Nucleon form factors with sLapH OR Nucleon-pion sigma term from MDWF on HISQ

Nucleon form factors with sLapH OR

-Nucleon-pion sigma term from MDWF on HISQ Elastic nucleon-pion scattering at $M\pi \approx 200$ MeV from lattice QCD

Nucleon form factors with sLapH OR

-Nucleon-pion sigma term from MDWF on HISQ Elastic nucleon-pion scattering at $M\pi \approx 200$ MeV from lattice QCD

Search...

Help | Advanced S

High Energy Physics - Lattice

[Submitted on 8 Aug 2022]

Elastic nucleon-pion scattering at $m_\pi \approx 200~{ m MeV}$ from lattice QCD

John Bulava, Andrew D. Hanlon, Ben Hörz, Colin Morningstar, Amy Nicholson, Fernando Romero-López, Sarah Skinner, Pavlos Vranas, André Walker-Loud

□John Bulava, Andrew Hanlon, Ben Hörz, Colin Morningstar, Amy Nicholson, Fernando Romero-López, Sarah Skinner, Pavlos Vranas, André Walker-Loud

arXiv:2208.03867

□ Single CLS ensemble (D200)

 \Box a $\approx 0.063 \text{ fm}, V=64^3 \text{x} 128, N_{\text{cfg}}=2000$

 $\square M\pi \approx 200 \text{ MeV}, \quad M\pi L \approx 4.2, \quad \text{tr}(M_q) = \text{tr}(M_q^{\text{phys}}), \quad \rightarrow M_K \approx 480 \text{ MeV}$

- □ What were the goals of this calculation?
 - ☐ This is part of a large effort to understand two (and more) hadron interactions from QCD
 - \square NN, N π , YN, YY, ..., N $\pi\pi$, NNN?
 - $\square N\pi$ scattering is important to include in single-nucleon structure/form-factor calculations to test our understanding of excited states
 - $\square N\pi$ scattering is essential to study the $N \rightarrow N\pi$, Δ transition matrix elements
 - ☐ We are utilizing a variational basis of interpolating operators to have positive-definite two-hadron correlators
 - □ To mitigate the growth in contraction cost of the distillation method the number of eigenvectors of the 3D Laplacian grows with V₃ for fixed smearing profile we are using the stochastic Laplacian Heaviside (sLapH) method

 Peardon et al. 0907.1913, Morningstar et al. 1104.3870
 - use a noise basis between the Laplacian eigenvectors and solutions of D-1

- □ What were the goals of this calculation?
 - □ Is the sLapH method capable with reasonable statistics/resources in achieving precise estimates of the interaction energies/scattering amplitudes at light pion masses?
 - It seems the answer is yes, fortunately
 - □ To carry out the study, we used

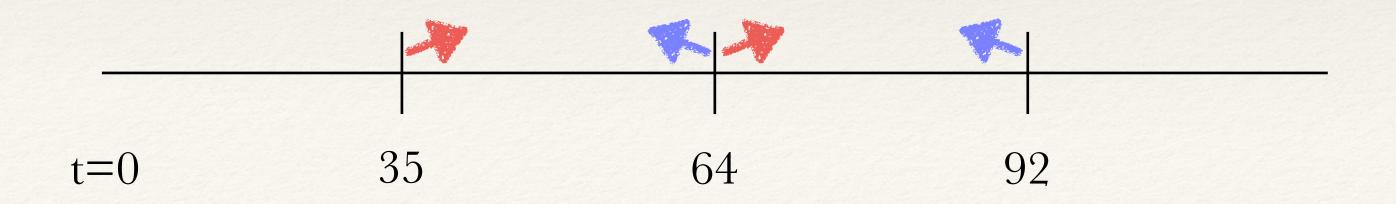
$N_{ m D}$	$(\rho, n_{ ho})$	$N_{ m ev}$	$N_{ m R}^{ m fix}$	$N_{ m R}^{ m rel}$	Noise dilution	N_{t_0}
2560 2176	(0.1,36)	448	6	2	$(TF,SF,LI16)_{fix}(TI8,SF,LI16)_{rel}$	4

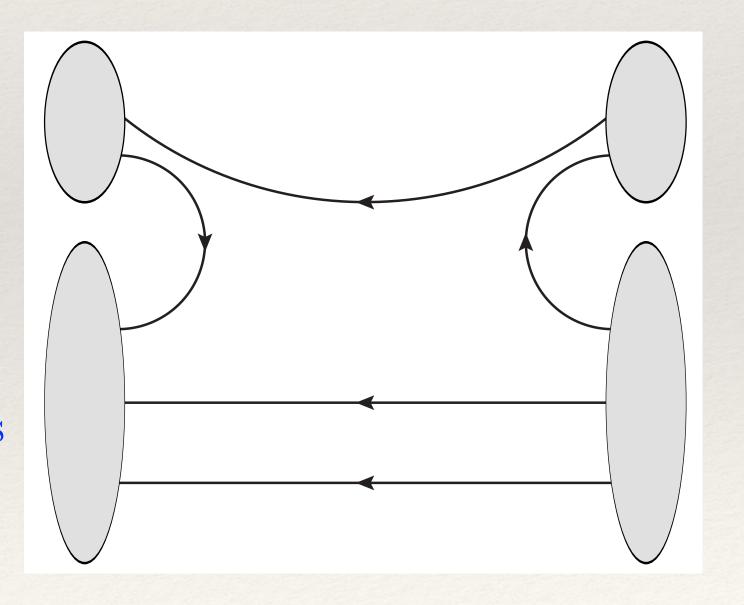
 $N_{\rm D}$ Dirac inversions per config

 $N_{\rm R}^{\rm fix}$ No. of noise sources for fixed lines

 $N_{\rm ev}$ No. of eigenvectors of 3D Laplacian

 $N_{\rm R}^{\rm rel}$ No. of noise sources for relative lines





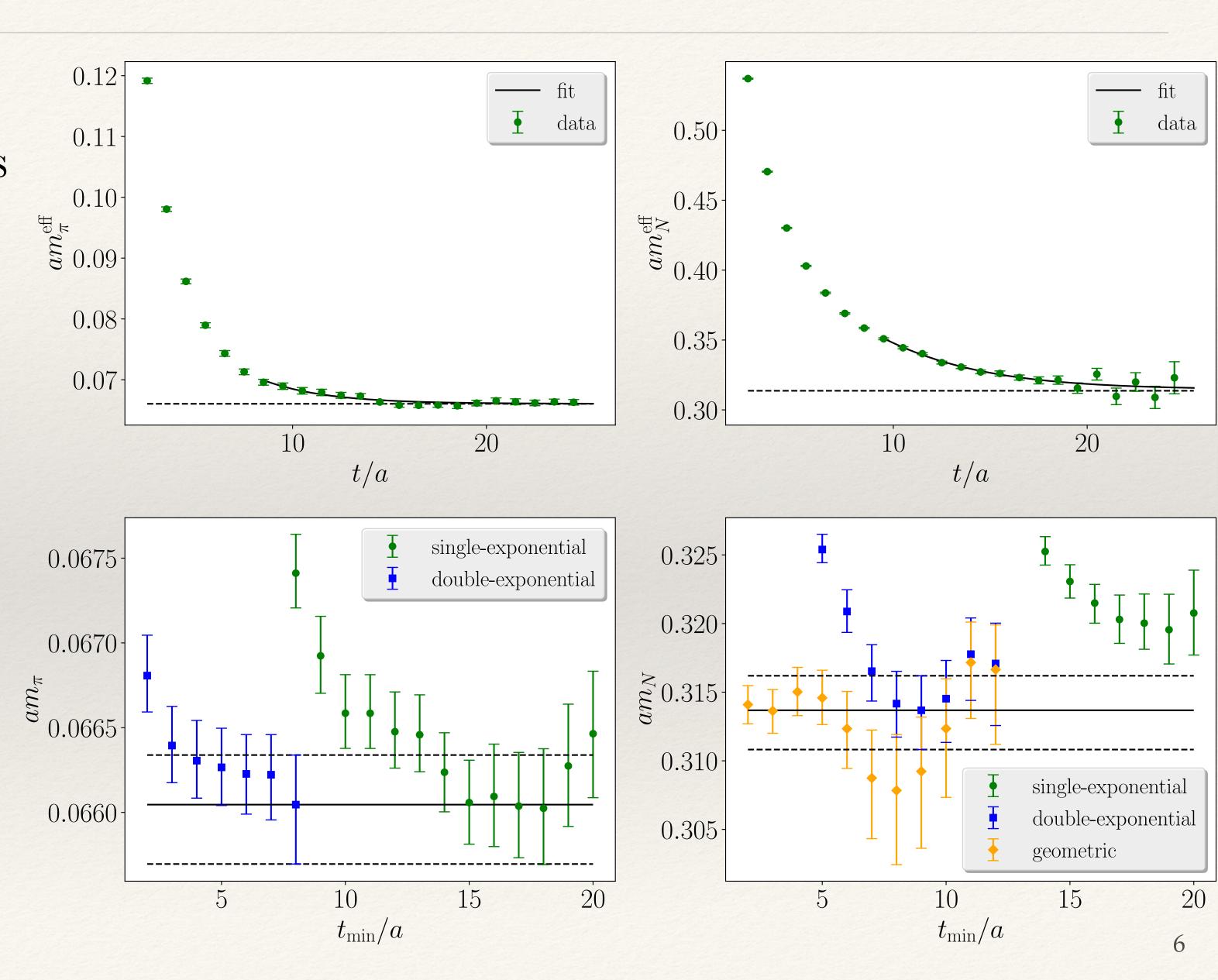
Results

We explored multi-exponential fits as well as a "geometric series" fit

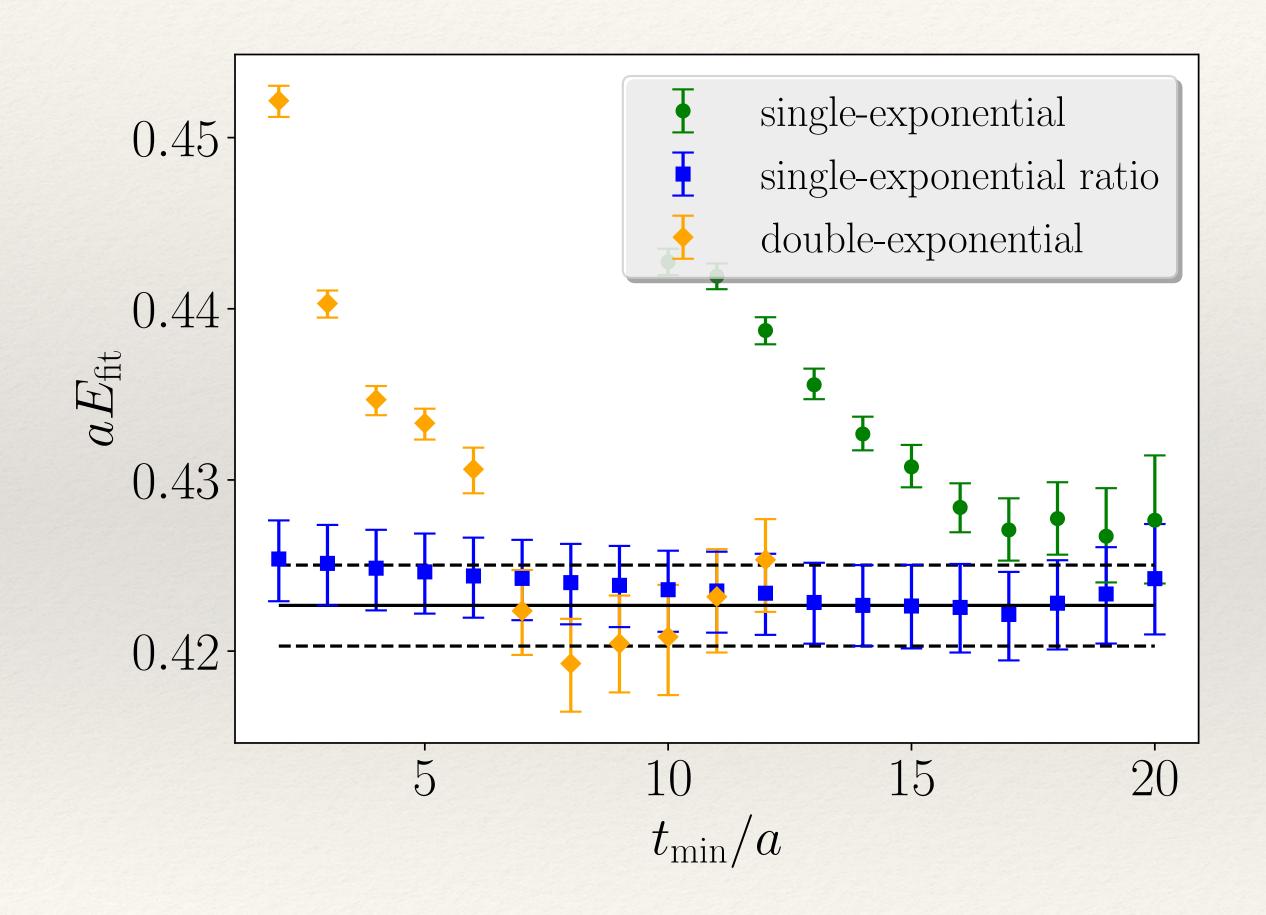
$$C_{\text{geom.}}(t) = \frac{Ae^{-E_0t}}{1 - Be^{-\Delta Et}}$$

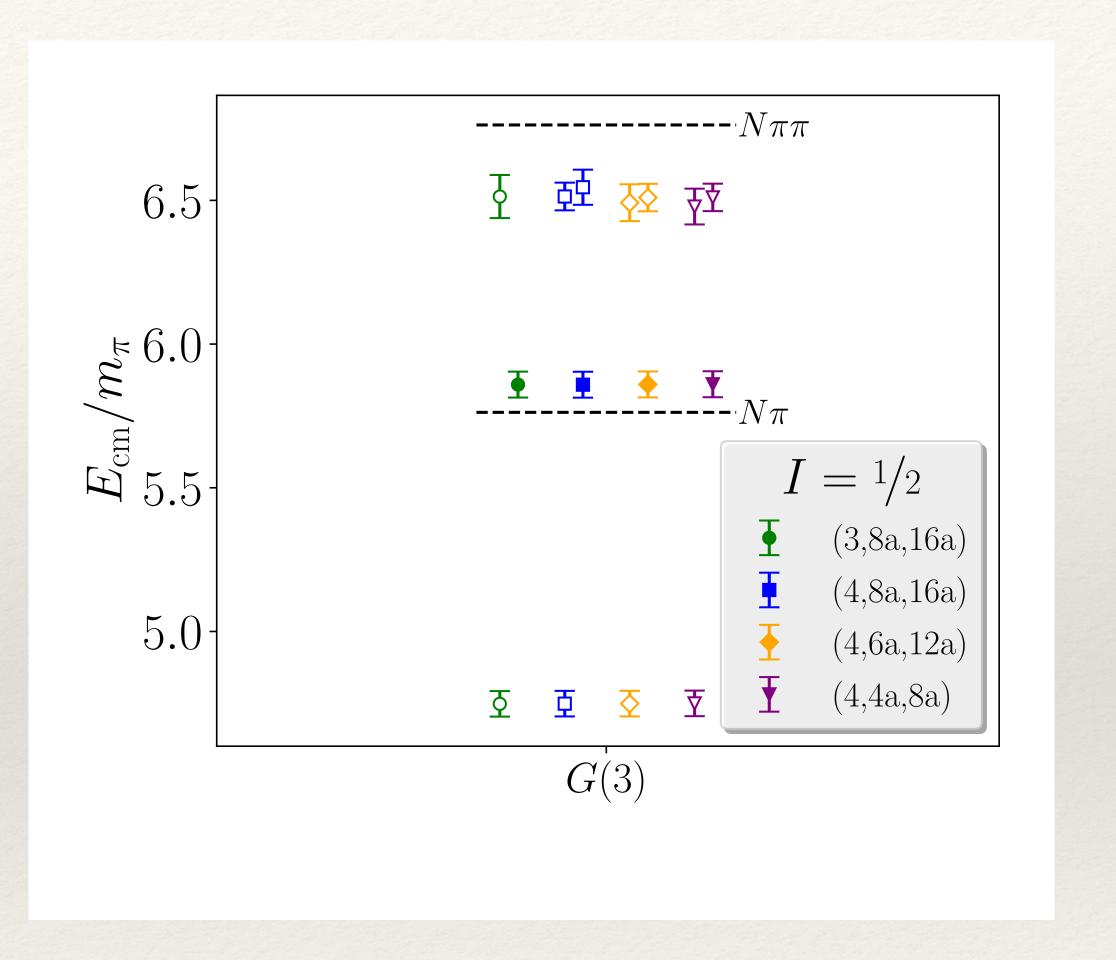
- This GS fit does quite well
- Our interest is quantifying uncertainty on ground state
- ☐ We also tried a multi-state version of the GS ansatze

$$C_{\text{geom.}}^{N}(t) = \frac{Ae^{-E_0t}}{1 - \sum_{n=1}^{N-1} B_n e^{-\Delta E_n t}}$$



\square Parity Odd Results - S-wave $N\pi$

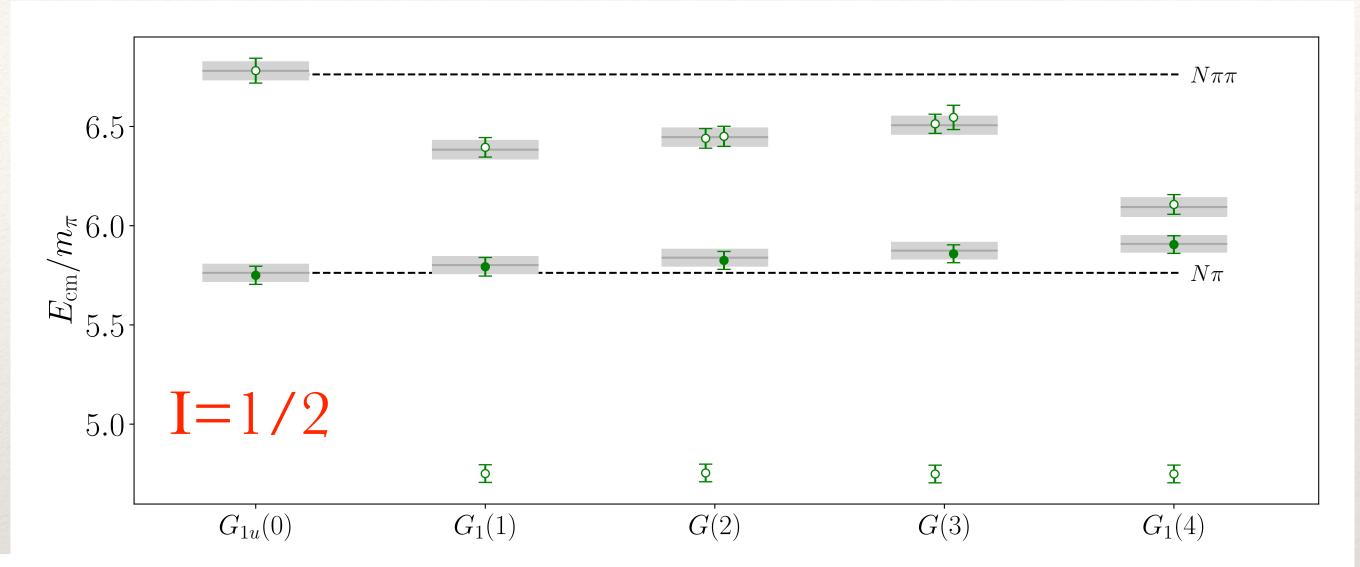


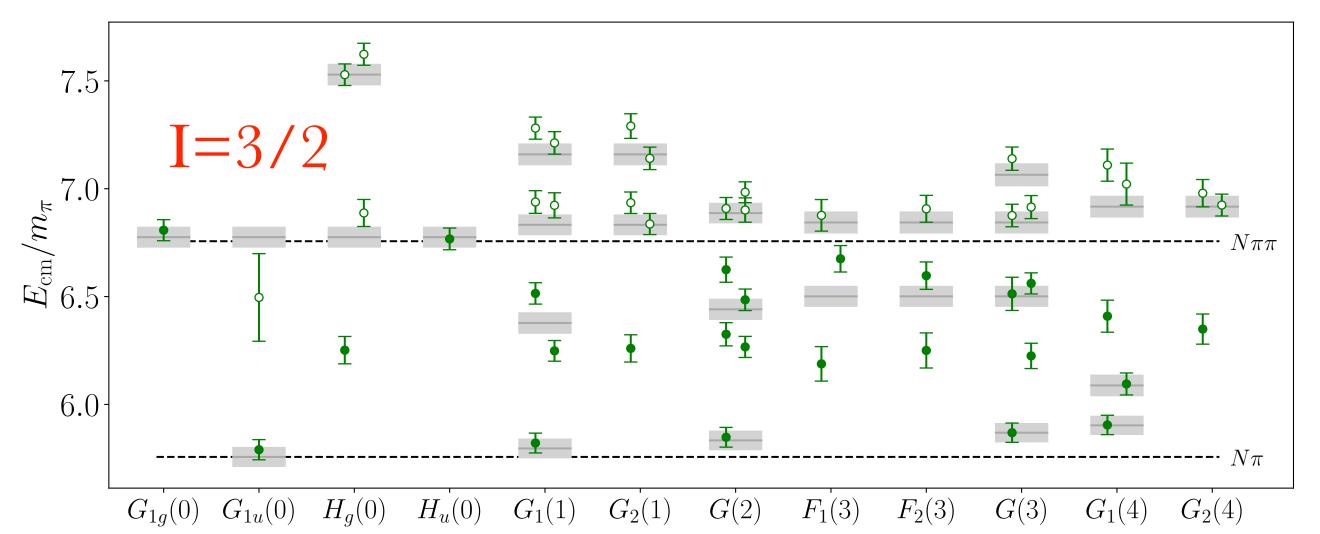


□ Various irreps used to determine the spectrum

$oldsymbol{d}$	Λ	dim.	contributing $(2J, \ell)^{n_{\text{occ}}}$ for $\ell_{\text{max}} = 2$
(0,0,0)	$G_{1\mathrm{u}}$	2	(1,0)
	G_{1g}	2	(1,1)
	$H_{ m g}$	4	(3,1), (5,2)
	$H_{ m u}$	4	(3,2), 5,2)
	$G_{2\mathrm{g}}$	2	(5,2)
(0, 0, n)	G_1	2	(1,0), (1,1), (3,1), (3,2), (5,2)
	G_2	2	$(3,1), (3,2), (5,2)^2$
(0, n, n)	G	2	$(1,0), (1,1), (3,1)^2, (3,2)^2, (5,2)^3$
(n, n, n)	G	2	$(1,0), (1,1), (3,1), (3,2), (5,2)^2$
	F_1	1	(3,1), (3,2), (5,2)
	F_2	1	(3,1), (3,2), (5,2)

Note: the gray bands and green energy levels are correlated, which is not reflected visually in the plots





□FV Spectrum to Scattering Amplitudes [Lüscher, ... many others]

$$\det[\tilde{K}^{-1}(E_{\rm cm}) - B^{P}(E_{\rm cm})] + O(e^{-ML}) = 0$$

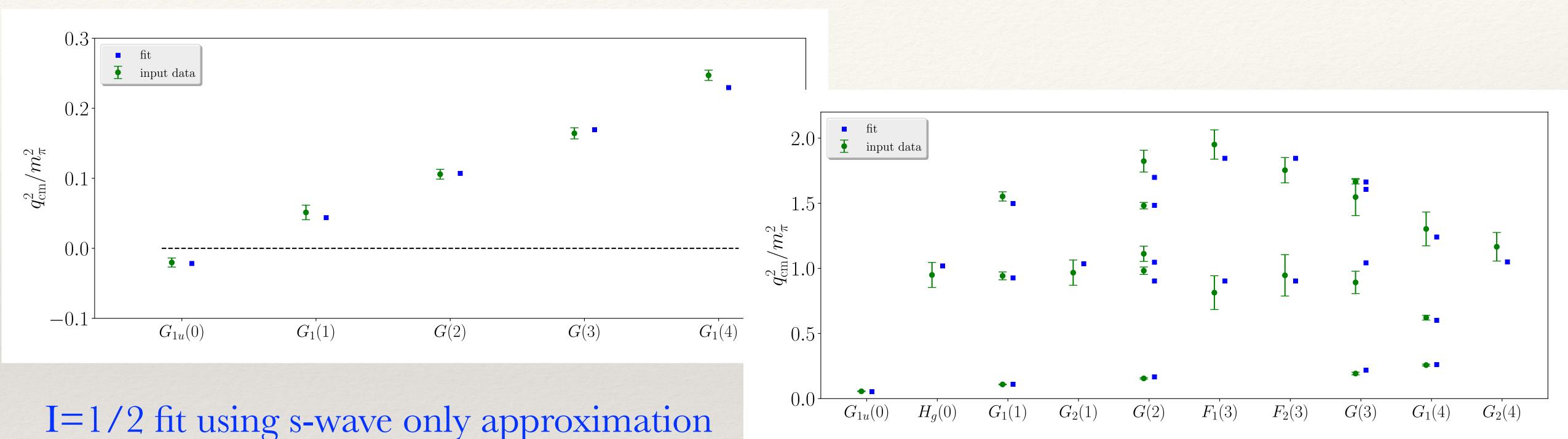
- $\square \tilde{K}$ proportional to the K-matrix
- $\square B^{P}(E_{cm})$ is the "Box Matrix" that encodes information about the finite-volume and BCs

□FV Spectrum to Scattering Amplitudes [Lüscher, ... many others]

$$\det[\tilde{K}^{-1}(E_{\rm cm}) - B^{P}(E_{\rm cm})] + O(e^{-ML}) = 0$$

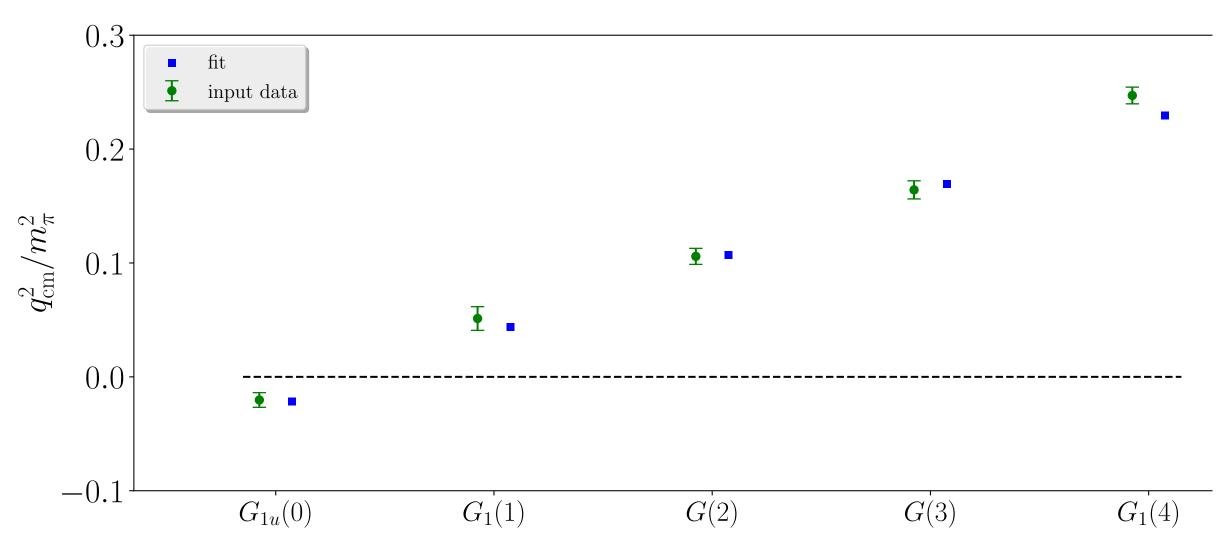
- We try 2 strategies to fit the results:
 - □ Spectrum Method
 - □ Use model parameters of interaction to predict energies (effective range expansion)
 - □ Vary parameters to minimize discrepancy with numerically determined spectrum
 - Determinant Residual Method
 - □ Use energies and model parameters to evaluate the determinant (above)
 - □ Vary parameters to minimize the determinant
- □Both methods give consistent results
 - Ispectrum method is more precise, and more able to constrain higher partial waves
 - \square net-residual method is noisier and typically has smaller $\chi 2$

□FV Spectrum to Scattering Amplitudes - spectrum method comparison

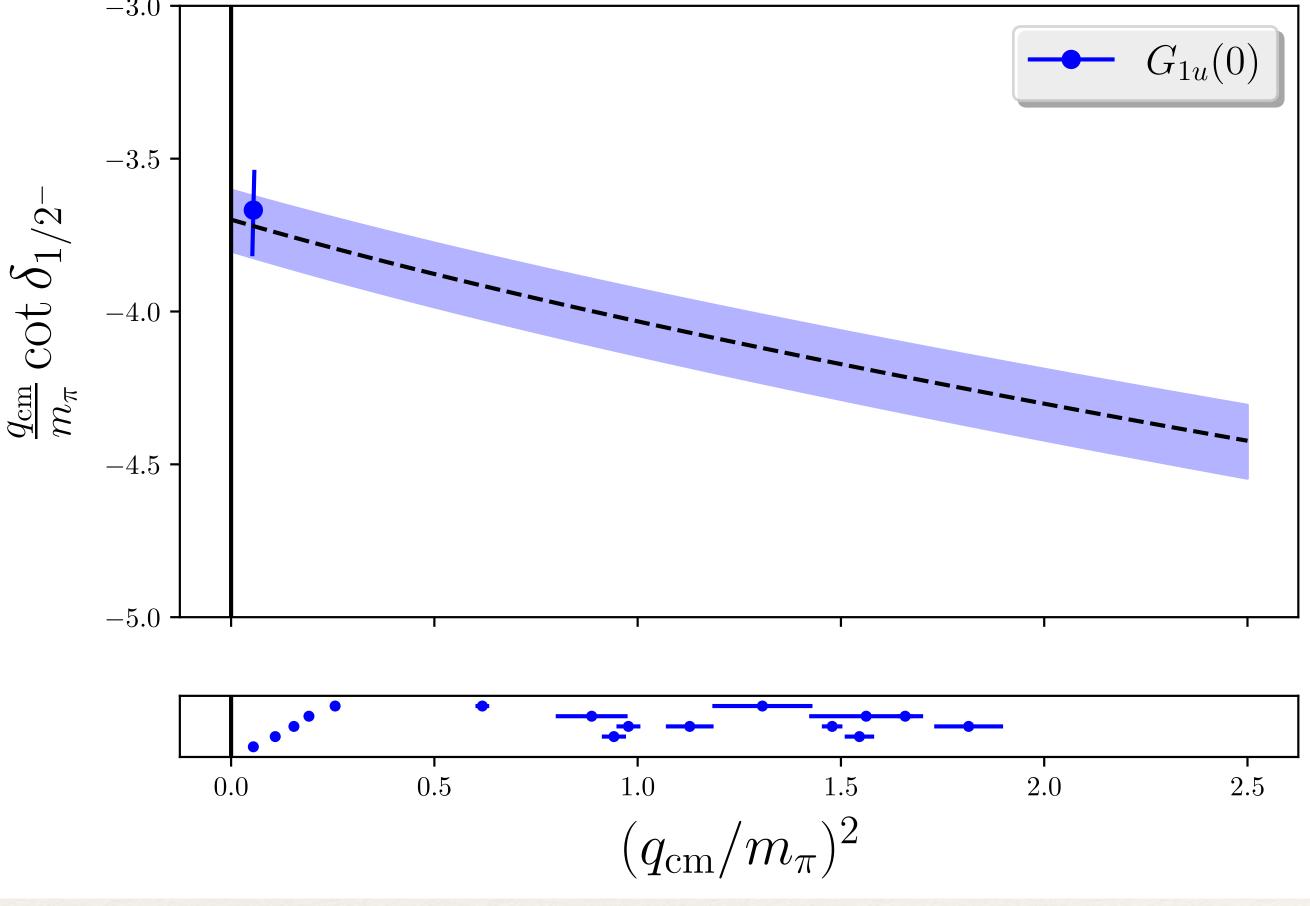


I=3/2 fit using s- and p-wave approximation

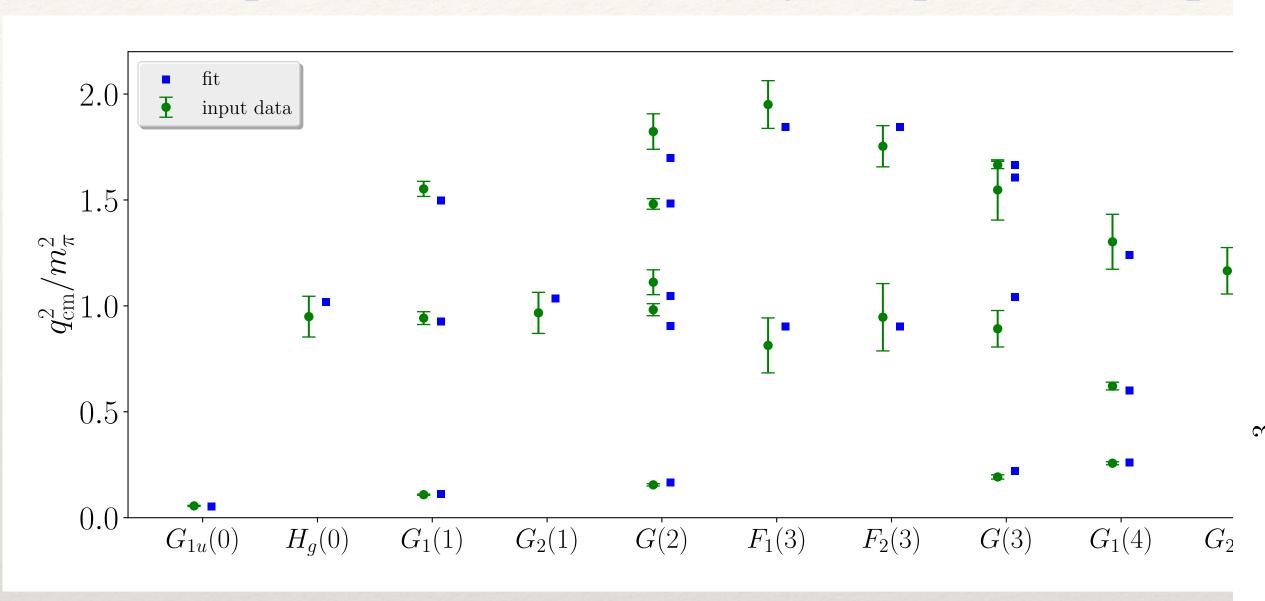
□FV Spectrum to Scattering Amplitudes - spectrum method comparison - resulting amplitude



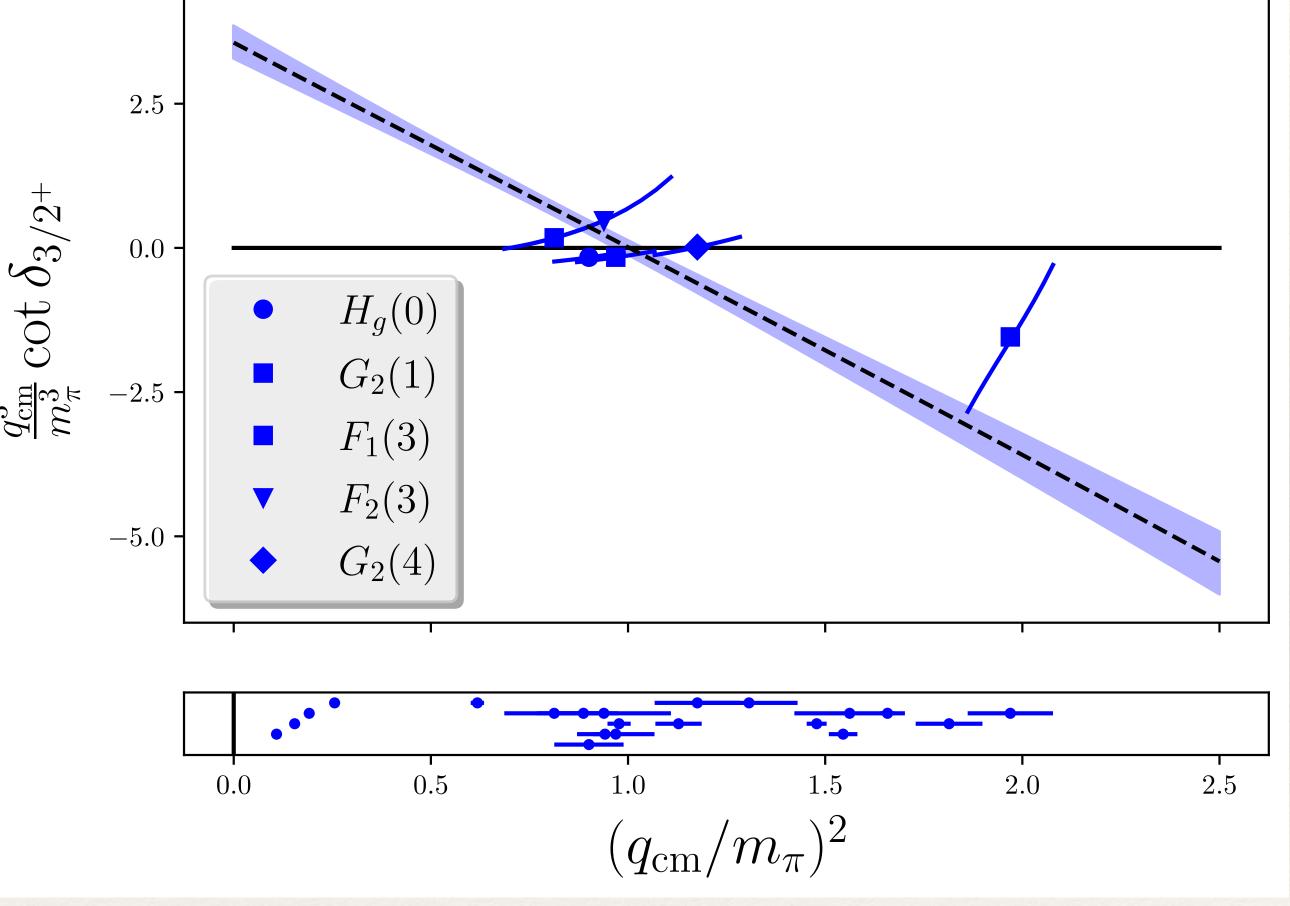
NOTE: global fit - only showing data from 1 irrep



□FV Spectrum to Scattering Amplitudes - spectrum method comparison - resulting amplitude



I=3/2 fit using s- and p-wave approximation



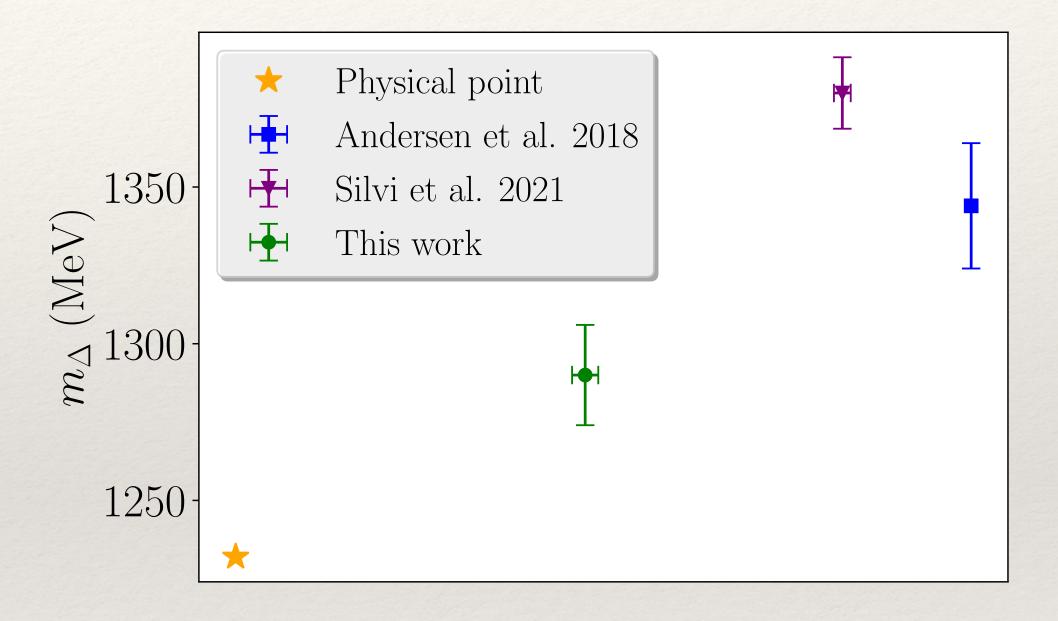
Results for scattering lengths and effective Delta-resonance parameters

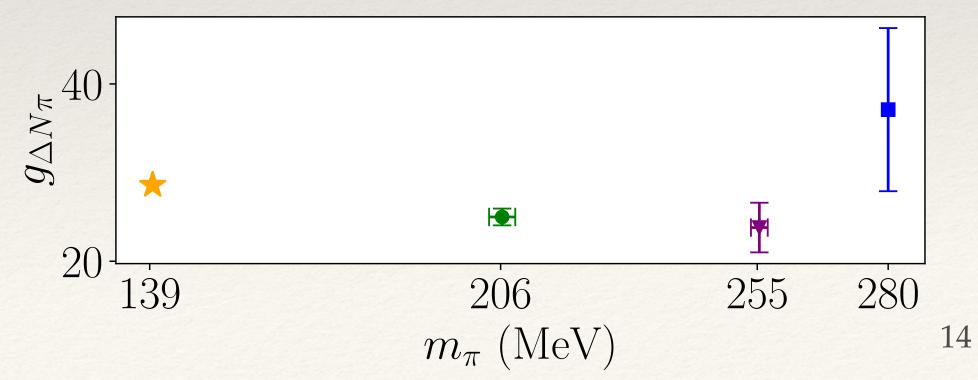
$$m_{\pi}a_0^{3/2} = -0.2735(81), \qquad m_{\pi}a_0^{1/2} = 0.142(22),$$

$$\frac{m_{\Delta}}{m_{\pi}} = 6.257(35), \qquad g_{\Delta N\pi} = 14.41(53)$$
 $m_{\pi} = 202.7(2.5) \text{ MeV}$
 $m_{\Delta} = 1268(17) \text{ MeV}$

Delta-resonance parameterized in amplitude as

$$\frac{q_{\rm cm}^3}{m_{\pi}^3} \cot \delta_{3/2^+} = \frac{6\pi\sqrt{s}}{m_{\pi}^3 g_{\Delta N\pi}^2} (m_{\Delta}^2 - s),$$





Compare with χPT

- ☐ The formula for the scattering length are known at 4th order in the chiral expansion
 - ☐ They are expressed in terms of what is called scalar and vector scattering lengths

$$a_0^{3/2} = a_0^+ - a_0^-,$$

$$a_0^{1/2} = a_0^+ + 2a_0^-$$

☐ Hoferichter et al, 1510.06039, Hoferichter et al, 1507.07552

□ Fettes, Meissner [Steininger] [hep-ph/9803266] hep-ph/0002162

$$\square \text{At N4LO, these are given by}$$

$$m_{\pi}a_{0}^{-} = \epsilon_{\pi}^{2} \frac{2\pi}{1+\mu} \left\{ 1 + \epsilon_{\pi}^{2} \left[2 + \frac{\Lambda_{\chi}^{2}}{m_{N}^{2}} \left(\frac{g_{A}^{2}}{4} + 8D \right) \right] \right\},$$

$$m_{\pi}a_{0}^{+} = -\epsilon_{\pi}^{3} \frac{\pi}{1+\mu} \frac{\Lambda_{\chi}}{m_{N}} \left\{ g_{A}^{2} + 8C - \epsilon_{\pi} 3\pi g_{A}^{2} \frac{m_{N}}{\Lambda_{\chi}} \right\}$$

$$+\epsilon_{\pi}^{2} \left[8 - 3g_{A}^{2} + 2g_{A}^{4} + 4C' + 4\frac{\Lambda_{\chi}^{2}}{m_{N}^{2}} \left(\frac{g_{A}^{2}}{16} + 16C'' - g_{A}D_{18} - 16E \right) \right] \right\}$$

$$\epsilon_{\pi} = \frac{m_{\pi}}{4\pi F_{\pi}}, \qquad \mu = \frac{m_{\pi}}{m_{N}}, \qquad \Lambda_{\chi} = 4\pi F_{\pi},$$

$$C = m_{N}(2c_{1} - c_{2} - c_{3}), \qquad C' = m_{N}(2c_{1} - c_{3}), \qquad C'' = m_{N}^{2}c_{1}c_{2},$$

$$D = m_{N}^{2}(\bar{d}_{1} + \bar{d}_{2} + \bar{d}_{3} + 2\bar{d}_{5}), \quad D_{18} = m_{N}^{2}\bar{d}_{18}, \qquad E = m_{N}^{3}(\bar{e}_{14} + \bar{e}_{15} + \bar{e}_{16}),$$

Compare with χ PT

□ Use LECs from N^{2,3,4}LO order fit to N π scattering: predict scattering lengths at M π ≈200 MeV

$$\begin{split} m_{\pi}a_{0}^{-} &= \epsilon_{\pi}^{2}\frac{2\pi}{1+\mu}\left\{1+\epsilon_{\pi}^{2}\left[2+\frac{\Lambda_{\chi}^{2}}{m_{N}^{2}}\left(\frac{g_{A}^{2}}{4}+8D\right)\right]\right\}, \\ m_{\pi}a_{0}^{+} &= -\epsilon_{\pi}^{3}\frac{\pi}{1+\mu}\frac{\Lambda_{\chi}}{m_{N}}\left\{g_{A}^{2}+8C-\epsilon_{\pi}\,3\pi g_{A}^{2}\frac{m_{N}}{\Lambda_{\chi}}\right. \\ &+ \epsilon_{\pi}^{2}\left[8-3g_{A}^{2}+2g_{A}^{4}+4C'+4\frac{\Lambda_{\chi}^{2}}{m_{N}^{2}}\left(\frac{g_{A}^{2}}{16}+16C''-g_{A}D_{18}-16E\right)\right]\right\} \end{split}$$

☐ Hoferichter et al, 1510.06039, Hoferichter et al, 1507.07552

$$\epsilon_{\pi}^{\text{D200}} = 0.1759(12), \quad \mu^{\text{D200}} = 0.2102(19), \quad \left(\frac{m_N}{\Lambda_{\chi}}\right)^{\text{D200}} = 0.8368(72)$$

	$\chi \mathrm{PT} \; \mathrm{predi}$	iction at $m_{\pi} \approx$	This work at	RS at	
Quantity	NLO	N^2LO	N^3LO	$m_{\pi} \approx 200 \text{ MeV}$	m_{π}^{phys} [91]
$m_{\pi} a_0^{1/2}$	0.2526(45)	0.444(10)	0.1660(93)	0.142(22)	0.1699(23)
$m_\pi a_0^{3/2}$	-0.2291(46)	-0.2020(63)	-0.0756(98)	-0.2735(81)	-0.0863(17)

- LECs determined from experimental data do a BAD job predicting our results
- □ We have not yet tried fitting results to understand where the tension might be

Conclusions

- \square We have performed N π scattering for the first time at a pion mass of M π \approx 200 MeV
- □ We used the stochastic Laplacian Heaviside (sLapH) method a stochastic variant of distillation
- □ We found that the achievable precision with sLapH is good enough to get precise determinations of the scattering parameters
- \square We found that our results are in tension with predictions from SU(2) χ PT and LECs determined to high-precision N π scattering phase shift data
- □We are therefore not yet in a position to usefully contribute to the nucleon-pion sigma term "puzzle" the contrast between the pheno determination and most precise LQCD ones
- \Box Lighter pion masses seem reachable (given our results) and are necessary to understand the apparent tension with SU(2) χ PT predictions

Thank You