Quark mass dependence on hadron resonances

Lattice QCD

a numerical method to solve QCD equation

- *Finite and discrete space-time of size a
- *Computationally intensive calculations

*Unphysical masses in lattice spacing units

An extrapolation to the continuum is needed in order to extract results

What do we want to do?

as an important question to answer

- *We want to:
 - Analyze the quark mass dependence on D_{s0} (2317) and D_{s1} (2460) resonances
- * Why we want to do that?
 - Quark model predicts them above their thresholds but they lie bellow them
 - There is debate about whether they are quark states or if they are molecular states

What do we need to do?

as an important question to answer

*We need to:

- Compute the $DK \to DK$ and $D^*K \to D^*K$ scattering amplitudes with I=0, S=1, C=1
- Calculate the poles of the amplitude, the resonances
- lacksquare Obtain D meson masses as functions of pion mass
- Plot the curves of the resonances as functions of quark masses

D and D_c meson mass functions fitting

* Meson mass equations from HQET at one loop order

$$\frac{1}{4}(D+3D^*) = m_H + \alpha_a - \sum_{X=\pi,K,\eta} \beta_a^{(X)} \frac{M_X^3}{16\pi f^2} + \sum_{X=\pi,K,\eta} \left(\gamma_a^{(X)} - \lambda_a^{(X)} \alpha_a \right) \frac{M_X^2}{16\pi^2 f^2} \log \left(M_X^2/\mu^2 \right) + c_a$$

$$(D^* - D) = \Delta + \sum_{X=\pi,K,n} \left(\gamma_a^{(X)} - \lambda_a^{(X)} \Delta \right) \frac{M_X^2}{16\pi^2 f^2} \log \left(\frac{M_X^2}{\mu^2} \right) + \delta c_a$$

$$\frac{1}{4}(D+3D^*) = m_H + f(\sigma,a,b,c,d)$$

$$+$$

$$(D^*-D) = \Delta + g(\Delta^{(\sigma)},\Delta^{(a)})$$
10 parameters
$$+$$
7 parameters

7 parameters

1/ parameters

72 points

LASSO

regression method

$$\chi_P^2(p,d) = \chi^2(p,d) + \lambda^4 \sum_{i}^{n} |p_i| \longrightarrow$$

70% of data $\chi_P^2(p, d_{train})$ 30% of data $\chi_P^2(p, d_{test})$

D and D_s meson mass functions

fitting (after LASSO)

$$\frac{1}{4}(D+3D^*) = m_H + f(\sigma, a, X, c, X)$$

$$(D^* - D) = \Delta + g(X^{(\sigma)}, \Delta^{(a)})$$

10 parameters + 5 parameters

Scattering amplitudes

- * Lagrangian from Hidden gauge symmetry formalism
- * The total amplitude from
 - Bethe-Salpeter equation $\rightarrow T = \frac{V}{1 GV}$

Finite volume energy levels

(one more) fit

$$T = \frac{V}{1 - GV} \qquad G \to G_{finite}$$

* HSC energy levels

- $m_{\pi} = 239 \text{ MeV} \rightarrow 13 \text{ points}$
- $m_{\pi} = 391 \; \mathrm{MeV} \rightarrow 17 \; \mathrm{points}$

D_{s0} and D_{s1} resonances finally

 $D_{\rm s0}$ resonance ($DK \to DK$) $D_{\rm s1}$ resonance ($D^*K \to D^*K$)

Conclusions

the end

 D_{s0} (2317) mass

 $2318 \pm 18 \text{ MeV}$

 $2318.0 \pm 0.7 \text{ MeV}$

 D_{s1} (2460) mass

 $2462 \pm 18 \text{ MeV}$

 $2459.6 \pm 0.9 \text{ MeV}$

ullet D_{s0} and D_{s1} resonances change considerably with the pion mass

Supports the idea of $D_{{
m s}0}$ and $D_{{
m s}1}$ as molecular states

Thank you for your attention!