$\sigma_{\pi N}$ with N_f = 2 + 1 O(a)improved Wilson fermions

Andria Agadjanov, <u>Dalibor Djukanovic</u>, Georg von Hippel, Konstantin Ottnad, Harvey B. Meyer, Hartmut Wittig

Motivation-Dark Matter

Rotation Curves of Galaxies Plot from arXiv:2104.1148

Cosmic Microwave Background

Plot from Y. Akrami, et al., Planck 2018 results. I. Overview and the cosmological legacy of Planck, arXiv:1807.06205.

Evidence for Dark Matter

Simulation of Galaxy Structures

Plot from V. Springel, C. S. Frenk, S. D. White, The large-scale structure of the Universe, Nature, 440 (2006) 1137. arXiv:astro-ph/0604561

Gravitational Lensing

Credit: NASA/CXC/CfA/M. Markevitch et al.; NASA/STScI; Magel- lan/U.Arizona/D.

Clowe et al.; NASA/STScI; ESO WFI

DM Direct Searches

- DM Candidate: WIMP
- WIMP-Nucleus-Scattering

 Rate WIMP-Nucleus Scattering

$$R \sim \frac{\sigma^{\rm SI}}{M_{\chi}\mu_N^2} \times (\text{Nuclear Physics}) \times (\text{Astrophysics})$$

- σ^{SI} depends on Sigma-Term
- Crucial input for interpretation of experiments

Plot from E. Aprile et al,
Dark Matter Search Results from a One Tonne×Year
Exposure of XENON1T
arXiV:1805.12562

Sigma-Term

- No scalar probe!
- Phenomenologically via Pion-Nucleon-Scattering (Chang-Dashen-Theorem + extrap.)
- Lattice calculation

$$\sigma_{\pi N} = m_l \langle N | \bar{u}u + \bar{d}d | N \rangle = m_l \frac{\partial m_N}{\partial m_l}$$

Directly or via Mass

 Some tension between Roy-Steiner based estimate and Lattice

Direct Determination

- Connected part
 - Sequential Source
 - Zero Momentum at sink

$$C_{2}(t; \mathbf{p}) = \Gamma_{\alpha\beta} \sum_{\mathbf{x}} e^{-i\mathbf{p}\mathbf{x}} \Big\langle \Psi_{\beta}(\mathbf{x}, t) \overline{\Psi}_{\alpha}(0) \Big\rangle,$$

$$C_{3}(t, t_{s}; \mathbf{q}) = \Gamma'_{\alpha\beta} \sum_{\mathbf{x}, \mathbf{y}} e^{i\mathbf{q}\mathbf{y}} \Big\langle \Psi_{\beta}(\mathbf{x}, t_{s}) \mathcal{O}_{S}(\mathbf{y}, t) \overline{\Psi}_{\alpha}(0) \Big\rangle,$$

- Disconnected part
 - Loops All-to-All: OET+HPE+HP
 - Noisy:
 - → Additional two-point functions

$$C_3^{\text{disc}}(t, t_s; \mathbf{0}) = \left\langle L_S(\mathbf{0}, z_0) \cdot C_2(\mathbf{p}', y_0, x; \Gamma') \right\rangle - \left\langle L_S(\mathbf{0}, z_0) \right\rangle \cdot \left\langle C_2(\mathbf{p}', y_0, x; \Gamma') \right\rangle$$

Excited States – Summation

Usual Ratio (forward limit):

$$R(t,t_s) = \frac{C_3(t,t_s)}{C_2(t_s)} \qquad \operatorname{Re} R(t,t_s) \xrightarrow{t,(t_s-t)\gg 0} G_{S} \xrightarrow{\begin{cases} \frac{1}{2} & 100 \\ \frac{1}{2} & 100$$

Excited states $\sim e^{-\Delta t}$, $e^{-\Delta(t_s-t)}$

• Summed correlator:

$$S(t_s) = \sum_{t=t_c}^{t_s - t_c} \sigma_{\pi N}^{\text{eff}}(t, t_s)$$

Excited states parametrically suppressed

Excited States – Summation

Usual Ratio (forward limit):

$$R(t,t_s) = \frac{C_3(t,t_s)}{C_2(t_s)} \qquad \text{Re } R(t,t_s) \xrightarrow{t,(t_s-t)\gg 0} G_S \xrightarrow{\mathbb{Z}}_{0}^{120} G_S$$

$$G_{\rm S}^{\rm eff}(t,t_s)$$
 = Re $R(t,t_s)$

Excited states $\sim e^{-\Delta t}$, $e^{-\Delta(t_s-t)}$

• Summed correlator:

$$S(t_s) = \sum_{t=t_c}^{t_s - t_c} \sigma_{\pi N}^{\text{eff}}(t, t_s)$$

Excited states parametrically suppressed

$$S(t_s) = (\sigma_{\pi N})$$

$$(1+t_{s}-2t_{c})$$

Excited States – Summation

Usual Ratio (forward limit):

$$R(t,t_s) = \frac{C_3(t,t_s)}{C_2(t_s)} \qquad \operatorname{Re} R(t,t_s) \xrightarrow{t,(t_s-t)\gg 0} G_{S} \xrightarrow{\mathbb{S}^{\frac{120-5}{2000}}} G_{S}$$

$$G_{S}^{\text{eff}}(t,t_s) = \operatorname{Re} R(t,t_s) \xrightarrow{40-6} G_{S}$$

Excited states $\sim e^{-\Delta t}$, $e^{-\Delta(t_s-t)}$

• Summed correlator:

$$S(t_s) = \sum_{t=t_c}^{t_s - t_c} \sigma_{\pi N}^{\text{eff}}(t, t_s)$$

Excited states parametrically suppressed

$$S(t_s) = (\sigma_{\pi N} + m_{11}e^{-\Delta t_s}) (1 + t_s - 2t_c) + e^{-\Delta t_s} \frac{2m_{10} \left(e^{\Delta(1 - t_c + t_s)} - e^{\Delta t_c}\right)}{e^{\Delta} - 1} + \dots$$

Summation

- Excited State Fits need priors for gap Δ (like explicit 2-state-Fit)
- Linear Fits:
 - Not trustworthy for small t_{s}
 - Error increases with larger starting t_{s}
 - Several possibilities
 - Choose one, use weights according to AIC, p-values, ...
 - Define a fit-range in physical units (see Talks by J. Koponen,
 M. Salg) → Window

$$w_i = \frac{1}{2} \tanh \frac{t_s - t_{lo}}{\Delta t} - \frac{1}{2} \tanh \frac{t_s - t_{up}}{\Delta t}$$

Summation

• Instead of one particular starting $t_{\mathcal{S}}$ use window function as weights with

$$t_{\rm lo} = 0.8 \, {\rm fm}, \quad t_{\rm up} = 1.0 \, {\rm fm} \quad {\rm and} \quad \Delta t = 0.08 \, {\rm fm}$$

for all ensembles

- Close to "plateau" average for every ensemble
- Less affected by single-point-estimate-fluctuation

www.hi-mainz.de 07.08.22 Helmholtz-Institut Main:

Comparison of Methods

Two-State Direct Fit uses:

$$\sigma_{\pi N}^{\text{eff}} = \sigma_{\pi N} + m_{10} \left(e^{-\Delta t} + e^{-\Delta (t_s - t)} \right) + m_{11} e^{-\Delta t_s} e^{(t - \frac{t_s}{2})/a}$$

Needs gaussian priors $\Delta=2m_{\pi}$ (5% width)

- Summation Two-State:
 - Fits to summed correlator including first excited state (excluding m_{11})
 - Needs gaussian priors $\Delta=2m_\pi$ (5% width)
 - Single starting t_s (no average)
- Summation Window:
 - Fits to summed correlator no excited states
 - Window average
 - No priors
- For all ensembles **Summation Window** compatible within **2** σ

Lattice Setup

ID	a [fm]	T/a	L/a	$M_{\pi}[\mathrm{MeV}]$	$M_{\pi}L$	$t_{ m sep}[{ m fm}]$	$N_{ m cfg}$
H102	0.086	96	32	354	4.96	0.35, 0.43, 0.52, 0.6, 0.69, 0.78, 0.86, 0.95, 1.04, 1.12, 1.21, 1.3, 1.38, 1.47	2005
H105		96	32	280	3.93		1027
C101		96	48	225	4.73		2000
N101		128	48	281	5.91		1596
S400	0.076	128	32	350	4.33	0.31, 0.46, 0.61, 0.76, 0.92, 1.07, 1.22, 1.37, 1.53	2873
N451		128	48	286	5.31		1011
D450		128	64	216	5.35		500
D452		128	64	153	3.79		1000
N203	0.064	128	48	346	5.41	0.26, 0.39, 0.51, 0.64, 0.77, 0.9, 1.03, 1.16, 1.29, 1.41	1543
N200		128	48	281	4.39		1712
D200		128	64	203	4.22		2000
E250		192	96	129	4.04		400
S201		128	32	293	3.05		2093
N302	0.050	128	48	348	4.22	0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1., 1.1, 1.2, 1.3, 1.39	2201
J303		192	64	260	4.19		1073
E300		192	64	174	4.21		570

- Enlarged range in t_{sep}
 - → Monitor excited state contribution
- Roughly same statistics at every t_{sep} (setup see talk K. Ottnad)
 - \rightarrow Number of sources adapted to t_{sep}
- Chiral/Continuum/Finite-Size extrapolation possible

Results

- For ensembles < 250 MeV
 Two-State analysis (including priors for Δ) generally slightly above
- Two-State analysis very sensitive to priors

Chiral Expansion

$$\sigma_{\pi N} = (k_1 + k_a a^2) M^2 + k_2 M^3 + 2k_3 M^4 \log \frac{M}{\mu} + k_4 M^4 + k_L M^2 \left(\frac{1}{L} - \frac{M}{2}\right) e^{-ML}$$

- k_1, k_2, k_3 depend on (known) LECs
- Challenging fits, leaving all parameters free
 - Fits not stable, especially with cuts in pion mass
 - Only fit up to M^3
 - → Coefficients inconsistent with ChPT
 - $-k_3$ and k_4 competing (cancellations)
 - \rightarrow drop k_3
 - Or take ChPT information into account via priors

Chiral Expansion

$$\sigma_{\pi N} = (k_1 + k_a a^2) M^2 + k_2 M^3 + 2k_3 M^4 \log \frac{M}{\mu} + k_4 M^4 + k_L M^2 \left(\frac{1}{L} - \frac{M}{2}\right) e^{-ML}$$

- k_1, k_2, k_3 depend on (known) LECs
- Challenging fits, leaving all parameters free
 - Fits not stable, especially with cuts in pion mass
 - Restrict k_1 , k_2 (, k_3) via gaussian priors (still fitted)

$$k_1 = -4c_1 = (4.44 \pm 0.12) \,\text{GeV}^{-1}$$

$$k_2 = -\frac{9g_A^2}{64\pi F_\pi^2} = (-8.52 \pm 0.04) \,\text{GeV}^{-2}$$

$$k_3 = -\frac{3}{32\pi^2 F_\pi^2} \left(\frac{g_A^2}{m_N} - 8c_1 + c_2 + 4c_3\right) - \frac{c_1}{8\pi^2 F_\pi^2}$$

$$= (-11.38 \pm 0.35) \,\text{GeV}^{-3}$$

– Width 5x the error for k_1 , k_2 (, k_3)

- Data from window average of summation data
- Green points:
 After correction of lattice artefacts (only central value)
 of original data (orange points)
- Left: No Pion mass cut
 - Right: Pion mass cut 300 MeV

- With Restrictions from ChPT: Result stable w.r.t
 - Cuts in pion mass
 - Window vs Two-State
- Two-State result higher but within 2σ of Summation Window result
- Grey Area: Result using Roy-Steiner
- CCF result depends on priors
- Fits: blue, green, orange = (k1,k2),(k1,k2,k3),(k1,k2,no log)
- Further Improvements:
 - Increase statistics for the disconnected part
 - Simultaneous fit with nucleon mass

Thanks!