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Introduction

Precision study of nucleon matrix elements with local

light currents
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Targeting matrix elements with their current insertion
@ Sigmaterm s —=my(Gu+0dd)ss e 4 =oun

@ Nucleon electromagnetic form factors
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@ Axial Pseudoscalar form factors
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Introduction

O:‘:‘.tate of the art lattice results (ETMC)

Axial and Pseudoscalar form factor at the physical point (
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Excited states
[ Jele}

Excited states

@ Excited states not removed for Gs at low momentum

@ Plateau method Residual time dependence due to excited
states

@ Goal: To account for these excited states
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Excited states
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Excited states: n/N scattering states, Roper resonance

@ Easiest way: Fitting the excited states explicitely
@ Excited state extracted from the 2pt or 3pt function

@ Overlaps of the excited states in 2 and 3pt can be different

R "/./] % 5 ﬁfrf @ 7 — N states volume suppressed in
161 &/{I}; 1 T 2pt
¥ ]

@ Extreme case: excited states cannot

‘/

even detected using single hadron
T operator
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Excited states
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Investigating excited state effects

Including two hadron interpolating operators

@ Extracting matrix elements from ratio of 3pt and 2pt
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Simulation details
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Simulation details

@ Excited states in the 2pt,3pt function using N, tN
interpolating fields

@ Two-hadron spectrum in the N(/=1/2,l5 = +1/2) channel

@ Performing a GEVP analysis for the 3pt function using
N, Nz operator basis

Interpolating fields Parameters

@ On+ = (UCYsd)u @ Confs: 2 flavour Twisted mass
Clover,
® Opo = (dCysu)d o M, —134MeV, a—0.0913fm
° ﬁno:\i@(uiysu—ai%d) @ L=43fm, M,-L=3, N;=48
B @ #conf =600,48 sp with
@ Un+ = (diYs) u Gauss-smearing at source,sink.

_
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Simulation details
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Contractions

Typical diagrams in &N 2-pt function

S

pion vertex

nucleon vertex —»——  point — to — all propagator
Q —»—  stochastic timeslice propagator

@ Fermion lines through the pion vertex are estimated with
the one-end trick

@ Method easily generalizable to 3pt functions

@ Implementation on GPU-s PLEGMA software package
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Simulation details
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Consequences of finite volume: Projections

@ Instead of spin we have the degrees of freedom:
@ irrep, irrep row(u), # occurances

Irreps in this work G1g irrep Pt = (0,0,0), oy =

Do, ifrep name /£ Noim 1,pr=1,u=0
p=(0,0,0),Gl, s 8x8 @ Occurance a
p=(0,0,0),Gl, s 8x8 é (N-1,00(0)71,0,0 — iNo,1,0(0) 70,10
p=(0,0,1),G1 s,p,d 22x22 +iNo,1,0(0)70,—1,0 — N1,0,0(0)7_1 00
ﬁ _ (1 ’ 1 ,0), (2)G S,p’ d 26X26 7N0,0.1 (0)77"070,71 N0,0.71 (0)77:0.0,1)
p=(1,1,1),3)G s,p,d 14x14 @ Occurance b

8 (N_1,0,0(2)m1,00 — iNo—10(2)70,1,0

+iNo1,0(2)m0,—1,0 — N1,00(2)7_1,00

—No,0,1(2)70,0,—1 No,0,—1(2)70,0.1)
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Nr spectrum
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Generalized EigenValue Problem (GEVP)

Energy levels

@ Using correlation matrices we form GEVP:
C’J(t)v]n(tO) = ln(t, tO)CI,j(tO)an(to)

G1g4: Effective mass and stability plot Conclusion from 2pt functions

@ First level compatible with
s ' 7 the physical nucleon mass
: e yrn il
% . 4 + -.tﬂ J \ 5 o ' !
. ¢ & compatible with GEVP
i TP R __* ground state
‘ w AR @ Excited states in single
hadron 2pt are not resolved
@ No level at N(0)7(0) due to by our 8x8 GEVP.
parity
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Eigenvectors from the &(N), 6(nN) GEVP

(o] Te}
@ Ground state of the GEVP is dominated by single nucleon
interpolator
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o hadron spectrum

Nr spectrum
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3pt function
0

3pt-function

Local current insertion
@ Only M-type of diagram is used

@ Justification (as a preliminary investigation)

e Two point function most of the signal originates from the M
diagram

e M diagram still involves the interaction via gluon exchange
between pion and nucleon
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3pt function
oe

Signal checks from 3pt function 7N source and sink

(Work in progress)

Checking signal
@ Scalar insertion in G154 (CMF) At=10:

One unit back-to-back momentum
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Conclusion
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Conclusion

@ We have determined the spectrum in the nucleon channel
including two hadron interpolating fields

@ For both isospin: neutron and proton

@ We found that single hadron dominates the ground state
@ We started to look at three pt between nN states

@ Stay tuned: Talk by Lorenzo Barca Today 16:40

@ Thank you very much for your attention
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