Leading-twist Quark PDFs of the Nucleon from loffe-time Pseudo-distributions

August 10, 2022

Jefferson Lab

Parton Distributions \& Hadron Structure

$$
F_{i}\left(x, Q^{2}\right)=\sum_{a=q, \bar{q}, g} f_{a / h}\left(x, \mu^{2}\right) \otimes H_{i}^{a}\left(x, \frac{Q^{2}}{\mu^{2}}, \alpha_{s}\left(\mu^{2}\right)\right)+h . t .
$$

[^0]
Parton Distributions \& Hadron Structure

$$
F_{i}\left(x, Q^{2}\right)=\sum_{a=q, \bar{q}, g} f_{a / h}\left(x, \mu^{2}\right) \otimes H_{i}^{a}\left(x, \frac{Q^{2}}{\mu^{2}}, \alpha_{s}\left(\mu^{2}\right)\right)+h . t .
$$

[^1]$$
\frac{1}{2} \int \frac{d z^{-}}{2 \pi} e^{i x P^{+} z^{-}}\langle h(p)| \bar{\psi}\left(\frac{z}{2}\right) \gamma^{+} \Phi_{\hat{z}^{-}}^{(f)}\left(\left\{\frac{z}{2},-\frac{z}{2}\right\}\right) \psi\left(-\frac{z}{2}\right)|h(p)\rangle
$$

Parton Distributions \& Hadron Structure

$$
F_{i}\left(x, Q^{2}\right)=\sum_{a=q, \bar{q}, g} f_{a / h}\left(x, \mu^{2}\right) \otimes H_{i}^{a}\left(x, \frac{Q^{2}}{\mu^{2}}, \alpha_{s}\left(\mu^{2}\right)\right)+h . t .
$$

$$
\frac{1}{2} \int \frac{d z^{-}}{2 \pi} e^{i x P^{+} z^{-}}\langle h(p)| \bar{\psi}\left(\frac{z}{2}\right) \gamma^{+} \Phi_{z^{-}}^{(f)}\left(\left\{\frac{z}{2},-\frac{z}{2}\right\}\right) \psi\left(-\frac{z}{2}\right)|h(p)\rangle
$$

Eg. J. Collins et al., Adv. Ser. Direct. High Energy Phys. 5, 1 (1989)

EIC will probe hadron structure at unprecedented precision
"A machine that will unlock the secrets of the strongest force in Nature"

Roadmap - From Matrix Elements to PDFs...

Short-distance Factorization

- space-like matrix elements

On Short-Distance Factorization (SDF)

This talk: matrix elements of space-like separated parton bilinears

$$
M^{[\Gamma]}(p, z)=\langle h(p)| \bar{\psi}(z) \Gamma \Phi_{\hat{z}}^{(f)}(\{z, 0\}) \psi(0)|h(p)\rangle
$$

Additional UV singularities for space-like Wilson line

Matrix elements admit a Lorentz decomposition

$$
\nu \equiv p \cdot z
$$

$$
M^{[\Gamma]}(p, z)=\sum_{i} \mathcal{K}_{i}\left(p^{\mu}, z^{\mu}, \cdots\right) \mathcal{M}_{i}\left(\nu, z^{2}\right)
$$

Short-Distance Factorization \rightarrow
Pseudo-Distribution

LaMET \& Quasi-Distributions

X. Gao [Wed. 2:20pm] L. Walter [Wed. 2:40pm] J. Dodson [Wed. 5:10pm] J. Holligan [Thu. 10:20am]

X. Ji, Phys. Rev. Lett. 110 (2013) 262002

SDF \& Pseudo-Distributions

J. Karpie [Wed. 9:50am] J. Delmar [Wed. 4:30pm] M. Bhat [Wed. 4:50pm] R. Sufian [Wed. 5:50pm]
V. Braun and D. Müller, Eur.Phys.J.C 55 (2008) 349-361
A. Radyushkin, PRD 96 (2017) 3, 034025

Perturbatively
(pseudo-ITD)
Distribution (ITD)

$$
\mathcal{M}_{i}\left(\nu, z^{2}\right)=\sum_{a} C_{a}\left(z^{2} \mu^{2}, \alpha_{s}\right) \otimes \mathcal{Q}_{a}\left(\nu, \mu^{2}\right)+\mathcal{O}\left(z^{2} \Lambda_{\mathrm{QCD}}^{2}\right)
$$

On Short-Distance Factorization (SDF)

This talk: matrix elements of space-like separated parton bilinears

$$
M^{[\Gamma]}(p, z)=\langle h(p)| \bar{\psi}(z) \Gamma \Phi_{\hat{z}}^{(f)}(\{z, 0\}) \psi(0)|h(p)\rangle
$$

Additional UV singularities for space-like Wilson line
\qquad 1 1

Matrix elements admit a Lorentz decomposition

$$
M^{[\Gamma]}(p, z)=\sum_{i} \mathcal{K}_{i}\left(p^{\mu}, z^{\mu}, \cdots\right) \mathcal{M}_{i}\left(\nu, z^{2}\right)
$$

Short-Distance Factorization \rightarrow
loffe-time Pseudo-Distribution (pseudo-ITD)

Perturbatively $\begin{array}{cc}\text { Perturbatively } & \text { Ioffe-time } \\ \text { calculable Wilson } \\ \text { Distribution (ITD) }\end{array}$

$$
\mathcal{M}_{i}\left(\nu, z^{2}\right)=\sum_{a} C_{a}\left(z^{2} \mu^{2}, \alpha_{s}\right) \otimes \mathcal{Q}_{a}\left(\nu, \mu^{2}\right)+\mathcal{O}\left(z^{2} \Lambda_{\mathrm{QCD}}^{2}\right)
$$

	Lorentz Decomposition	Defining Kinematics	Leading-twist Information	Accessing Leading-Amplitude	LQCD
Unpol.	$2 p^{\alpha} \mathcal{M}\left(\nu, z^{2}\right)+2 z^{\alpha} \mathcal{N}\left(\nu, z^{2}\right)$	$\begin{array}{r} p^{\alpha}=\left(p^{+}, \frac{m_{h}^{2}}{2 p^{+}}, \mathbf{0}_{\perp}\right) \\ z^{\alpha}=\left(0, z^{-}, \mathbf{0}_{\perp}\right) \quad \alpha=+ \end{array}$	$\mathcal{M}\left(p^{+} z^{-}, 0\right)_{\mu^{2}}$	$\begin{aligned} & p^{\alpha}=\left(\mathbf{0}_{\perp}, p_{z}, E\right) \\ & z^{\alpha}=\left(\mathbf{0}_{\perp}, z_{3}, 0\right) \end{aligned}$	$\alpha=4$
Trans.	$2\left[p^{\alpha}, S_{\perp}^{\beta}\right] \mathcal{M}\left(\nu, z^{2}\right)+2 i m_{N}^{2}\left[z^{\alpha}, S_{\perp}^{\beta}\right] \mathcal{N}\left(\nu, z^{2}\right)+2 m_{N}^{2}\left[z^{\alpha}, p^{\beta}\right]\left(z \cdot S_{\perp}\right) \mathcal{R}\left(\nu, z^{2}\right)$	${ }^{\wedge}$ As Above ${ }^{\text {® }}$	$\mathcal{M}\left(p^{+} z^{-}, 0\right)_{\mu^{2}}$	${ }^{4}$ As Above ${ }^{\text {a }}$	$\begin{aligned} & \alpha=4 \\ & \beta=\perp \end{aligned}$
Helicity	$-2 m_{N} S^{\alpha} \mathcal{M}\left(\nu, z^{2}\right)-2 i m_{N} p^{\alpha}(z \cdot S) \mathcal{N}\left(\nu, z^{2}\right)+2 m_{N}^{3} z^{\alpha}(z \cdot S) \mathcal{R}\left(\nu, z^{2}\right)$	${ }^{\text {A }}$ As Above ${ }^{\text {^ }}$	$\left[\mathcal{M}\left(p^{+} z^{-}, 0\right)+i p^{+} z^{-} \mathcal{N}\left(p^{+} z^{-}, 0\right)\right]_{\mu^{2}}$	${ }^{4}$ As Above ${ }^{\text {- }}$	$\alpha=3$

From Matrix Elements to Pseudo-Distributions

Needed correlation functions:

Summation method - further excited-state suppression
L. Maiani et al., Nucl. Phys. B293 (1987)
C. Bouchard et al., PRD 96, no. 1, 014504 (2017)
$R\left(p_{z}, z_{3} ; T\right)=\sum_{\tau / a=1}^{T-1} \frac{C_{3}\left(p_{z}, T, \tau ; z_{3}\right)}{C_{2}\left(p_{z}, T\right)}$

$$
R_{\mathrm{fit}}\left(p_{z}, z_{3} ; T\right)=\mathcal{A}+M_{4}\left(p_{z}, z_{3}\right) T+\mathcal{O}\left(e^{-\Delta E T}\right)
$$

From Matrix Elements to Pseudo-Distributions

Needed correlation functions:

Summation method - further excited-state suppression
L. Maiani et al., Nucl. Phys. B293 (1987) C. Bouchard et al., PRD 96, no. 1, 014504 (2017)

$$
R_{\mathrm{fit}}\left(p_{z}, z_{3} ; T\right)=\mathcal{A}+M_{4}\left(p_{z}, z_{3}\right) T+\mathcal{O}\left(e^{-\Delta E T}\right)
$$

Reduced pseudo-ITD: remove divergences associated with Wilson-line

$$
\mathfrak{M}\left(\nu, z^{2}\right)=\frac{M_{4}(p, z) / M_{4}(p, 0)}{M_{4}(0, z) / M_{4}(0,0)}
$$

Determining the Unknown PDFs

III-posed (pseudo-)ITD/PDF matching relation:

$$
\mathfrak{M}\left(\nu, z^{2}\right)=\int_{-1}^{1} \mathrm{~d} x \mathcal{K}\left(x \nu, z^{2} \mu^{2}\right) f_{q / h}\left(x, \mu^{2}\right)+\sum_{k=1}^{\infty} \mathcal{B}(\nu)\left(z^{2}\right)^{k}
$$

Determining the Unknown PDFs

III-posed (pseudo-)ITD/PDF matching relation:

$$
\mathfrak{M}\left(\nu, z^{2}\right)=\int_{-1}^{1} \mathrm{~d} x \mathcal{K}\left(x \nu, z^{2} \mu^{2}\right) f_{q / h}\left(x, \mu^{2}\right)+\sum_{k=1}^{\infty} \mathcal{B}(\nu)\left(z^{2}\right)^{k}
$$

One choice: model parameterization

$$
\int_{-1}^{1} d z(1-z)^{\alpha}(1+z)^{\beta} J_{n}^{(\alpha, \beta)}(z) J_{m}^{(\alpha, \beta)}(z)=\delta_{n, m} h_{n}(\alpha, \beta)
$$

Change of variables
$>$ polynomials span support interval of PDFs

$$
f_{q / h}(x)=x^{\alpha}(1-x)^{\beta} \sum_{n=0}^{\infty} C_{q, n}^{(\alpha, \beta)} \Omega_{n}^{(\alpha, \beta)}(x)
$$

J. Karpie, K. Orginos, A. Radyushkin et al., JHEP ור (2021) 024

Determining the Unknown PDFs

III-posed (pseudo-)ITD/PDF matching relation:

$$
\mathfrak{M}\left(\nu, z^{2}\right)=\int_{-1}^{1} \mathrm{~d} x \mathcal{K}\left(x \nu, z^{2} \mu^{2}\right) f_{q / h}\left(x, \mu^{2}\right)+\sum_{k=1}^{\infty} \mathcal{B}(\nu)\left(z^{2}\right)^{k}
$$

One choice: model parameterization
$\int_{-1}^{1} d z(1-z)^{\alpha}(1+z)^{\beta} J_{n}^{(\alpha, \beta)}(z) J_{m}^{(\alpha, \beta)}(z)=\delta_{n, m} h_{n}(\alpha, \beta)$
$\mathfrak{R e} \mathfrak{M}_{\mathrm{fit}}\left(\nu, z^{2}\right)=\sum_{n=0}^{\infty} \sigma_{n}^{(\alpha, \beta)}\left(\nu, z^{2} \mu^{2}\right) C_{\mathrm{v}, n}^{l t(\alpha, \beta)}$
$\mathfrak{I m} \mathfrak{M}_{\text {fit }}\left(\nu, z^{2}\right)=\sum_{n=0}^{\infty} \eta_{n}^{(\alpha, \beta)}\left(\nu, z^{2} \mu^{2}\right) C_{+, n}^{l t(\alpha, \beta)}$

Change of variables
> polynomials span support interval of PDFs $f_{q / h}(x)=x^{\alpha}(1-x)^{\beta} \sum_{n=0}^{\infty} C_{q, n}^{(\alpha, \beta} \Omega_{n}^{(\alpha, \beta)}(x)$
J. Karpie, K. Orginos, A. Radyushkin et al., JHEP ו1 (2021) 024

$$
\sigma_{n, \mathrm{NLO}}^{(\alpha, \beta)}\left(\nu, z^{2} \mu^{2}\right)=\sigma_{n}^{(\alpha, \beta)}\left(\nu, z^{2} \mu^{2}\right)-\sigma_{0, n}^{(\alpha, \beta)}(\nu)
$$

Determining the Unknown PDFs

III-posed (pseudo-)ITD/PDF matching relation:

$$
\mathfrak{M}\left(\nu, z^{2}\right)=\int_{-1}^{1} \mathrm{~d} x \mathcal{K}\left(x \nu, z^{2} \mu^{2}\right) f_{q / h}\left(x, \mu^{2}\right)+\sum_{k=1}^{\infty} \mathcal{B}(\nu)\left(z^{2}\right)^{k}
$$

One choice: model parameterization
$\int_{-1}^{1} d z(1-z)^{\alpha}(1+z)^{\beta} J_{n}^{(\alpha, \beta)}(z) J_{m}^{(\alpha, \beta)}(z)=\delta_{n, m} h_{n}(\alpha, \beta)$
$\mathfrak{R e} \mathfrak{M}_{\text {fit }}\left(\nu, z^{2}\right)=\sum_{n=0}^{\infty} \sigma_{n}^{(\alpha, \beta)}\left(\nu, z^{2} \mu^{2}\right) C_{\mathrm{v}, n}^{l t(\alpha, \beta)}+\Delta_{\text {corr }} \sum_{n=1}^{\infty} \sigma_{0, n}^{(\alpha, \beta)}(\nu) C_{\mathrm{v}, n}^{\Delta(\alpha, \beta)}$
$\mathfrak{I m} \mathfrak{M}_{\mathrm{fit}}\left(\nu, z^{2}\right)=\sum_{n=0}^{\infty} \eta_{n}^{(\alpha, \beta)}\left(\nu, z^{2} \mu^{2}\right) C_{+, n}^{l t(\alpha, \beta)}+\Delta_{\text {corr }} \sum_{n=0}^{\infty} \eta_{0, n}^{(\alpha, \beta)}(\nu) C_{+, n}^{\Delta(\alpha, \beta)}$ $-\frac{a}{|z|}, z^{2} \Lambda_{\mathrm{QCD}}^{2}, z^{4} \Lambda_{\mathrm{QCD}}^{4}$

Change of variables
> polynomials span support interval of PDFs $f_{q / h}(x)=x^{\alpha}(1-x)^{\beta} \sum_{n=0}^{\infty} C_{q, n}^{(\alpha, \beta)} \Omega_{n}^{(\alpha, \beta)}(x)$
J. Karpie, K. Orginos, A. Radyushkin et al., JHEP ור (2021) 024

Objective: determine most likely parameters given data \& prior information
> Bayes' Theorem
> maximize posterior distribution
> stabilize optimization:Variable Projection

$$
\sigma_{0, n}^{(\alpha, \beta)}(\nu)=\left.\sigma_{n}^{(\alpha, \beta)}\left(\nu, z^{2} \mu^{2}\right)\right|_{\alpha_{s}=0}
$$

$$
\sigma_{n, N \mathrm{NO}}^{(\alpha, \beta)}\left(\nu, z^{2} \mu^{2}\right)=\sigma_{n}^{(\alpha, \beta)}\left(\nu, z^{2} \mu^{2}\right)-\sigma_{0, n}^{(\alpha, \beta)}(\nu)
$$

Optimal Fit for Unpolarized Valence Quark PDF

(isovector combination only herein)											
ID	$a(\mathrm{fm})$	$m_{\pi}(\mathrm{MeV})$	β	c_{SW}	$L^{3} \times T$	N_{cfg}					
E 1	$0.094(1)$	$358(3)$	6.3	1.205	$32^{3} \times 64$	349					

Parameters/Statistics

ID	$N_{\text {vec }}$	$N_{\text {srcs }}$	T / a	$p_{z} \times\left(\frac{2 \pi}{L}\right)$	z / a
E1	64	4	$4,6, \cdots, 14$	$0, \pm 1, \cdots, \pm 6$	$0, \pm 1, \cdots, \pm 12, \cdots$
			$0.38, \cdots, 1.32 \mathrm{fm}$	$0,0.41, \cdots, 2.47 \mathrm{GeV}$	$0,0.094, \cdots, 1.13 \mathrm{fm}$

Optimal Fit for Unpolarized Valence Quark PDF

(isovector combination only herein)										
ID	$a(\mathrm{fm})$	$m_{\pi}(\mathrm{MeV})$	β	c_{SW}	$L^{3} \times T$	N_{cfg}				
E 1	$0.094(1)$	$358(3)$	6.3	1.205	$32^{3} \times 64$	349				

Parameters/Statistics

ID	$N_{\text {vec }}$	$N_{\text {srcs }}$	T / a	$p_{z} \times\left(\frac{2 \pi}{L}\right)$	z / a
E1	64	4	$4,6, \cdots, 14$	$0, \pm 1, \cdots, \pm 6$	$0, \pm 1, \cdots, \pm 12, \cdots$
			$0.38, \cdots, 1.32 \mathrm{fm}$	$0,0.41, \cdots, 2.47 \mathrm{GeV}$	$0,0.094, \cdots, 1.13 \mathrm{fm}$

Optimal Fit for Unpolarized Valence Quark PDF

(isovector combination only herein)										
ID	$a(\mathrm{fm})$	$m_{\pi}(\mathrm{MeV})$	β	c_{SW}	$L^{3} \times T$	N_{cfg}				
E 1	$0.094(1)$	$358(3)$	6.3	1.205	$32^{3} \times 64$	349				

Parameters/Statistics
$\left.\begin{array}{c|c|c|c|c}\hline \text { ID } & N_{\text {vec }} & N_{\text {srcs }} & T / a & p_{z} \times\left(\frac{2 \pi}{L}\right) \\ \hline \text { E1 } & 64 & 4 & 4,6, \cdots, 14 & 0, \pm 1, \cdots, \pm 6 \\ & & & 0.38, \cdots, 1.32 \mathrm{fm} & 0,0.41, \cdots, 2.47 \mathrm{GeV}\end{array}\right) 0, \pm 1, \cdots, \pm 12, \cdots, 0.09, \cdots, 1.13 \mathrm{fm}$.

Model Averaging \& Data Cuts

Despite parameterization via Jacobi polynomials...
$>$ bias introduced with any choice of truncation/cuts on data/inclusion of systematic effect

Model Averaging \& Data Cuts

Despite parameterization via Jacobi polynomials...
$>$ bias introduced with any choice of truncation/cuts on data/inclusion of systematic effect

Akaike Information Criterion (AIC)
H. Akaike, IEEE Transactions on Automatic Control, vol.19, no.6, 716-723 (1974)
$>\quad$ weights assigned based on quality of fit, number of datapoints and parameters
$>$ ideally, averages away model biases for large number of models

$$
\operatorname{AIC}(n)=\mathcal{L}_{n}+2 p_{n}+\frac{2 p_{n}\left(p_{n}+1\right)}{\left(d_{n}-p_{n}-1\right)}
$$

Model Averaging \& Data Cuts

Despite parameterization via Jacobi polynomials...
$>$ bias introduced with any choice of truncation/cuts on data/inclusion of systematic effect

Akaike Information Criterion (AIC)
H. Akaike, IEEE Transactions on Automatic Control, vol.19, no.6, 716-723 (1974)
> weights assigned based on quality of fit, number of datapoints and parameters

$$
w^{(m)}=\frac{e^{-\frac{1}{2} \operatorname{AIC}(m)}}{\sum_{n \in \mathrm{fit}} e^{-\frac{1}{2} \mathrm{AIC}(n)}}
$$

$>$ ideally, averages away model biases for large number of models

$$
\operatorname{AIC}(n)=\mathcal{L}_{n}+2 p_{n}+\frac{2 p_{n}\left(p_{n}+1\right)}{\left(d_{n}-p_{n}-1\right)}
$$

$$
h_{ \pm}^{\mathrm{AIC}}(x)=\sum_{m \in \mathrm{fit}} w^{(m)} h_{ \pm}^{(m)}(x)
$$

L. Gamberg et al., arXiv:2205.00999 [hep-ph]

Model Averaging \& Data Cuts

Despite parameterization via Jacobi polynomials...
$>$ bias introduced with any choice of truncation/cuts on data/inclusion of systematic effect

$$
h_{ \pm}^{\mathrm{AIC}}(x)=\sum_{m \in \mathrm{fit}} w^{(m)} h_{ \pm}^{(m)}(x)
$$

> Non-singlet antiquark distribution found to be consistent with an isospin-symmetric intrinsic sea
[HadStruc] CE, C. Kallidonis,
J. Karpie, N. Karthik et al., Phys. Rev. D 105 (2022) 3, 034507

Akaike Information Criterion (AIC)
H. Akaike, IEEE Transactions on Automatic Control, vol.19, no.6, 716-723 (1974)
> weights assigned based on quality of fit, number of datapoints and parameters
$>$ ideally, averages away model biases for large number of models
$w^{(m)}=\frac{e^{-\frac{1}{2} \operatorname{AIC}(m)}}{\sum_{n \in \mathrm{fit}} e^{-\frac{1}{2} \mathrm{AIC}(n)}}$
$\operatorname{AIC}(n)=\mathcal{L}_{n}+2 p_{n}+\frac{2 p_{n}\left(p_{n}+1\right)}{\left(d_{n}-p_{n}-1\right)}$

Towards the Quark Helicity PDF

[First such global analysis] All long. polarized DIS +

Helicity asymmetry of partons within hadronic state of definite helicity

Matrix element defining helicity:
 jet/W-production @ STAR/PHENIX E.R. Nocera et al., Nucl.Phys.B 887 (2014)

Simultaneous fit of PDFs/FFs in polarized (semi-)inclusive DIS N. Sato et al., PRD 93 (2016) 7, 074005

Includes jet production @ STAR/PHENIX; PDF positivity relaxed C. Cocuzza et al., arXiv:2202.03372 [hep-ph]
$M^{\alpha}(p, z)=\langle N(p, S)| \bar{\psi}(z) \gamma^{\alpha} \gamma^{5} \Phi_{\tilde{z}}^{(f)}(\{z, 0\}) \psi(0)|N(p, S)\rangle \quad \stackrel{\text { " }{ }^{\prime \prime} \text { " component defines helicity }}{\longrightarrow} \quad-\left.2 m_{N} S^{+}[\mathcal{M}(\nu, 0)+i \nu \mathcal{N}(\nu, 0)]\right|_{\mu^{2}} \equiv-2 m_{N} S^{+} \mathcal{Y}(\nu, 0)$ $=-2 m_{N} S^{\alpha} \mathcal{M}\left(\nu, z^{2}\right)-2 i m_{N} p^{\alpha}(z \cdot S) \mathcal{N}\left(\nu, z^{2}\right)+2 m_{N}^{3} z^{\alpha}(z \cdot S) \mathcal{R}\left(\nu, z^{2}\right)$

Towards the Quark Helicity PDF

[First such global analysis] All long. polarized DIS +

Helicity asymmetry of partons within hadronic state of definite helicity

Matrix element defining helicity:

jet/W-production @ STAR/PHENIX
E.R. Nocera et al., Nucl.Phys.B 887 (2014)

Simultaneous fit of PDFs/FFs in polarized (semi-)inclusive DIS N. Sato et al., PRD 93 (2016) 7, 074005

Includes jet production @ STAR/PHENIX; PDF positivity relaxed
C. Cocuzza et al., arxiv:2202.03372 [hep-ph]

$$
M^{\alpha}(p, z)=\langle N(p, S)| \bar{\psi}(z) \gamma^{\alpha} \gamma^{5} \Phi_{\tilde{z}}^{(f)}(\{z, 0\}) \psi(0)|N(p, S)\rangle \quad \xrightarrow{\text { "+" component defines helicity }} \quad-\left.2 m_{N} S^{+}[\mathcal{M}(\nu, 0)+i \nu \mathcal{N}(\nu, 0)]\right|_{\mu^{2}} \equiv-2 m_{N} S^{+} \mathcal{Y}(\nu, 0)
$$

$$
=-2 m_{N} S^{\alpha} \mathcal{M}\left(\nu, z^{2}\right)-2 i m_{N} p^{\alpha}(z \cdot S) \mathcal{N}\left(\nu, z^{2}\right)+2 m_{N}^{3} z^{\alpha}(z \cdot S) \mathcal{R}\left(\nu, z^{2}\right)
$$

A reduced distribution to manage Wilson-line divergences...
$\mathfrak{M}\left(\nu, z^{2}\right)=\frac{M_{3}(p, z) / M_{3}(p, 0)}{M_{3}(0, z) / M_{3}(0,0)}$

$$
=\frac{\left.\mathcal{Y}\left(\nu, z^{2}\right) \mathcal{Y}(0,0)\right|_{p=z=0}+\mathcal{O}\left(m_{N}^{2} z^{2}\right) \mathcal{R}\left(\nu, z^{2}\right)}{\left.\left.\mathcal{Y}(\nu, 0)\right|_{z=0} \mathcal{Y}\left(0, z^{2}\right)\right|_{p=0}+\left.\mathcal{O}\left(m_{N}^{2} z^{2}\right) \mathcal{R}\left(0, z^{2}\right)\right|_{p=0}}
$$

Towards the Quark Helicity PDF

[First such global analysis] All long. polarized DIS +

Helicity asymmetry of partons within hadronic state of definite helicity

Matrix element defining helicity:

jet/W-production @ STAR/PHENIX
E.R. Nocera et al., Nucl.Phys.B 887 (2014)

Simultaneous fit of PDFs/FFs in polarized (semi-)inclusive DIS N. Sato et al., PRD 93 (2016) 7, 074005

Includes jet production @ STAR/PHENIX; PDF positivity relaxed
C. Cocuzza et al., arxiv:2202.03372 [hep-ph]

$$
M^{\alpha}(p, z)=\langle N(p, S)| \bar{\psi}(z) \gamma^{\alpha} \gamma^{5} \Phi_{\tilde{z}}^{(f)}(\{z, 0\}) \psi(0)|N(p, S)\rangle \quad \xrightarrow{\text { "+" component defines helicity }} \quad-\left.2 m_{N} S^{+}[\mathcal{M}(\nu, 0)+i \nu \mathcal{N}(\nu, 0)]\right|_{\mu^{2}} \equiv-2 m_{N} S^{+} \mathcal{Y}(\nu, 0)
$$

$$
=-2 m_{N} S^{\alpha} \mathcal{M}\left(\nu, z^{2}\right)-2 i m_{N} p^{\alpha}(z \cdot S) \mathcal{N}\left(\nu, z^{2}\right)+2 m_{N}^{3} z^{\alpha}(z \cdot S) \mathcal{R}\left(\nu, z^{2}\right)
$$

A reduced distribution to manage Wilson-line divergences...
$\mathfrak{M}\left(\nu, z^{2}\right)=\frac{M_{3}(p, z) / M_{3}(p, 0)}{M_{3}(0, z) / M_{3}(0,0)}$

$$
=\frac{\left.\mathcal{Y}\left(\nu, z^{2}\right) \mathcal{Y}(0,0)\right|_{p=z=0}+\mathcal{O}\left(m_{N}^{2} z^{2}\right) \mathcal{R}\left(\nu, z^{2}\right)}{\left.\left.\mathcal{Y}(\nu, 0)\right|_{z=0} \mathcal{Y}\left(0, z^{2}\right)\right|_{p=0}+\left.\mathcal{O}\left(m_{N}^{2} z^{2}\right) \mathcal{R}\left(0, z^{2}\right)\right|_{p=0}}
$$

Select Fit for Isovector Helicity PDFs

> discretization effect prominent in AIC average; net higher-twist effects consistent with zero

Phenomenological Insight

Transversity is only chiral-odd twist-2 collinear PDF
$>$ chiral-odd process needed [eg. transverse SSAs in SIDIS]
(Often used) Theory constraint: Soffer bound J. Soffer, Phys. Rev. Lett. 74, 1292 (7995)

$$
\left|h_{q / h}\left(x, \mu^{2}\right)\right| \leq \frac{1}{2}\left[f_{q / h}\left(x, \mu^{2}\right)+g_{q / h}\left(x, \mu^{2}\right)\right]
$$

[E.g] Z.-B. Kang et al., Phys. Rev. D 93, 014009 (2016); M. Radici et al., JHEP 05, 123 (2015)
U. D'Alesio, C. Flore and A. Prokudin, Phys. Lett. B 803, 135347 (2020)
M. Anselmino et al., Phys. Rev. D 87, 094019 (2013)

Phenomenological Insight

Transversity is only chiral-odd twist-2 collinear PDF
$>$ chiral-odd process needed [eg. transverse SSAs in SIDIS]
(Often used) Theory constraint: Soffer bound

$$
\left|h_{q / h}\left(x, \mu^{2}\right)\right| \leq \frac{1}{2}\left[f_{q / h}\left(x, \mu^{2}\right)+g_{q / h}\left(x, \mu^{2}\right)\right]
$$

[E.g] Z.-B. Kang et al., Phys. Rev. D 93, 014009 (2016); M. Radici et al., JHEP 05, 123 (2015)
U. D'Alesio, C. Flore and A. Prokudin, Phys. Lett. B 803, 135347 (2020)
M. Anselmino et al., Phys. Rev. D 87, 094019 (2013)

Do PDFs computed from LQCD support or challenge this bound?

$$
\mathcal{S}_{q / h}\left(x, \mu^{2}\right) \equiv f_{q / h}\left(x, \mu^{2}\right)+g_{q / h}\left(x, \mu^{2}\right)-2 h_{q / h}\left(x, \mu^{2}\right)
$$

Phenomenological Insight

Transversity is only chiral-odd twist-2 collinear PDF
$>$ chiral-odd process needed [eg. transverse SSAs in SIDIS]
(Often used) Theory constraint: Soffer bound J. Soffer, Phys. Rev. Lett. 74, 1292 (1995)

$$
\stackrel{!}{!}
$$

[E.g] Z.-B. Kang et al., Phys. Rev. D 93, 014009 (2016); M. Radici et al., JHEP 05, 123 (2015)
U. D'Alesio, C. Flore and A. Prokudin, Phys. Lett. B 803, 135347 (2020)
M. Anselmino et al., Phys. Rev. D 87, 094019 (2013)

Do PDFs computed from LQCD support or challenge this bound?
"Soffer-PDF"

$$
\mathcal{S}_{q / h}\left(x, \mu^{2}\right) \equiv f_{q / h}\left(x, \mu^{2}\right)+g_{q / h}(\underbrace{\left.x, \mu^{2}\right)-2 h_{q / h}\left(x, \mu^{2}\right)}_{\begin{array}{c}
\text { Must rescale with renormalized } \\
\text { charges for correct normalization }
\end{array}}
$$

Phenomenological Insight

Transversity is only chiral-odd twist-2 collinear PDF
$>$ chiral-odd process needed [eg. transverse SSAs in SIDIS]
(Often used) Theory constraint: Soffer bound J. Soffer, Phys. Rev. Lett. 74, 1292 (1995)

$$
\left|h_{q / h}\left(x, \mu^{2}\right)\right| \leq \frac{1}{2}\left[f_{q / h}\left(x, \mu^{2}\right)+g_{q / h}\left(x, \mu^{2}\right)\right]
$$

[E.g] Z.-B. Kang et al., Phys. Rev. D 93, 014009 (2016); M. Radici et al., JHEP 05, 123 (2015)
U. D'Alesio, C. Flore and A. Prokudin, Phys. Lett. B 803, 135347 (2020)
M. Anselmino et al., Phys. Rev. D 87, 094019 (2013)
"Soffer-PDF"

Do PDFs computed from LQCD support or challenge this bound?

Must rescale with renormalized charges for correct normalization
$>\quad$ shape of "Soffer-PDF" driven by g_{T}^{u-d}
> caveat - model bias (no AIC here)
> (Soffer bound as a prior):
PDFs have potential to constrain, or provide precise upper bound on g_{T}^{u-d}

Next Steps - Off-Forward Matrix Elements

Relevant in variety of exclusive channels
$>$ DVCS/DVMP: (e.g. E12-06-113 [HRS] \& E12-11-003 [CLAS12])
Eur.Phys.J.A 52 (2016) 6, 157; Eur.Phys.J.A 52 (2016) 6, 151

$\mathbb{M}^{\mu}\left(p_{f}, p_{i}, z\right) \equiv\left\langle N\left(p_{f}\right)\right| \bar{\psi}(-z / 2) \frac{\tau^{3}}{2} \gamma^{\mu} W(-z / 2, z / 2 ; A) \psi(z / 2)\left|N\left(p_{i}\right)\right\rangle$
A. Radyushkin, Phys. Rev. D100, 116011 (2019)
A. Radyushkin, arXiv: Int.J.Mod.Phys.A 35 (2020) 05, 2030002

Next Steps - Off-Forward Matrix Elements

$\left.\left\lvert\, \mathbb{M}^{\mu}\left(p_{f}, p_{i}, z\right) \equiv\left\langle N\left(p_{f}\right)\right| \bar{\psi}(-z / 2) \frac{\tau^{3}}{2} \gamma^{\mu} W(-z / 2, z / 2 ; A) \psi\right. \right\rvert\,$

Next Steps - Off-Forward Matrix Elements

Relevant in variety of exclusive channels
$>$ DVCS/DVMP: (e.g. E12-06-713 [HRS] \& E12-

Renormalize $($ ratio $) \rightarrow$ match onto x-dependence of GPD $\left\{\widetilde{\mathfrak{M}}\left(\nu, \xi, t, z^{2}\right)=\mathcal{K}\left(x \nu, \xi \nu, z^{2} \mu^{2} ; \alpha_{s}\right) \otimes H\left(x, \xi, t, \mu^{2}\right)\right.$

Closing Remarks

Hadronic structure accessible from certain lattice calculable matrix elements
$>$ short-distance factorization
$>$ considerable progress in factorizable methods
K. Cichy \& M. Constantinou, Adv.High Energy Phys. (2019), 3036904
K. Cichy, Lattice 2027, arXiv: 2110.07440 [hep-lat]; M. Constantinou, Eur. Phys. J. A 57, 77 (2021) Isovector twist-2 quark PDFs of Nucleon

$m_{\pi}[\mathrm{MeV}]$	$f_{q_{ \pm} / N}\left(x, \mu^{2}\right)$	$g_{q_{ \pm} / N}\left(x, \mu^{2}\right)$	$h_{q_{ \pm} / N}\left(x, \mu^{2}\right)$
$0.094(1)$	published	Forthcoming	published
$278(4)$	preliminary	preliminary	Preliminary
$0.094(1)$	Ongoing	Ongoing	Ongoing
$170(5)$			
$0.091(2)$			

$>\quad$ statistical precision afforded by use of distillation and its union with momentum smearing idea
> systematic effects can be reliably addressed

HadStruc Collaboration

Robert Edwards, CE, Nikhil Karthik,
Jianwei Qiu, David Richards, Eloy Romero, Frank Winter ${ }^{[1]}$

Balint Joó ${ }^{[2]}$

Carl Carlson, Chris Chamness, Tanjib Khan, Christopher Monahan, Kostas Orginos, Raza Sufian ${ }^{[3]}$

$$
\text { Wayne Morris, Anatoly Radyushkin }{ }^{[4]}
$$

$$
\text { Joe Karpie }{ }^{[5]}
$$

$$
\text { Savvas Zafeiropoulos }{ }^{[6]}
$$

$$
\text { Yan-Qing } \mathrm{Ma}^{[7]}
$$

Jefferson Lab ${ }^{[1]}$, Oak Ridge ${ }^{[2]}$, William and Mary ${ }^{[3]}$, Old Dominion University ${ }^{[4]}$, Columbia University ${ }^{[5]}$, Aix Marseille University ${ }^{[6]}$, Peking University ${ }^{[7]}$

Obtaining the Pseudo-Distributions

Needed correlation functions:

$$
\begin{aligned}
& C_{m n}(t)=\sum_{\vec{x}, \vec{y}}\langle 0| \mathcal{O}_{m}(t, \vec{x}) \mathcal{O}_{n}^{\dagger}(0, \vec{y})|0\rangle \\
& \quad \equiv \operatorname{Tr}\left[\Phi_{m}(t) \otimes \tau(t, 0) \tau(t, 0) \tau(t, 0) \otimes \Phi_{n}(0)\right]
\end{aligned}
$$

Excited-state contamination + broken symmetries
> interpolators that best reflect properties of desired state

$$
\langle 0| \hat{\mathcal{O}}(\vec{p})|h(\vec{p})\rangle \gg\langle 0| \hat{\mathcal{O}}(\vec{p})\left|h^{\prime}(\vec{p})\right\rangle
$$

Distillation: Low-rank and non-iterative approximation of a gauge-covariant smearing kernel (typically the Jacobi smearing kernel)
M. Peardon et al., Phys. Rev. D80, 054506 (2009)

$$
\square(\vec{x}, \vec{y} ; t)_{a b}=\sum_{k=1}^{R_{D}} \xi_{a}^{(k)}(\vec{x}, t) \xi_{b}^{(k) \dagger}(\vec{y}, t)
$$

w/ momentum smearing algorithm:
CE et al., PRD 103 (2021) 3, 034502

Wick contractions factorize distillation space

Perambulators	$\tau_{\alpha \beta}^{k l}\left(t_{f}, t_{0}\right)=\xi^{(k) \dagger}\left(t_{f}\right) M_{\alpha \beta}^{-1}\left(t_{f}, t_{0}\right) \xi^{(l)}\left(t_{0}\right)$
Elementals	$\Phi_{\mu \nu \sigma}^{(i, j, k)}(t)=\epsilon^{a b c}\left(\mathcal{D}_{1} \xi^{(i)}\right)^{a}\left(\mathcal{D}_{2} \xi^{(j)}\right)^{b}\left(\mathcal{D}_{3} \xi^{(k)}\right)^{c}(t) S_{\mu \nu \sigma}$

$$
\Xi_{\alpha \beta}^{(l, k)}\left(T_{f}, T_{0} ; \tau, z_{3}\right)=\sum_{\vec{y}} \xi^{(l) \dagger}\left(T_{f}\right) D_{\alpha \sigma}^{-1}\left(T_{f}, \tau ; \vec{y}+z_{3} \hat{z}\right)[\Gamma]_{\sigma \rho} \Phi_{\tilde{z}}^{(f)}\left(\left\{\vec{y}+z_{3} \hat{z}, \vec{y}\right\}\right) D_{\rho \beta}^{-1}\left(\tau, T_{0} ; \vec{y}\right) \xi^{(k)}\left(T_{0}\right)
$$

Amortization of inversion cost

All Dirac structures and Wilson line lengths realizable with single inversion overhead

Mapping any momentum dep. requires only contractions

Nucleon Interpolators with Distillation

Excited-state contamination
> optimize operator/state overlaps - saturate correlation functions at early temporal separations

Generic light-quark nucleon interpolator smeared with distillation

$$
\mathcal{O}_{i}(t)=\epsilon^{a b c}\left(\mathcal{D}_{1} \square u\right)_{a}^{\alpha}\left(\mathcal{D}_{2} \square d\right)_{b}^{\beta}\left(\mathcal{D}_{3} \square u\right)_{c}^{\gamma}(t) S_{i}^{\alpha \beta \gamma}
$$

Discretized continuum-like interpolators of definite permutational symmetries

$$
\mathcal{O}_{B}=\left(\mathcal{F}_{\mathcal{P}(\mathrm{F})} \otimes \mathcal{S}_{\mathcal{P}(\mathrm{S})} \otimes \mathcal{D}_{\mathcal{P}(\mathrm{D})}\right)\left\{q_{1} q_{2} q_{3}\right\} \quad\left(N_{M} \otimes\left(\frac{1}{2}^{+}\right)_{M}^{1} \otimes D_{L=1, A}^{[2]}\right)^{J^{P}=\frac{2^{+}}{+}} \equiv N^{2} P_{A} \frac{1}{2}^{+}
$$

(Generally) Continum spins reducible under octahedral group

Canonical subductions

$>$ spinors/derivatives combined into object of definite spin/parity

$$
\mathcal{O}_{n_{\Lambda, r}}^{\{J\}}=\sum_{m} S_{n_{\Lambda, r}}^{J, m} \mathcal{O}^{\{J, m\}}
$$

R. Edwards, et. al., Phys. Rev. D84, 074508 (2071) J. Dudek and R. Edwards, Phys. Rev. D85, 054016 (2012)

Helicity subductions

> boost breaks (double-cover) octahedral symmetry to little groups

$$
\left[\mathbb{O}^{J^{p}, \lambda}(\vec{p})\right]^{\dagger}=\sum_{m} \mathcal{D}_{m, \lambda}^{(J)}(R)\left[O^{J^{p}, m}(\vec{p})\right]^{\dagger}
$$

> subduce into little groups

$$
\left[\mathbb{O}_{\Lambda, \mu}^{J^{P},|\lambda|}(\vec{p})\right]^{\dagger}=\sum_{\hat{\lambda}= \pm|\lambda|} S_{\Lambda, \mu}^{\tilde{n}, \hat{\lambda}}\left[\mathbb{O}^{J^{P}, \hat{\lambda}}(\vec{p})\right]^{\dagger}
$$

Efficacy of Distillation

B. Joó et al., JHEP 12 (2019) 081 [Gaussian smearing]
$N_{\text {cfg }}=417 \quad N_{\text {src }}=8 \quad N_{\zeta}=5$
$N_{\text {inv } / \mathrm{ffg}} \simeq 8.6 \mathrm{k}$

CE, R. Edwards, C. Kallidonis et al., JHEP 11 (2021) 148 [Distillation]

$$
N_{\mathrm{cfg}}=349 \quad N_{\mathrm{src}}=4 \quad N_{\zeta}=3
$$

$$
N_{\mathrm{inv} / \mathrm{cfg}} \simeq 16 \mathrm{k}
$$

Unpolarized Reduced Pseudo-ITD

Select Transversity Matrix Element Extractions

Transversity Reduced Pseudo-ITD

Pheno.-type parameterization

$>$ Twist-2 OPE - Taylor series in loffe-time
> plus leading discretization/higher-twist

$$
g_{T}^{-1} h_{ \pm}(x)=N_{ \pm} x^{\alpha_{ \pm}}(1-x)^{\beta_{ \pm}}\left(1+\gamma_{ \pm} \sqrt{x}+\delta_{ \pm} x\right)
$$

Quark Transversity from Pseudo-distributions

Distribution of transversely polarized quarks within transversely polarized hadron

> only chiral-odd twist-2 collinear PDF - need to couple to chiral-odd process [eg. transverse SSAs in SIDIS]

[1st such global analysis] Transverse SSAs in pion production via proton/deuteron targets
H.-W. Lin, et al., PRL 120152502 (2018)

SIDIS + transverse SSAs via SIA (e+e-) \& pp-collisions

Matrix element defining transversity:

$$
\begin{aligned}
& M^{\alpha \beta}(p, z)=\langle h(p)| \bar{\psi}(z) i \sigma^{\alpha \beta} \gamma^{5} \Phi_{\bar{z}}^{(f)}(\{z, 0\}) \psi(0)|h(p)\rangle \\
& =2\left(p^{\alpha} S_{\perp}^{\beta}-p^{\beta} S_{\perp}^{\alpha}\right) \mathcal{M}\left(\nu, z^{2}\right)+2 i m_{N}^{2}\left(z^{\alpha} S_{\perp}^{\beta}-z^{\beta} S_{\perp}^{\alpha}\right) \mathcal{N}\left(\nu, z^{2}\right)+2 m_{N}^{2}\left(z^{\alpha} p^{\beta}-z^{\beta} p^{\alpha}\right)\left(z \cdot S_{\perp}\right) \mathcal{R}\left(\nu, z^{2}\right)
\end{aligned}
$$

NLO coefficients match to transversity, but normalization left to future work
V.M. Braun, Y.Ji and A. Vladimirov et al., JHEP 10,087 (2021) CE, J. Karpie, N. Karthik et al., PRD 105 (2022) 3, 034507

Suitable choice of kinematics isolates amplitude sensitive to leading-twist PDF

$$
\left\langle N\left(p_{z}, \mathbf{S}_{\perp}\right)\right| \bar{\psi} \gamma_{5} \gamma_{4} \gamma_{T} \Phi(\{z, 0\}) \frac{\tau^{3}}{2} \psi(0)\left|N\left(p_{z}, \mathbf{S}_{\perp}\right)\right\rangle=2 E \mathbf{S}_{\perp} \mathcal{M}\left(\nu, z^{2}\right)
$$

$$
\frac{\left\langle x^{0}\right\rangle}{g_{T}}(\mu)=\int_{0}^{1} d x \frac{h(x, \mu)}{g_{T}(\mu)}=1
$$

Matching Kernels to Quark PDFs

$\mathfrak{M}\left(\nu, z^{2}\right)=\left\{\delta(1-u)-\frac{\alpha_{s} C_{F}}{2 \pi} \int_{0}^{1} d u\left[\ln \left(\frac{e^{2 \gamma_{E}+1} z^{2} \mu^{2}}{4}\right) B(u)+L(u)\right]\right\} \mathcal{Q}\left(u \nu, \mu^{2}\right)+\mathcal{O}\left(z^{2} \Lambda_{\mathrm{QCD}}^{2}\right)$

Unpolarized:

$$
B(u)=\left[\frac{1+u^{2}}{1-u}\right]_{+} \quad L(u)=\left[4 \frac{\ln (1-u)}{1-u}-2(1-u)\right]_{+}
$$

Helicity:

$$
B(u)=\left[\frac{1+u^{2}}{1-u}\right]_{+} \quad L(u)=\left[4 \frac{\ln (1-u)}{1-u}-4(1-u)\right]_{+}
$$

Transversity:

$$
B(u)=\left[\frac{2 u}{1-u}\right]_{+} \quad L(u)=4\left[\frac{\ln (1-u)}{1-u}\right]_{+}
$$

Matching Kernels to Quark GPDs

$\mathcal{G}_{q / h}^{\left[\gamma^{+}\right]}=\left.\frac{1}{2} \int \frac{\mathrm{~d} z^{-}}{2 \pi} e^{i x P^{+} z^{-}}\left\langle h\left(p_{f}\right)\right| \bar{q}\left(-\frac{z}{2}\right) \gamma^{+} \Phi_{z^{-}}^{(f)}\left(\left\{-\frac{z}{2}, \frac{z}{2}\right\}\right) q\left(\frac{z}{2}\right)\left|h\left(p_{i}\right)\right\rangle\right|_{z^{+}=0, z_{T}=0}$

$$
\begin{aligned}
& \mathbb{M}^{\mu}\left(p_{f}, p_{i}, z\right) \equiv\left\langle N\left(p_{f}\right)\right| \bar{\psi}(-z / 2) \frac{\tau^{3}}{2} \gamma^{\mu} W(-z / 2, z / 2 ; A) \psi(z / 2)\left|N\left(p_{i}\right)\right\rangle \\
& \mathbb{M}^{\mu}\left(p_{f}, p_{i}, z\right)=\left\langle\left\langle\gamma^{\mu}\right\rangle\right\rangle M\left(\nu_{f}, \nu_{i}, t ; z^{2}\right)+\langle\langle 1\rangle\rangle z^{\mu} N\left(\nu_{f}, \nu_{i}, t ; z^{2}\right)-\frac{i}{2 m_{N}}\left\langle\left\langle\sigma^{\mu \nu}\right\rangle\right\rangle\left(p_{i}-p_{f}\right)_{\nu} L\left(\nu_{f}, \nu_{i}, t ; z^{2}\right)
\end{aligned}
$$

$$
\widetilde{\mathfrak{M}}\left(\nu, \xi, t, z^{2}\right)=\widetilde{\mathcal{I}}\left(\nu, \xi, t, \mu^{2}\right)-\frac{\alpha_{s} C_{F}}{2 \pi} \int_{0}^{1} \mathrm{~d} u \widetilde{\mathcal{I}}\left(u \nu, \xi, t, \mu^{2}\right)\left\{\ln \left[\frac{e^{2 \gamma_{E}+1}}{4} z^{2} \mu^{2}\right] B_{G}(u, \bar{u}, \xi, \nu)+L_{G}(u, \bar{u}, \xi, \nu)\right\}+\mathcal{O}\left(z^{2} \Lambda_{Q \mathrm{CD}}^{2}\right)
$$

$$
\left[\frac{2 u}{1-u}\right]_{+} \cos (\bar{u} \xi \nu)+\frac{\sin (\bar{u} \xi \nu)}{\xi \nu}-\frac{1}{2} \delta(\bar{u})
$$

$$
4\left[\frac{\ln (1-u)}{1-u}\right]_{+} \cos (\bar{u} \xi \nu)-2 \frac{\sin (\bar{u} \xi \nu)}{\xi \nu}+\delta(\bar{u})
$$

[^0]: Eg. J. Collins et al., Adv. Ser. Direct. High Energy Phys. 5, 1 (1989)

[^1]: Eg. J. Collins et al., Adv. Ser. Direct. High Energy Phys. 5, 1 (1989)

