Mass and isovector matrix elements of the nucleon at zero-momentum transfer

Konstantin Ottnad^a

in collaboration with

Dalibor Djukanovic^b, Harvey Meyer^{a,b}, Georg von Hippel^a, Hartmut Wittig^{a,b}

^a Institut für Kernphysik, Johannes Gutenberg-Universität Mainz
 ^b Helmholtz-Institut Mainz, Johannes Gutenberg-Universität Mainz

39th International Symposium on Lattice Field Theory, August 7-13, 2022

Introduction	Setup details	M_N analysis	NME analysis	Summary and outlook
•	00	000	0000000	O
Observables				

We study isovector nucleon matrix elements (NMEs)

 $\left\langle N(p',s') | \mathcal{O} | N(p,s) \right\rangle$

at zero-momentum transfer p' = p = 0 for a set of six different operator insertions \mathcal{O} , i.e.

• $\mathcal{O}_{\mu}^{A} = \bar{q}\gamma_{\mu}\gamma_{5}q, \quad \mathcal{O}^{S} = \bar{q}q, \quad \mathcal{O}_{\mu\nu}^{T} = \bar{q}i\sigma_{\mu\nu}q$ • $\mathcal{O}_{\mu\nu}^{\nu D} = \bar{q}\gamma_{\{\mu} \stackrel{\leftrightarrow}{D}_{\nu\}}q, \quad \mathcal{O}_{\mu\nu}^{aD} = \bar{q}\gamma_{\{\mu}\gamma_{5} \stackrel{\leftrightarrow}{D}_{\nu\}}q, \quad \mathcal{O}_{\mu\nu\rho}^{tD} = \bar{q}\sigma_{[\mu\{\nu]} \stackrel{\leftrightarrow}{D}_{\rho\}}q$

 $\rightarrow g_A^{u-d}, \ g_T^{u-d}, \ g_S^{u-d} \text{ from local operators and } \langle x \rangle_{u-d}, \ \langle x \rangle_{\Delta u - \Delta d}, \ \langle x \rangle_{\delta u - \delta d} \text{ from twist-2 operators}$

Analysis requires:

- Computation of two- and three-point functions.
- Extraction of ground state NMEs from a dedicated method to tame excited states.
- Chiral, continuum and finite volume (CCF) extrapolation to obtain physical results.

Statistically very precise data for the nucleon mass M_N on the same set of two-point functions:

Physical extrapolation of m_N provides a cross-check for scale setting.

Introduction	Setup details	M_N analysis	NME analysis	Summary and outlook
0	●0	000	0000000	O

ID	<i>a</i> /fm	T/a	L/a	$M_{\pi}/{ m MeV}$	$M_{\pi}L$	$N_{ m conf}$	$N_{ m meas}$	$t_{ m sep}^{ m lo}/{ m fm}$	$t_{ m sep}^{ m hi}/{ m fm}$	$N_{t_{\mathrm{sep}}}$
C101	0.086	96	48	0.225	4.73	2000	64000	0.35	1.47	14
N101		128	48	0.282	5.91	1595	51040			
H105		96	32	0.281	3.93	1027	49296			
H102		96	32	0.354	4.96	2005	32080			
D450	0.076	128	64	0.216	5.35	500	64000	0.31	1.53	17
N451		128	48	0.286	5.31	1011	129408			9
S400		128	32	0.350	4.33	2873	45968			9
E250	0.064	192	96	0.130	4.06	400	102400	0.26	1.41	10
D200		128	64	0.202	4.22	1999	63968			
N200		128	48	0.281	4.39	1712	20544			
S201		128	32	0.292	3.05	2093	66976			
N203		128	48	0.345	5.41	1543	24688			
E300	0.050	192	96	0.173	4.20	570	18240	0.20	1.40	13
J303		192	64	0.260	4.19	1073	17168			
N302		128	48	0.349	4.22	2201	35216			

- $N_f = 2 + 1$ flavors of non-perturbatively improved Wilson clover fermions. JHEP 1502 (2015) 043
- Lüscher-Weisz gauge action Commun.Math.Phys. 97 (1985)
- Twisted mass regulator to suppress exceptional configurations. Pos LATTICE2008 (2008) 049
- Production of correlators is complete / available statistics now fully included in analysis.

Introduction	Setup details	M_N analysis	NME analysis	O		
0		000	0000000	O		
_	_					

ID	a/fm	T/a	L/a	$M_{\pi}/{ m MeV}$	$M_{\pi}L$	$N_{ m conf}$	$N_{ m meas}$	$t_{ m sep}^{ m lo}/{ m fm}$	$t_{ m sep}^{ m hi}/{ m fm}$	$N_{t_{\mathrm{sep}}}$
C101	0.086	96	48	0.225	4.73	2000	64000	0.35	1.47	14
N101		128	48	0.282	5.91	1595	51040			
H105		96	32	0.281	3.93	1027	49296			
H102		96	32	0.354	4.96	2005	32080			
D450	0.076	128	64	0.216	5.35	500	64000	0.31	1.53	17
N451		128	48	0.286	5.31	1011	129408			9
S400		128	32	0.350	4.33	2873	45968			9
E250	0.064	192	96	0.130	4.06	400	102400	0.26	1.41	10
D200		128	64	0.202	4.22	1999	63968			
N200		128	48	0.281	4.39	1712	20544			
S201		128	32	0.292	3.05	2093	66976			
N203		128	48	0.345	5.41	1543	24688			
E300	0.050	192	96	0.173	4.20	570	18240	0.20	1.40	13
J303		192	64	0.260	4.19	1073	17168			
N302		128	48	0.349	4.22	2201	35216			

• Ensembles cover four values of the lattice spacing a

- \rightarrow continuum extrapolation
- Many different physical volumes with $L \approx 2...6 \,\mathrm{fm}$, typically $M_{\pi}L > 4$.
 - \rightarrow extrapolation to infinite volume / check for finite size effects.
- $\bullet~$ Pion masses from $\sim 130\,{\rm MeV}$ to $\sim 350\,{\rm MeV}$
 - \rightarrow chiral extrapolation and checking its convergence
- Two very large and fine boxes at (near) physical quark mass.

Introduction	Setup details	M_N analysis	NME analysis	Summary and outlook
0	●○	000		O

ID	a/fm	T/a	L/a	$M_{\pi}/{ m MeV}$	$M_{\pi}L$	$N_{\rm conf}$	$N_{ m meas}$	$t_{ m sep}^{ m lo}/{ m fm}$	$t_{ m sep}^{ m hi}/{ m fm}$	$N_{t_{\mathrm{sep}}}$
C101	0.086	96	48	0.225	4.73	2000	64000	0.35	1.47	14
N101		128	48	0.282	5.91	1595	51040			
H105		96	32	0.281	3.93	1027	49296			
H102		96	32	0.354	4.96	2005	32080			
D450	0.076	128	64	0.216	5.35	500	64000	0.31	1.53	17
N451		128	48	0.286	5.31	1011	129408			9
S400		128	32	0.350	4.33	2873	45968			9
E250	0.064	192	96	0.130	4.06	400	102400	0.26	1.41	10
D200		128	64	0.202	4.22	1999	63968			
N200		128	48	0.281	4.39	1712	20544			
S201		128	32	0.292	3.05	2093	66976			
N203		128	48	0.345	5.41	1543	24688			
E300	0.050	192	96	0.173	4.20	570	18240	0.20	1.40	13
J303		192	64	0.260	4.19	1073	17168			
N302		128	48	0.349	4.22	2201	35216			

- Ensembles cover four values of lattice spacing
 - \rightarrow continuum extrapolation
- Many different lattice volumes with L ≈ 2...6 fm, typically M_πL > 4.
 → extrapolation to infinite volume / check for finite size effects.
- $\bullet~$ Pion masses from $\sim 130\,{\rm MeV}$ to $\sim 350\,{\rm MeV}$
 - \rightarrow chiral extrapolation and checking its convergence
- Two very large and fine boxes at (near) physical quark mass.

Introduction	Setup details	M_N analysis	NME analysis	Summary and outlook
O	●0	000	0000000	O

ID	a/fm	T/a	L/a	$M_{\pi}/{ m MeV}$	$M_{\pi}L$	$N_{ m conf}$	$N_{ m meas}$	$t_{ m sep}^{ m lo}/{ m fm}$	$t_{ m sep}^{ m hi}/{ m fm}$	$N_{t_{\mathrm{sep}}}$
C101	0.086	96	48	0.225	4.73	2000	64000	0.35	1.47	14
N101		128	48	0.282	5.91	1595	51040			
H105		96	32	0.281	3.93	1027	49296			
H102		96	32	0.354	4.96	2005	32080			
D450	0.076	128	64	0.216	5.35	500	64000	0.31	1.53	17
N451		128	48	0.286	5.31	1011	129408			9
S400		128	32	0.350	4.33	2873	45968			9
E250	0.064	192	96	0.130	4.06	400	102400	0.26	1.41	10
D200		128	64	0.202	4.22	1999	63968			
N200		128	48	0.281	4.39	1712	20544			
S201		128	32	0.292	3.05	2093	66976			
N203		128	48	0.345	5.41	1543	24688			
E300	0.050	192	96	0.173	4.20	570	18240	0.20	1.40	13
J303		192	64	0.260	4.19	1073	17168			
N302		128	48	0.349	4.22	2201	35216			

- Ensembles cover four values of lattice spacing
 - \rightarrow continuum extrapolation
- Many different lattice volumes with L≈ 2...6 fm, typically M_πL > 4.
 → extrapolation to infinite volume / check for finite size effects.
- Pion masses from $\sim 130 \, {\rm MeV}$ to $\sim 350 \, {\rm MeV}$
 - \rightarrow chiral extrapolation and checking its convergence
- Two very large and fine boxes at (near) physical quark mass.

Introduction	Setup details	M_N analysis	NME analysis	Summary and outlook
O	●0	000	0000000	O

ID	a/fm	T/a	L/a	$M_{\pi}/{ m MeV}$	$M_{\pi}L$	$N_{\rm conf}$	$N_{ m meas}$	$t_{ m sep}^{ m lo}/{ m fm}$	$t_{ m sep}^{ m hi}/{ m fm}$	$N_{t_{\mathrm{sep}}}$
C101	0.086	96	48	0.225	4.73	2000	64000	0.35	1.47	14
N101		128	48	0.282	5.91	1595	51040			
H105		96	32	0.281	3.93	1027	49296			
H102		96	32	0.354	4.96	2005	32080			
D450	0.076	128	64	0.216	5.35	500	64000	0.31	1.53	17
N451		128	48	0.286	5.31	1011	129408			9
S400		128	32	0.350	4.33	2873	45968			9
E250	0.064	192	96		4.06	400	102400	0.26	1.41	10
D200		128	64	0.202	4.22	1999	63968			
N200		128	48	0.281	4.39	1712	20544			
S201		128	32	0.292	3.05	2093	66976			
N203		128	48	0.345	5.41	1543	24688			
E300	0.050	192	96	0.173	4.20	570	18240	0.20	1.40	13
J303		192	64	0.260	4.19	1073	17168			
N302		128	48	0.349	4.22	2201	35216			

- Ensembles cover four values of lattice spacing
 - \rightarrow continuum extrapolation
- Many different lattice volumes with L≈ 2...6 fm, typically M_πL > 4.
 → extrapolation to infinite volume / check for finite size effects.
- $\bullet~$ Pion masses from $\sim 130\,{\rm MeV}$ to $\sim 350\,{\rm MeV}$
 - \rightarrow chiral extrapolation and checking its convergence
- Two very large and fine boxes at (near) physical quark mass.

Introduction	Setup details	M_N analysis	NME analysis	Summary and outlook		
0	●0	000	0000000	O		

ID	a/fm	T/a	L/a	$M_{\pi}/{ m MeV}$	$M_{\pi}L$	$N_{\rm conf}$	$N_{ m meas}$	$t_{ m sep}^{ m lo}/{ m fm}$	$t_{ m sep}^{ m hi}/{ m fm}$	$N_{t_{\mathrm{sep}}}$
C101	0.086	96	48	0.225	4.73	2000	64000	0.35	1.47	14
N101		128	48	0.282	5.91	1595	51040			
H105		96	32	0.281	3.93	1027	49296			
H102		96	32	0.354	4.96	2005	32080			
D450	0.076	128	64	0.216	5.35	500	64000	0.31	1.53	17
N451		128	48	0.286	5.31	1011	129408			9
S400		128	32	0.350	4.33	2873	45968			9
E250	0.064	192	96	0.130	4.06	400	102400	0.26	1.41	10
D200		128	64	0.202	4.22	1999	63968			
N200		128	48	0.281	4.39	1712	20544			
S201		128	32	0.292	3.05	2093	66976			
N203		128	48	0.345	5.41	1543	24688			
E300	0.050	192	96	0.173	4.20	570	18240	0.20	1.40	13
J303		192	64	0.260	4.19	1073	17168			
N302		128	48	0.349	4.22	2201	35216			

• Large number of source-sink separations available, typically $t_{\rm sep} \approx 0.3...1.5\,{\rm fm}$.

- N_{meas} reduced by factor of two in steps of $\Delta t_{\text{sep}} \approx 0.2 \,\text{fm}$ for $t_{\text{sep}} < 1 \,\text{fm}$. \rightarrow Signal-to-noise ratio as function of t_{sep} closer to constant
- On lattices with periodic boundary conditions and some other (newer) runs this scaling of statistics has been performed beyond $t_{sep} = 1 \text{ fm}$ up to t_{sep}^{hi} .

Introduction	Setup details	M_N analysis	NME analysis	Summary and outlook
0	●0		0000000	O

ID	a/fm	T/a	L/a	$M_{\pi}/{ m MeV}$	$M_{\pi}L$	$N_{ m conf}$	$N_{ m meas}$	$t_{ m sep}^{ m lo}/{ m fm}$	$t_{ m sep}^{ m hi}/{ m fm}$	$N_{t_{\mathrm{sep}}}$
C101	0.086	96	48	0.225	4.73	2000	64000	0.35	1.47	14
N101		128	48	0.282	5.91	1595	51040			
H105		96	32	0.281	3.93	1027	49296			
H102		96	32	0.354	4.96	2005	32080			
D450	0.076	128	64	0.216	5.35	500	64000	0.31	1.53	17
N451		128	48	0.286	5.31	1011	129408			9
S400		128	32	0.350	4.33	2873	45968			9
E250	0.064	192	96	0.130	4.06	400	102400	0.26	1.41	10
D200		128	64	0.202	4.22	1999	63968			
N200		128	48	0.281	4.39	1712	20544			
S201		128	32	0.292	3.05	2093	66976			
N203		128	48	0.345	5.41	1543	24688			
E300	0.050	192	96	0.173	4.20	570	18240	0.20	1.40	13
J303		192	64	0.260	4.19	1073	17168			
N302		128	48	0.349	4.22	2201	35216			

• Large number of source-sink separations available, typically $t_{sep} \approx 0.3...1.5 \,\mathrm{fm}$.

- $N_{\rm meas}$ reduced by factor of two in steps of $\Delta t_{\rm sep} \approx 0.2 \, {\rm fm}$ for $t_{\rm sep} < 1 \, {\rm fm}$.
 - \rightarrow Signal-to-noise ratio as function of $t_{\rm sep}$ closer to a constant.
- On lattices with periodic boundary conditions and some other (newer) runs this scaling of statistics has been performed beyond $t_{sep} = 1 \text{ fm}$ up to t_{sep}^{hi} .

Encomplex	and catur			
0	0	000	0000000	0
Introduction	Setup details	M_N analysis	NME analysis	Summary and outlook

ID	a/fm	T/a	L/a	$M_{\pi}/{ m MeV}$	$M_{\pi}L$	$N_{\rm conf}$	$N_{ m meas}$	$t_{ m sep}^{ m lo}/{ m fm}$	$t_{ m sep}^{ m hi}/{ m fm}$	$N_{t_{sep}}$
C101	0.086	96	48	0.225	4.73	2000	64000	0.35	1.47	14
N101		128	48	0.282	5.91	1595	51040			
H105		96	32	0.281	3.93	1027	49296			
H102		96	32	0.354	4.96	2005	32080			
D450	0.076	128	64	0.216	5.35	500	64000	0.31	1.53	17
N451		128	48	0.286	5.31	1011	129408			9
S400		128	32	0.350	4.33	2873	45968			9
E250	0.064	192	96	0.130	4.06	400	102400	0.26	1.41	10
D200		128	64	0.202	4.22	1999	63968			
N200		128	48	0.281	4.39	1712	20544			
S201		128	32	0.292	3.05	2093	66976			
N203		128	48	0.345	5.41	1543	24688			
E300	0.050	192	96	0.173	4.20	570	18240	0.20	1.40	13
J303		192	64	0.260	4.19	1073	17168			
N302		128	48	0.349	4.22	2201	35216			

• Large number of source-sink separations available, typically $t_{sep} \approx 0.3...1.5 \,\mathrm{fm}$.

- $N_{
 m meas}$ reduced by factor of two in steps of $\Delta t_{
 m sep} \approx 0.2\,{
 m fm}$ for $t_{
 m sep} < 1\,{
 m fm}$.
 - \rightarrow Signal-to-noise ratio as function of $\mathit{t_{\rm sep}}$ closer to constant
- On lattices with periodic boundary conditions and some other (newer) runs scaling of statistics has been performed beyond t_{sep} = 1 fm up to t^{hi}_{sep}.

Introduction	Setup details	M_N analysis	NME analysis	Summary and outlook
O	⊙●	000	0000000	0
Further det	ails			

NMEs are computed from the usual ratio with projector Γ_z = ¹/₂(1 + γ₀)(1 + iγ₅γ₃)

$$\mathcal{R}^{\mathcal{O}}_{\mu_1,\ldots,\mu_n}(t_{\rm sep},t_{\rm ins}) \equiv \frac{C^{\mathcal{O},\rm 3pt}_{\mu_1,\ldots,\mu_n}(\vec{q}=0,t_{\rm sep},t_{\rm ins};\Gamma_z)}{C^{\rm 2pt}(\vec{q}=0,t_{\rm sep};\Gamma_z)}.$$
(1)

- For the nucleon mass we use C^{2pt}(q = 0, t_{sep}; Γ₀) with Γ₀ = ½(1 + γ₀) to improve statistics.
- For 3pt functions we use sequential inversions through the sink, setting p' = 0.
- Only quark-connected 3pt functions for isovector NMEs.
- Truncated solver method gives speedup of 2-5:

```
Comput.Phys.Commun. 181 (2010) 1570-1583
Phys.Rev. D91 (2015) no.11, 114511
```

$$\langle \mathcal{O}
angle = \langle \frac{1}{N_{LP}} \sum_{i=1}^{N_{LP}} \mathcal{O}_n^{LP}
angle + \langle \mathcal{O}_{\text{bias}}
angle, \quad \mathcal{O}_{\text{bias}} = \frac{1}{N_{HP}} \sum_{i=1}^{N_{HP}} (\mathcal{O}_n^{HP} - \mathcal{O}_n^{LP}).$$

- Full non-perturbative renormalization (SF) available for g_A. Eur.Phys.J.C 79 (2019) 1, 23
- For other observables non-perturbative renormalization (RI'-MOM) at $\beta = 3.40, 3.46, 355$; Extrapolation for $\beta = 3.7$ as in 2019 paper. Phys.Rev.D 100 (2019) 3, 034513

 $N(p', t_{sp}) \xrightarrow{\mathcal{O}_{\mu\nu..}(q, t_{lins})} \overline{q} = \overline{p}' - \overline{p}' = -\overline{p}'$ $N(p', t_{sp}) \xrightarrow{\mathcal{N}_{HP}} \overline{N(p, 0)}$ $= \sum_{n=1}^{N} (\mathcal{O}_{n}^{HP} - \mathcal{O}_{n}^{LP}).$

 M_N analysis

- Statistical error of M_N lattice data typically at a few per mille.
- Chiral, continuum and finite volume extrapolation from χ PT-inspired fit model up to $\mathcal{O}(M_{\pi}^3)$

$$m_N(M_{\pi}, a, L) = \mathring{m}_N + BM_{\pi}^2 + CM_{\pi}^3 + Da^2 + E\frac{M_{\pi}^3}{(M_{\pi}L)}e^{-M_{\pi}L}.$$
 Phys. Lett. B 649, 390 (2007)

with m_N , B, C, D and E free parameters of the fit.

- Physical result $M_N = 947(10)$ MeV dominated by scale setting error.
- In agreement with experimental value → Xcheck for scale setting.
- Large corrections for individual data points ...

Effects from finite volume and continuum extrapolation

Introduction	Setup details	M _N analysis	NME analysis	Summary and outlook
0	00	00●	0000000	

Fit stability / systematics

Perform cuts to study systematics:

Physical result is very stable.

<u>However</u>: M_{π} -cut affects slope of extrapolation.

Introduction	Setup details	M_N analysis	NME analysis	Summary and outlook
0	00	000	●000000	O
Excited stat	tes			

We consider two fits models for the summed ratio $S(t_{sep}) = \sum_{t_{ins}=a}^{t_{sep}-a} R(t_{ins}, t_{sep})$:

Plain summation method fits to individual observables:

$$S(t_{sep}) = const + M_{00}(t_{sep} - a).$$

Invo-state truncation

$$S(t_{sep}) = M_{00}(t_{sep} - a) + 2\tilde{M}_{01} \frac{e^{-\Delta a} - \left(1 + \frac{|A_1|^2}{|A_0|^2}e^{-\Delta a}\right)e^{-\Delta t_{sep}}}{1 - e^{-\Delta a}} + \tilde{M}_{11}e^{-\Delta t_{sep}}(t_{sep} - a) + \mathcal{O}(e^{-2\Delta t_{sep}}).$$

Terms $\sim \frac{|A_1|^2}{|A_0|^2} \left(\tilde{M}_{11} = M_{11} \frac{|A_1|^2}{|A_0|^2} \right)$ not constrained at our level of statistics and excluded from final fits:

$$S(t_{
m sep}) = M_{00}(t_{
m sep} - a) + 2 ilde{M}_{01} rac{e^{-\Delta a} - e^{-\Delta t_{
m sep}}}{1 - e^{-\Delta a}},$$

• Fits are carried out simultaneously for $g_{A,S,T}^{u-d}$ and $\langle x \rangle_{u-d}$, $\langle x \rangle_{\Delta u - \Delta d}$, $\langle x \rangle_{\delta u - \delta d}$.

 \Rightarrow Correlation helps to reduce errors.

(Much) smaller covariance matrices than for (simultaneous) ratio based fits.

 \Rightarrow Simultanous two-state summation fits are more stable than ratio fits (no priors).

Plain vs simultaneous two-state summation method (local NMEs)

Plain summation method fits for local operator insertions on E300 ensemble ($M_{\pi} = 173 \,\mathrm{MeV}$, $a \approx 0.050 \,\mathrm{fm}$).

- Deviation from linear behavior at small values of t_{sep}.
- Observables are fitted independently.

Plain vs simultaneous two-state summation method (local NMEs)

Simultaneous two-state summation method fits for local operator insertions on E300 ensemble ($M_{\pi} = 173 \,\mathrm{MeV}$, $a \approx 0.050 \,\mathrm{fm}$).

- Data described well by two-state fit to much smaller t_{sep}.
- All six observables are fitted simultaneously.

0.8

state summation

Plain summation and two-state fits converge.

 $t_{\rm sep}^{\rm min}/{\rm fm}$

E300 $M_{\pi} = 173 \text{ MeV}$. a = 0.050 fm

- Two-state fit allows to include smaller t_{sep}.
- Plain summation fits:

Choose $M_{\pi} t_{\text{sep}}^{\min} \gtrsim 0.7$ and $t_{\text{sep}}^{\min} \gtrsim 0.5 \,\text{fm}$.

Two-state fits:

0.8

Choose $M_{\pi} t_{\text{sep}}^{\min} \gtrsim 0.5$.

 $t_{\rm sep}^{\rm min}/{\rm fm}$

J303 $M_{\pi} = 260 \text{ MeV}$, a = 0.050 fm

state summation

Introduction	Setup details	M _N analysis	NME analysis	Summary and outlook
	00	000	0000000	

Physical extrapolation – CCF fit models

We consider the following ansatz for the chiral, continuum and finite volume extrapolation of any observable $O(M_{\pi}, a, L)$ inspired by the NNLO chiral expansion of g_A

$$O(M_{\pi}, a, L) = A_{O} + B_{O}M_{\pi}^{2} + C_{O}M_{\pi}^{2}\log M_{\pi} + D_{O}M_{\pi}^{3} + E_{O}a^{n(O)} + F_{O}\frac{M_{\pi}^{2}}{\sqrt{M_{\pi}L}}e^{-M_{\pi}L},$$

where

•
$$n(O) = 2$$
 for $O = g_{A,S}^{u-d}$ and $n(O) = 1$ otherwise.

• A_O , B_O , D_O E_O and F_O are free fit parameters.

• The
$$C_0$$
 are known analytically, e.g. $C_{g_A} = \frac{-\dot{g}_A}{(2\pi f_\pi)^2} \left(1 + 2\dot{g}_A^2\right)$.

Remarks:

- An NLO g_A^{u-d} fit including the chiral log imposes a curvature not observed in the data.
- An NLO g_A^{u-d} fit with a free parameter C gives the "wrong" sign.

We employ two fit models:

We use t_0 to set the scale, with $\sqrt{8t_0^{\rm phys}} = 0.415(4)_{\rm stat}(2)_{\rm sys} \, {\rm fm}.$

JHEP 08 (2010) 071 PRD 95 (2017) 074504 Introduction Setup details M_N analysis NME analysis Summary and outlook 0 00 000 000 000 0

Physical extrapolation for g_A^{u-d} (two-state summation)

- Chiral and continuum extrapolations are mild.
- Finite volume corrections can be sizable for g_A^{u-d} (already seen in 2019 analysis).
- Physical results from both fit models agree

 $g_A^{u-d} = 1.237(15)_{\text{stat}}$ (fit 1) $g_A^{u-d} = 1.250(25)_{\text{stat}}$ (fit 2)

but only NNLO fit in agreement with result on E250 and with experiment.

All results are preliminary!

Introduction	Setup details	M_N analysis	NME analysis	Summary and outlook
			0000000	

Systematics

• Compatible NNLO results from two-state and plain summation method

$$\begin{split} g_A^{u-d} &= 1.250(25)_{\rm stat} \\ g_A^{u-d} &= 1.247(22)_{\rm stat} \end{split}$$

• $M_{\pi} < 300 \, {
m MeV}$ -cut prefers larger values

$$g_A^{u-d} = 1.264(20)_{\text{stat}}$$
 (fit 1)
 $g_A^{u-d} = 1.286(36)_{\text{stat}}$ (fit 2)

• Use cuts (M_{π} , *a*, volume) and fit model variations for model average \rightarrow systematic error.

All results are preliminary!

Overview of chiral extrapolations for all six NMEs

- Data for other five NMEs are well described by fit $1 \sim M_{\pi}^2$.
- Large finite volume corrections only seen for g_A^{u-d} (and M_N).
- Typical rel. stat. errors of physical results:

$$g_{A,T}^{u-d}$$
: ~ 1% – 3% g_{S}^{u-d} and $\langle x \rangle_{...}^{u-d}$: ~ 5% – 10%

 Simultaneous fit (g_A as common parameter) exploiting correlations might further improve results (or allow to fit full NNLO expressions).

Introduction	Setup details	M_N analysis	NME analysis	Summary and outlook
0	00	000	0000000	
<u> </u>				

Summary and outlook

- Calculation of $g_{A \ S, T}^{u-d}$ and $\langle x \rangle_{u-d}$, $\langle x \rangle_{\Delta u \Delta d}$, $\langle x \rangle_{\delta u \delta d}$:
 - Excited states tamed by (2-state truncated) summation method.
 - Full, chiral, continuum finite size extrapolations to obtain physical results.
 - Results for g_{Λ}^{u-d} in agreement with ensemble at physical quark mass.
 - ۰ Systematics may be assessed from model averaging.
 - Simulatenous CCF fits may further stabilize / improve results. ۰
- Calculation of physical M_N with controlled systematics:
 - Physical result $M_{M}^{\rm phys} = 947(10) \,{\rm MeV}$ in good agreement with experimental value.
 - Small systematics / result stable under fit variations.
 - Statistically very precise, error dominated by scale setting \rightarrow Xcheck for scale setting.

1.15

1.05 m_N/GeV

0.9

0.85

1 0.95