Update on Flavor Diagonal Nucleon Charges

Sungwoo Park*,

T. Bhattacharya, R. Gupta, S. Mondal, B. Yoon, H-W Lin

[PNDME Collaboration]

* Jefferson Lab, VA, USA

Los Alamos National Laboratory, NM, USA

Michigan State University, MI, USA

Lattice 2022, August 2022

Physics from flavor diagonal nucleon charges

• $g_{\Delta}^{q} = \Delta q$: Quark contributions to the nucleon spin

$$\frac{1}{2} = \sum_{u,d,s,\cdots} \left(\frac{1}{2} \Delta q + L_q \right) + J_g$$

X. Ji (1997), PNDME (2018)

 L_q : orbital angular momentum of the quark J_q : total angular momentum of the gluons

• $oldsymbol{g_T^q}$: Quark EDM contributions to the neutron EDM d_n

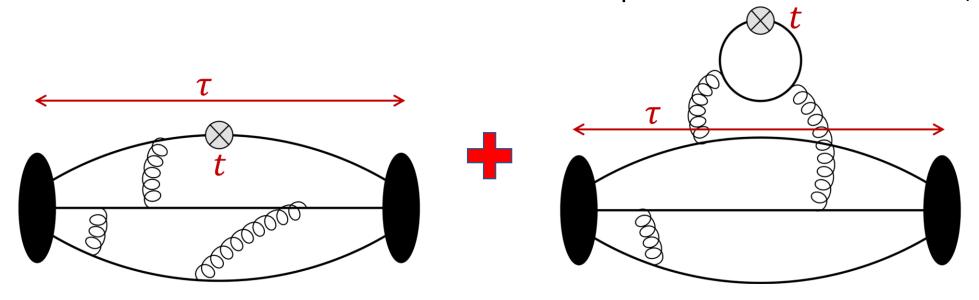
$$|d_n| = |d_u^{\gamma} g_T^u + d_d^{\gamma} g_T^d + d_s^{\gamma} g_T^s + \dots| \le 2.9 \times 10^{-26} e \text{ cm}$$

C. Baker et al. (2006) PNDME (2018)

• $g_S^q = \frac{\partial M_N}{\partial m_q}$: Slope of the nucleon mass with respect to the quark mass

$$\sigma_{\pi N} = m_l g_S^{u+d}$$
: Quark contributions to the nucleon mass $\sigma_S = m_S g_S^s$

PNDME (2021)


Clover fermions on MILC HISQ lattices

Ensemble ID	a [fm]	M_{π} [MeV]	$M_{\pi}L$	N_{cfg}^{conn}	N ^{disc,l} cfg	$N_{cfg}^{disc,s}$
a15m310	~0.15	320	3.93	1917	1917	1917
a12m310	~0.12	310	4.55	1013	1013	1013
a12m220	~0.12	228	4.38	744	958	870
a09m310	~0.09	313	4.51	2263	1017	1024
a09m220	~0.09	226	4.79	964	712	847
a09m130	~0.09	138	3.90	1290	1270	994
a06m310	~0.06	320	4.52	500	808	976
a06m220	~0.06	235	4.41	649	1001	1002

- 8 ensembles including one physical M_{π}^{phys} ensemble
- HYP smeared $N_f=2+1+1$ MILC HISQ lattices
- Clover fermion with a tree-level tadpole improved c_{SW}

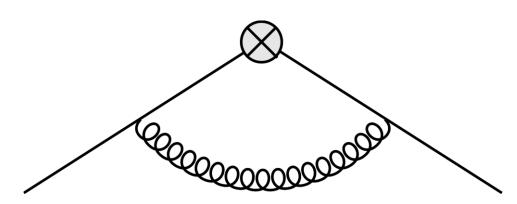
Connected and disconnected diagrams

- Flavor diagonal nucleon charges are obtained from the nucleon ME $\langle N|\bar{q} \;\Gamma \;q|N\rangle$
- Require high precision measurements of quark bilinear operators within the nucleon state for both "connected" and "disconnected" 3-point correlation functions,

Calculated with covariant Gaussian source smearing, multiple source-sink separation $0.9 \lesssim \tau \lesssim 1.4$, accelerated with coherent sequential inversions and the truncated solver method with bias correction. PNDME (2018)

All-to-all quark propagator estimated by stochastic method using Z_4 random sources, accelerated with the truncated solver method with bias correction and hoping parameter expansion. PNDME (2015)

Removing excited state contaminations (ESC)


• Simultaneous fits to 2- and 3-point (connected + disconnected) functions using empirical Bayesian prior on the excited mass spectrum M_i and A_i

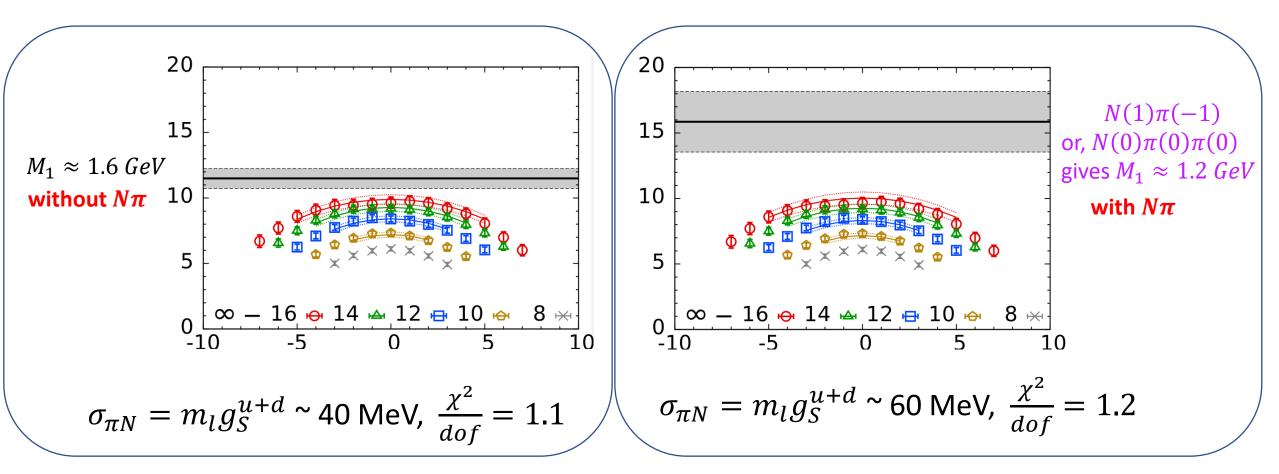
$$C^{2\mathrm{pt}}(\tau) = \sum_{i=0}^{\infty} |\mathcal{A}_i|^2 e^{-M_i \tau}. \quad C_{\Gamma}^{3\mathrm{pt}}(\tau;t) = \sum_{i,j=0}^{\infty} \mathcal{A}_i \mathcal{A}_j^* \langle i|O_{\Gamma}|j\rangle e^{-M_i t - M_j (t - \tau)},$$

- Repeat the analysis to quantify the model variation of the results by choosing different sets of $(\tau, t_{\rm skip})$ and number of states in the excited state fits (2 or 3^* -state fits)
 - $t_{
 m skip}$: number of data points next to the source and the sink for each au, skipped in the excited state fits
 - τ : source-sink separation
- The Final results are taken from the average over the model values, weighting each by its Akaike information criteria weights.

Nonperturbative renormalization

- We explicitly evaluated the 3×3 flavor mixing matrices in RI-sMOM scheme and convert into \overline{MS} scheme value 2 GeV.
- Results on the corrections from the flavor mixing
 - Small and negligible for $g_{A,T}^{u,d,s}$ and $g_{S}^{u,d}$
 - g_S^s gets a correction about ~20% at $a \approx 0.15$ fm, and ~6% at $a \approx 0.06$ fm from the off-diagonal $Z_S^{s,u+d}$.

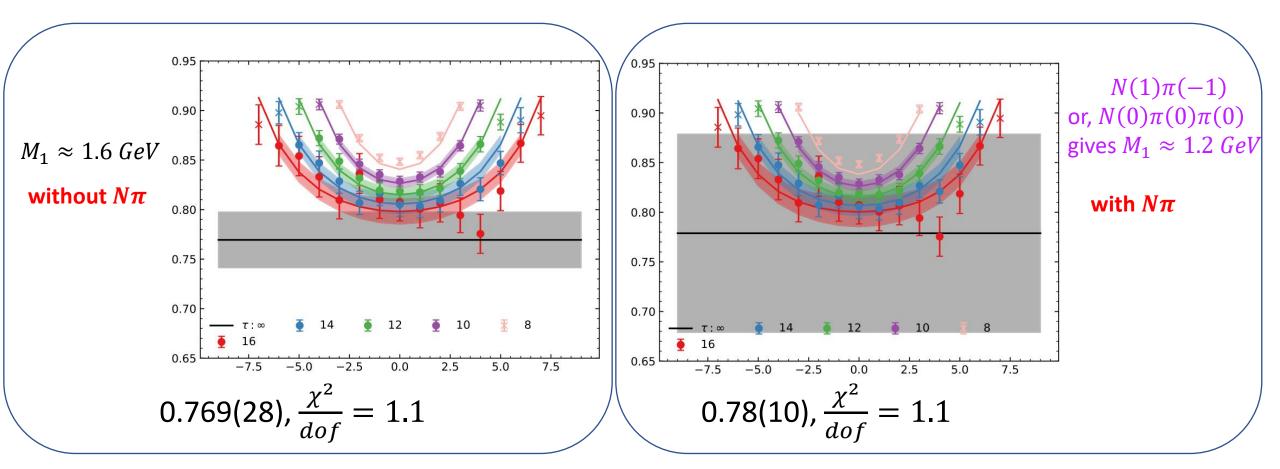
Examples on ESC fits


with or without $N\pi$, $N\pi\pi$ -state prior, at physical M_π

 $a \approx 0.09 fm$ $M_{\pi} \approx 135 MeV$

Excited state fits at M_{π}^{phys} : g_{S}^{u+d}

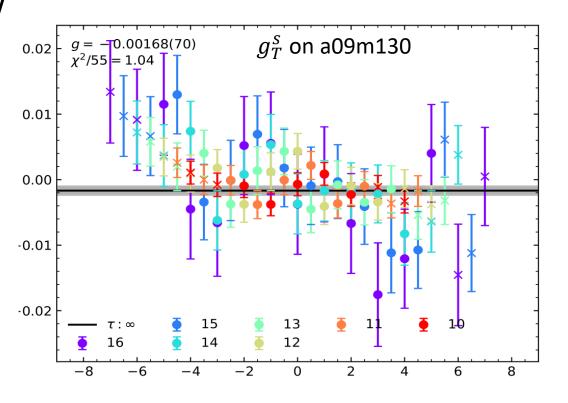
PNDME (2021)


R. Gupta, talk at 3:50pm Fri

• Scalar is sensitive to $N\pi$ state

 $a \approx 0.09 fm$ $M_{\pi} \approx 135 MeV$

Excited state fits at M_{π}^{phys} : g_T^u



• Tensor is not sensitive to $N\pi$ state

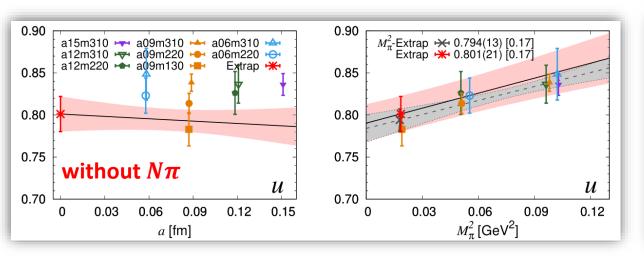
 $a \approx 0.09 fm$ $M_{\pi} \approx 135 MeV$

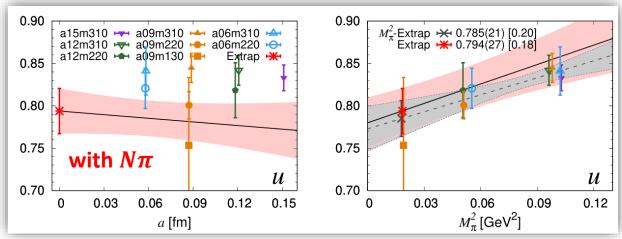
ESC in g_T^S is not resolved

- For g_T^s , 3pt function doesn't show excited state effect
- Constant fit to 3pt/2pt ratio.

Chiral-continuum extrapolated results

with or without $N\pi$, $N\pi\pi$ -state prior

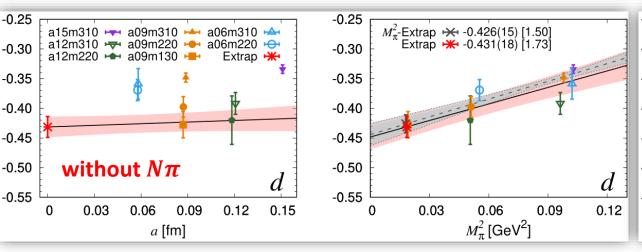

(All preliminary)

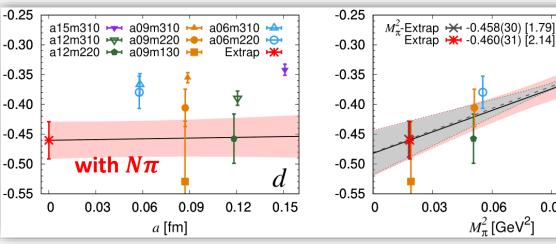

g_A^u : Chiral-continuum extrapolation

$$g + c_0 a + c_1 M_\pi^2$$

- $N\pi$ fit data points has larger errors
- Dominant dependence on M_{π}
- extrapolated values are consistent

$g_A^u = 0.794(27)_{stat}(07)_{sys}$, preliminary

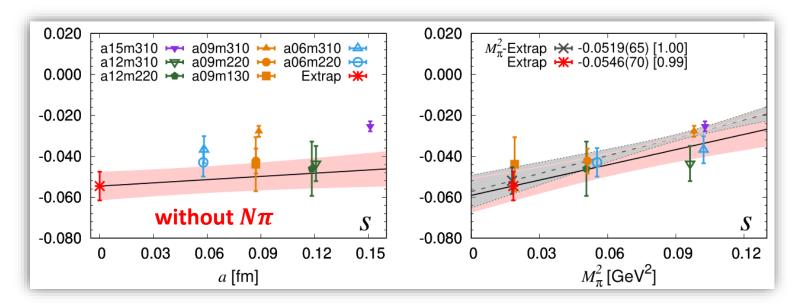



q^a_A : Chiral-continuum extrapolation

$$g + c_0 a + c_1 M_\pi^2$$

- $N\pi$ fit data points has larger errors
- Dominant dependence on M_{π}
- extrapolated values have $\sim 1\sigma$ difference,
- $\frac{\chi^2}{dof}$ is relatively poor

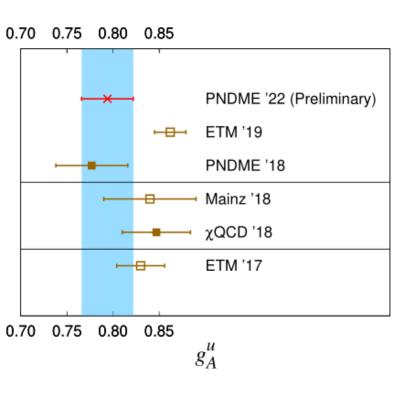
$$g_A^d = -0.460(31)_{stat}(29)_{sys}$$
, preliminary

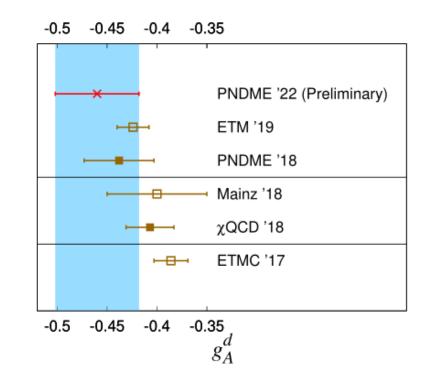

0.09

0.12

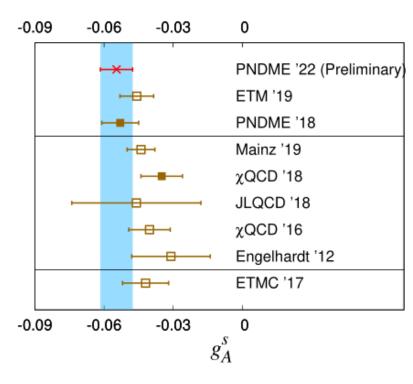
g_A^s : Chiral-continuum extrapolation

$$g + c_0 a + c_1 M_\pi^2$$


- Dominant dependence on M_π
- mild a dependence

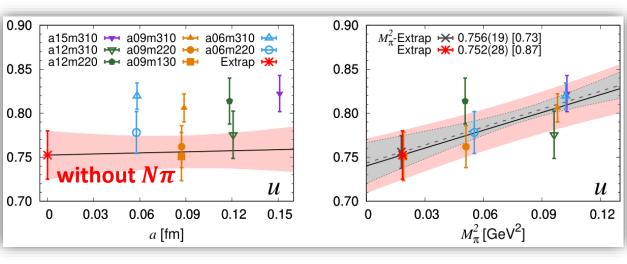

$$g_A^s = -0.0547(70)_{stat}$$
, preliminary

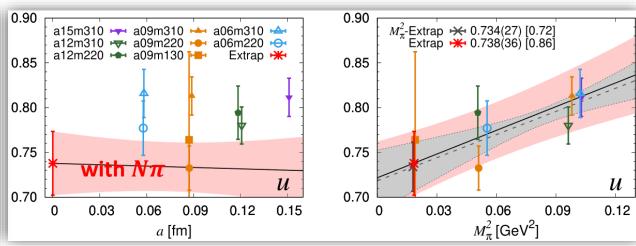
The leading multihadron excited state is expected to be ΣK which has a larger mass gap than $N\pi$


g_A : Comparison with FLAG 2021

$$g_A^u = 0.794(27)_{stat}(07)_{sys}$$

$$g_A^d = -0.460(31)_{stat}(29)_{sys}$$

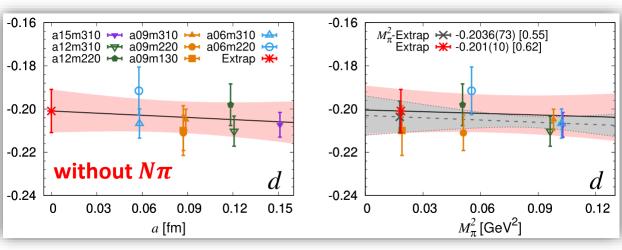

$$g_A^s = -0.0547(70)_{stat}$$

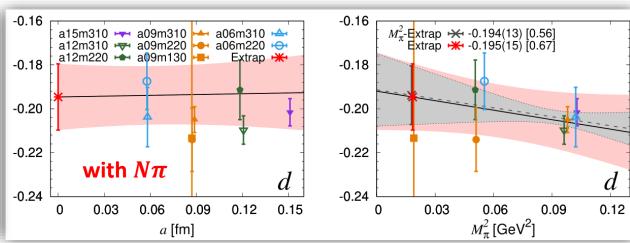

g_T^u : Chiral-continuum extrapolation

$$g + c_0 a + c_1 M_\pi^2$$

- $N\pi$ fit data points has larger errors
- Dominant dependence on M_{π}
- extrapolated values are consistent

 $g_T^u = 0.752(28)_{stat}(14)_{sys}$, preliminary

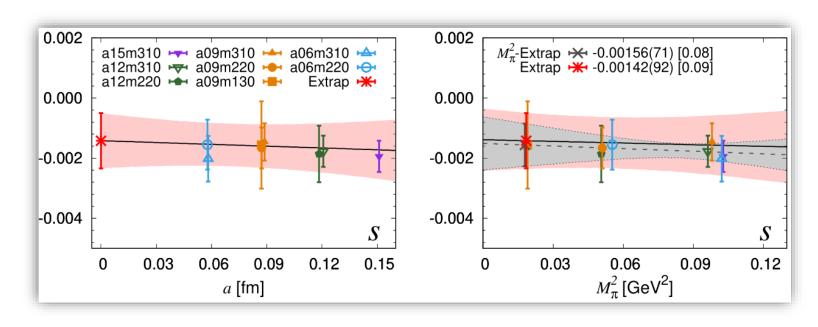



$oldsymbol{g_T^d}$: Chiral-continuum extrapolation

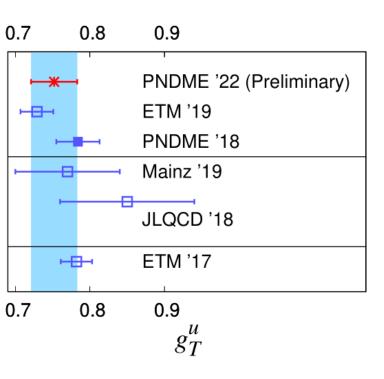
$$g + c_0 a + c_1 M_\pi^2$$

- $N\pi$ fit data points has larger errors
- mild M_{π} dependence with $N\pi$ fit data
- extrapolated values are consistent

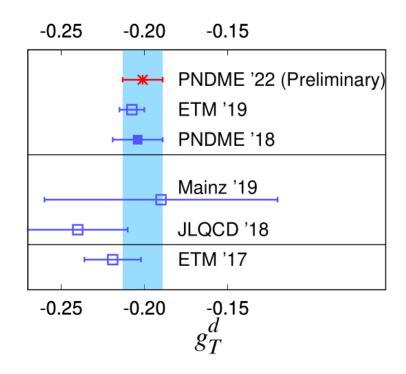
$$g_T^d = -0.201(10)_{stat}(06)_{sys}$$
, preliminary



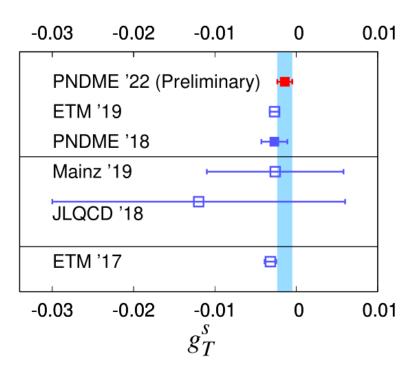
g_T^s : Chiral-continuum extrapolation


$$g + c_0 a + c_1 M_\pi^2$$

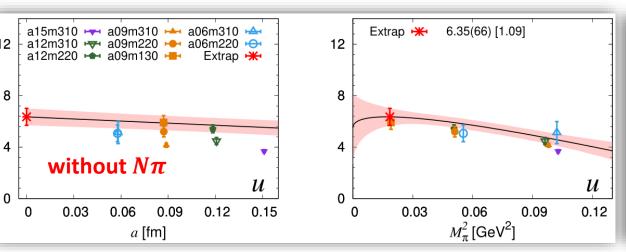
- constant fit to 3pt/2pt ratio, ignoring ESC
- no a or M_{π} dependence



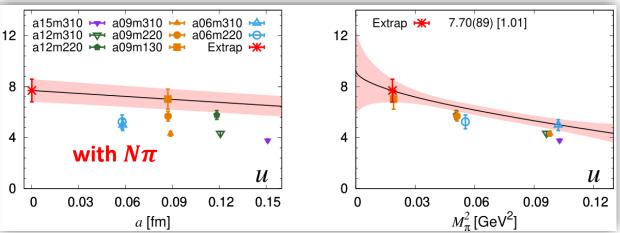
$$g_T^s = -0.00142(92)_{stat}$$
, preliminary


g_T : Comparison with FLAG 2021

$$g_T^d = -0.201(10)_{stat}(06)_{sys}$$


$$g_T^s = -0.00142(92)_{stat}$$

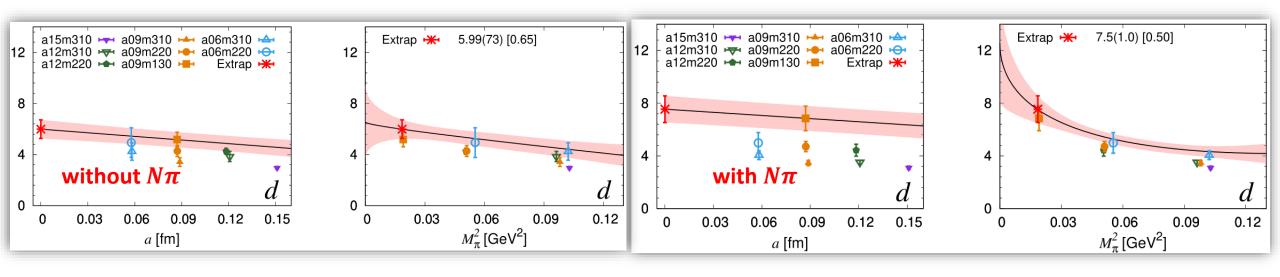
g_S^u : Chiral-continuum extrapolation


$$g + c_0 a + c_1 M_{\pi} + c_2 M_{\pi}^2$$

- chiral fit motivated by $g_S^q = \frac{\partial M_N}{\partial m_q}$
- mild *a*-dependence
- Very sensitive to including $N\pi$ state

$$g_S^u = 6.35(66)_{stat}$$

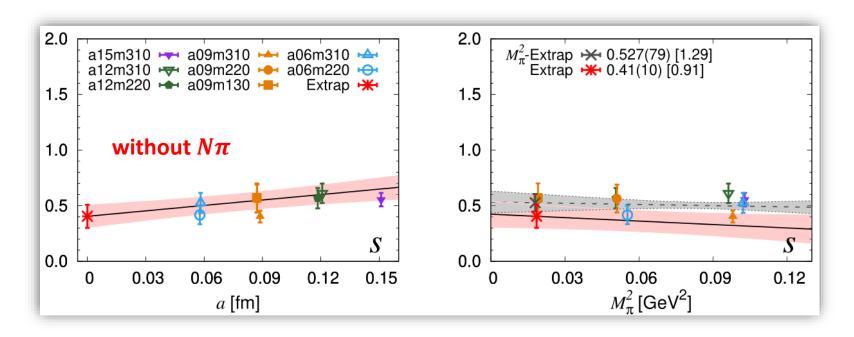
 $g_S^u = 7.70(89)_{stat}$, preliminary


g_S^d : Chiral-continuum extrapolation

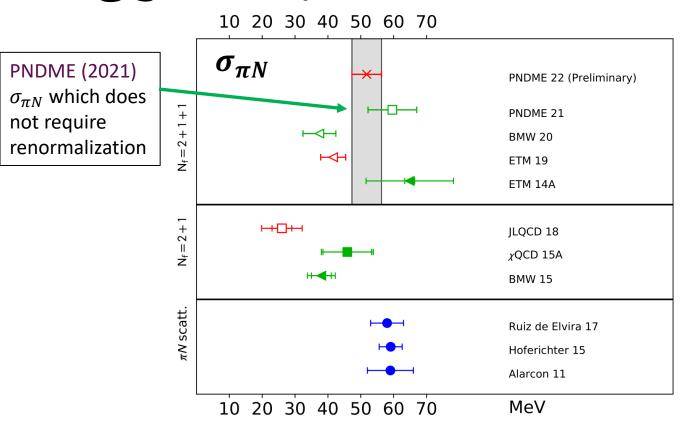
$$g + c_0 a + c_1 M_{\pi} + c_2 M_{\pi}^2$$

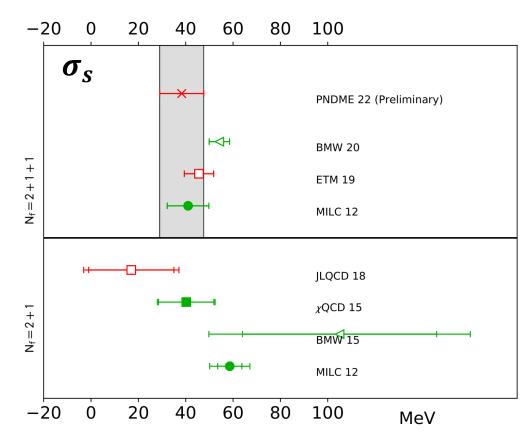
- chiral fit motivated by $g_S^q = \frac{\partial M_N}{\partial m_q}$
- mild *a*-dependence
- Very sensitive to including $N\pi$ state

$$g_S^d = 5.99(73)_{stat},$$


 $g_S^d = 7.5(1.0)_{stat}$, preliminary

g_S^s : Chiral-continuum extrapolation


$$g + c_0 a + c_1 M_\pi^2$$


- chiral fit motivated by $g_S^S = \frac{\partial M_N}{\partial m_S}$
- mild a- and M_{π} -dependence

 $g_S^s = 0.41(10)_{stat}$, preliminary

g_S : Comparison with FLAG 2021 + PNDME 21

$$g_S^u = 7.70(89)_{stat}, \qquad g_S^d = 7.5(1.0)_{stat}, \ \sigma_{\pi N} = m_{ud} \left(g_S^u + g_S^d \right) = 51.8(4.5),$$

 (m_{ud}, m_s) from FLAG 19)

$$g_S^s = 0.41(10)_{stat}$$

 $\sigma_S = m_S g_S^s = 38.3(9.3)$

Summary

- We analyzed flavor diagonal nucleon charges using clover fermion on 8 MILC HISQ lattices
- Excited state fits
 - $g_{A.T}^{u,d,s}$: not sensitive to the $N\pi/N\pi\pi$ state mass prior
 - $g_S^{n,d,s}$ ($\sigma^{\pi N}$ and σ^s): sensitive to the $N\pi/N\pi\pi$ state mass prior
- Renormalization: no significant flavor mixing for $g_{A,T}^{u,d,s}$, $g_{S}^{u,d}$
- Finite volume correction is small for $M_\pi L > 4$
- Leading chiral logarithm $M_{\pi}^2 \log M_{\pi}^2$: cannot resolve
- Comparison with clover-on-clover calculation in progress

Acknowledgement

- We thank the MILC collaboration for providing the 2+1+1-flavor HISQ lattices.
- The calculations used the CHROMA software suite.
- We thank DOE for allocations at NERSC and OLCF.
- We thank the USQCD collaboration and Institutional Computing at LANL for allocations.