansion

• 𝑘$, 𝑘%, 𝑘3 depend on (known) LECs
• Challenging fits, leaving all parameters free
– Fits not stable, especially with cuts in pion mass
– Only fit up to 𝑀#

→ Coefficients inconsistent with ChPT
– 𝑘#and 𝑘$ competing (cancellations) 
→ drop 𝑘#

– Or take ChPT information into account via priors

ID a [fm] T/a L/a M⇡[MeV] M⇡L tsep[fm] Ncfg

H102

0.086

96 32 352 4.93
0.35, 0.43, 0.52, 0.6, 0.69,

0.78, 0.86, 0.95, 1.04, 1.12,

1.21, 1.3, 1.38, 1.47

2005

H105 96 32 278 3.90 1027

C101 96 48 223 4.68 2000

N101 128 48 279 5.86 1596

S400

0.076

128 32 350 4.33

0.31, 0.46, 0.61, 0.76, 0.92,

1.07, 1.22, 1.37, 1.53, 1.68

2873

N451 128 48 287 5.32 1011

D450 128 64 215 5.33 500

D452 128 64 153 3.79 1000

N203

0.064

128 48 347 5.42

0.26, 0.39, 0.51, 0.64, 0.77,

0.9, 1.03, 1.16, 1.29, 1.41

1543

N200 128 48 283 4.42 1712

D200 128 64 203 4.23 2000

E250 192 96 130 4.05 400

S201 128 32 293 3.05 2093

N302

0.050

128 48 353 4.28
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,

0.9, 1., 1.1, 1.2, 1.3, 1.39

2201

J303 192 64 262 4.23 1073

E300 192 64 175 4.24 569
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CCF-extrapolation
• Chiral Expansion

• 𝑘$, 𝑘%, 𝑘3 depend on (known) LECs
• Challenging fits, leaving all parameters free
– Fits not stable, especially with cuts in pion mass
– Restrict 𝑘%, 𝑘&(, 𝑘#)via gaussian priors (still fitted)

– Width 5x the error for 𝑘%, 𝑘&(, 𝑘#)

ID a [fm] T/a L/a M⇡[MeV] M⇡L tsep[fm] Ncfg

H102

0.086

96 32 352 4.93
0.35, 0.43, 0.52, 0.6, 0.69,

0.78, 0.86, 0.95, 1.04, 1.12,

1.21, 1.3, 1.38, 1.47

2005

H105 96 32 278 3.90 1027

C101 96 48 223 4.68 2000

N101 128 48 279 5.86 1596

S400

0.076

128 32 350 4.33

0.31, 0.46, 0.61, 0.76, 0.92,

1.07, 1.22, 1.37, 1.53, 1.68

2873

N451 128 48 287 5.32 1011

D450 128 64 215 5.33 500

D452 128 64 153 3.79 1000

N203

0.064

128 48 347 5.42

0.26, 0.39, 0.51, 0.64, 0.77,

0.9, 1.03, 1.16, 1.29, 1.41

1543

N200 128 48 283 4.42 1712

D200 128 64 203 4.23 2000

E250 192 96 130 4.05 400

S201 128 32 293 3.05 2093

N302

0.050

128 48 353 4.28
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,

0.9, 1., 1.1, 1.2, 1.3, 1.39

2201

J303 192 64 262 4.23 1073

E300 192 64 175 4.24 569
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ID a [fm] T/a L/a M⇡[MeV] M⇡L tsep[fm] Ncfg

H102

0.086

96 32 354 4.96
0.35, 0.43, 0.52, 0.6, 0.69,

0.78, 0.86, 0.95, 1.04, 1.12,

1.21, 1.3, 1.38, 1.47

2005

H105 96 32 280 3.93 1027

C101 96 48 225 4.73 2000

N101 128 48 281 5.91 1596

S400

0.076

128 32 350 4.33

0.31, 0.46, 0.61, 0.76, 0.92,

1.07, 1.22, 1.37, 1.53

2873

N451 128 48 286 5.31 1011

D450 128 64 216 5.35 500

D452 128 64 153 3.79 1000

N203

0.064

128 48 346 5.41

0.26, 0.39, 0.51, 0.64, 0.77,

0.9, 1.03, 1.16, 1.29, 1.41

1543

N200 128 48 281 4.39 1712

D200 128 64 203 4.22 2000

E250 192 96 129 4.04 400

S201 128 32 293 3.05 2093

N302

0.050

128 48 348 4.22
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,

0.9, 1., 1.1, 1.2, 1.3, 1.39

2201

J303 192 64 260 4.19 1073

E300 192 64 174 4.21 570
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CCF-extrapolation

• Data from window average of summation data
• Green points: 

After correction of lattice artefacts (only central value) 
of original data (orange points)

• Left: No Pion mass cut
Right: Pion mass cut 300 MeV
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CCF-extrapolation

• With Restrictions from ChPT:
Result stable w.r.t
• Cuts in pion mass
• Window vs Two-State

• Two-State result higher but within
2 𝜎 of Summation Window result

• Grey Area: Result using Roy-Steiner
• CCF result depends on priors

• Fits: blue, green, orange  = (k1,k2),(k1,k2,k3),(k1,k2,no log)
• Further Improvements:
• Increase statistics for the disconnected part
• Simultaneous fit with nucleon mass
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Thanks!


