Accessing proton GPDs in non-symmetric frames:
 Numerical implementation

Martha Constantinou

T Temple University
in collaboration with:
S. Bhattacharya, K. Cichy, J. Dodson, X. Gao, A. Metz, A. Scapellato, F. Steffens, S. Mukherjee, Y. Zhao

The 39th International Symposium on Lattice Field Theory (Lattice 2022)

$$
\text { August 11, } 2022
$$

Generalized Parton Distributions

* Crucial in understanding hadron tomography; accessed via exclusive reactions (DVCS, DVMP)
* Provide a correlation between the transverse position and the longitudinal momentum of the quarks in the hadron and its mechanical properties (OAM, pressure, etc.)
[M. Burkardt, PRD62 071503 (2000), hep-ph/0005108] [M. V. Polyakov, PLB555 (2003) 57, hep-ph/0210165]
* GPDs are not well-constrained experimentally:
- x -dependence extraction is challenging
- independent measurements to disentangle GPDs
- limited coverage of kinematic region
- data on certain GPDs
- indirectly related to GPDs through the Compton FFs
- GPDs phenomenology more complicated than PDFs (multi-dimensionality)
\star GPD results from lattice QCD can be incorporated in global analysis of experimental data

Light-cone GPDs

* Off-forward matrix elements of non-local light-cone operators

$$
F^{\left[\gamma^{+}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime}\right)=\left.\frac{1}{2} \int \frac{d z^{-}}{2 \pi} e^{i k \cdot z}\left\langle p^{\prime} ; \lambda^{\prime}\right| \bar{\psi}\left(-\frac{z}{2}\right) \gamma^{+} \mathscr{W}\left(-\frac{z}{2}, \frac{z}{2}\right) \psi\left(\frac{z}{2}\right)|p ; \lambda\rangle\right|_{z^{+}=0, \vec{z}_{\perp}=\overrightarrow{0}_{\perp}}
$$

Parametrization in two leading twist GPDs

$$
F^{\left[\gamma^{+}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime}\right)=\frac{1}{2 P^{+}} \bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\gamma^{+} H(x, \xi, t)+\frac{i \sigma^{+\mu} \Delta_{\mu}}{2 M} E(x, \xi, t)\right] u(p, \lambda)
$$

How can one define GPDs on a Euclidean lattice?

GPDs on the lattice

Off forward correlators with nonlocal (equal-time) operators [X. Ji, PRL 110 (2013) 262002]

$$
\tilde{q}_{\mu}^{\mathrm{GPD}}\left(x, t, \xi, P_{3}, \mu\right)=\int \frac{d z}{4 \pi} e^{-i x P_{3} z}\left\langle N\left(P_{f}\right)\right| \bar{\Psi}(z) \gamma^{\mu} \mathscr{W}(z, 0) \Psi(0)\left|N\left(P_{i}\right)\right\rangle_{\mu}
$$

Variables of the calculation:

$$
\begin{aligned}
\Delta & =P_{f}-P_{i} \\
t & =\Delta^{2}=-Q^{2} \\
\xi & =\frac{Q_{3}}{2 P_{3}}
\end{aligned}
$$

- length of the Wilson line (z)
- nucleon momentum boost (P_{3})
- momentum transfer (t)
- skewness (ξ)

GPDs on the lattice

Off forward correlators with nonlocal (equal-time) operators [x. Ji, PRL 110 (2013) 262002]

$$
\tilde{q}_{\mu}^{\mathrm{GPD}}\left(x, t, \xi, P_{3}, \mu\right)=\int \frac{d z}{4 \pi} e^{-i x P_{3} z}\left\langle N\left(P_{f}\right)\right| \bar{\Psi}(z) \gamma^{\mu} \mathscr{W}(z, 0) \Psi(0)\left|N\left(P_{i}\right)\right\rangle_{\mu}
$$

Variables of the calculation:

- length of the Wilson line (z)
- nucleon momentum boost (P_{3})

$$
\Delta=P_{f}-P_{i}
$$

- momentum transfer (t)
- skewness (ξ)

Potential parametrization (γ^{+}inspired)

$$
\begin{aligned}
& F^{\left[\gamma^{0}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime} ; P^{3}\right)=\frac{1}{2 P^{0}} \bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\gamma^{0} H_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)+\frac{i \sigma^{0 \mu} \Delta_{\mu}}{2 M} E_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)\right] u(p, \lambda) \\
& F^{\left[\gamma^{3}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime} ; P^{3}\right)=\frac{1}{2 P^{0}} \bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\gamma^{3} H_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)+\frac{i \sigma^{3 \mu} \Delta_{\mu}}{2 M} E_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)\right] u(p, \lambda)
\end{aligned}
$$

GPDs on the lattice

Off forward correlators with nonlocal (equal-time) operators [x. Ji, PRL 110 (2013) 262002]

$$
\tilde{q}_{\mu}^{\mathrm{GPD}}\left(x, t, \xi, P_{3}, \mu\right)=\int \frac{d z}{4 \pi} e^{-i x P_{3} z}\left\langle N\left(P_{f}\right)\right| \bar{\Psi}(z) \gamma^{\mu} \mathscr{W}(z, 0) \Psi(0)\left|N\left(P_{i}\right)\right\rangle_{\mu}
$$

Variables of the calculation:

- length of the Wilson line (z)
- nucleon momentum boost (P_{3})

$$
\begin{aligned}
\Delta & =P_{f}-P_{i} \\
t & =\Delta^{2}=-Q^{2} \\
\xi & =\frac{Q_{3}}{2 P_{3}}
\end{aligned}
$$

- momentum transfer (t)
- skewness (ξ)

* Potential parametrization (γ^{+}inspired)

$$
\begin{aligned}
& F^{\left[\gamma^{0}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime} ; P^{3}\right)=\frac{1}{2 P^{0}} \bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\gamma^{0} H_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)+\frac{i \sigma^{0 \mu} \Delta_{\mu}}{2 M} E_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)\right] u(p, \lambda) \quad \longrightarrow \begin{array}{l}
\text { reduction of power } \\
\text { corrections in fwd limit } \\
\text { [Radyushkin, PLB 767, 314, 2017] }
\end{array} \\
& F^{\left[\gamma^{3}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime} ; P^{3}\right)=\frac{1}{2 P^{0}} \bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\gamma^{3} H_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)+\frac{i \sigma^{3 \mu} \Delta_{\mu}}{2 M} E_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)\right] u(p, \lambda)
\end{aligned}
$$

GPDs on the lattice

Off forward correlators with nonlocal (equal-time) operators [x. Ji, PRL 110 (2013) 262002]

$$
\tilde{q}_{\mu}^{\operatorname{GPD}}\left(x, t, \xi, P_{3}, \mu\right)=\int \frac{d z}{4 \pi} e^{-i x P_{3} z}\left\langle N\left(P_{f}\right)\right| \bar{\Psi}(z) \gamma^{\mu} \mathscr{W}(z, 0) \Psi(0)\left|N\left(P_{i}\right)\right\rangle_{\mu}
$$

Variables of the calculation:

- length of the Wilson line (z)
- nucleon momentum boost (P_{3})

$$
\begin{aligned}
\Delta & =P_{f}-P_{i} \\
t & =\Delta^{2}=-Q^{2} \\
\xi & =\frac{Q_{3}}{2 P_{3}}
\end{aligned}
$$

- momentum transfer (t)
- skewness (ξ)

Potential parametrization (γ^{+}inspired)

$$
\begin{aligned}
& F^{\left[\gamma^{0}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime} ; P^{3}\right)=\frac{1}{2 P^{0}} \bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\gamma^{0} H_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)+\frac{i \sigma^{0 \mu} \Delta_{\mu}}{2 M} E_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)\right] u(p, \lambda) \\
& F^{\left[\gamma^{3}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime} ; P^{3}\right)=\frac{1}{2 P^{0}} \bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\gamma^{3} H_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)+\frac{i \sigma^{3 \mu} \Delta_{\mu}}{2 M} E_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)\right] u(p, \lambda)
\end{aligned}
$$

reduction of power corrections in fwd limit [Radyushkin, PLB 767, 314, 2017]
finite mixing with scalar
[Constantinou \& Panagopoulos (2017)]

GPDs on the lattice

Off forward correlators with nonlocal (equal-time) operators [x. Ji, PRL 110 (2013) 262002]

$$
\tilde{q}_{\mu}^{\operatorname{GPD}}\left(x, t, \xi, P_{3}, \mu\right)=\int \frac{d z}{4 \pi} e^{-i x P_{3} z}\left\langle N\left(P_{f}\right)\right| \bar{\Psi}(z) \gamma^{\mu} \mathscr{W}(z, 0) \Psi(0)\left|N\left(P_{i}\right)\right\rangle_{\mu}
$$

Variables of the calculation:

- length of the Wilson line (z)
- nucleon momentum boost (P_{3})

$$
\Delta=P_{f}-P_{i}
$$

- momentum transfer (t)
- skewness (ξ)

Potential parametrization (γ^{+}inspired)

$$
F^{\left[\gamma^{0}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime} ; P^{3}\right)=\frac{1}{2 P^{0}} \bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\gamma^{0} H_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)+\frac{i \sigma^{0 \mu} \Delta_{\mu}}{2 M} E_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)\right] u(p, \lambda)
$$

reduction of power corrections in fwd limit [Radyushkin, PLB 767, 314, 2017]

$$
F^{\left[\gamma^{3}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime} ; P^{3}\right)=\frac{1}{2 P^{0}} \bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\gamma^{3} H_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)+\frac{i \sigma^{3 \mu} \Delta_{\mu}}{2 M} E_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)\right] u(p, \lambda)
$$

finite mixing with scalar
[Constantinou \& Panagopoulos (2017)]

GPDs on the lattice

Off forward correlators with nonlocal (equal-time) operators [x. Ji, pRL 110 (2013) 262002]

$$
\tilde{q}_{\mu}^{\operatorname{GPD}}\left(x, t, \xi, P_{3}, \mu\right)=\int \frac{d z}{4 \pi} e^{-i x P_{3} z}\left\langle N\left(P_{f}\right)\right| \bar{\Psi}(z) \gamma^{\mu} \mathscr{W}(z, 0) \Psi(0)\left|N\left(P_{i}\right)\right\rangle_{\mu}
$$

Variables of the calculation:

- length of the Wilson line (z)
- nucleon momentum boost (P_{3})
- momentum transfer (t)
- skewness (ξ)

Potential parametrization (γ^{+}inspired)

$$
F^{\left[\gamma^{0}{ }^{\prime}\left(x, \Delta ; \lambda, \lambda^{\prime} ; P^{3}\right)=\frac{1}{2 P^{0}} \bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\gamma^{0} H_{Q(0)}\left(x, \xi, t ; P^{3}\right)+\frac{i \sigma^{0 \mu} \Delta_{\mu}}{2 M} E_{Q(0)}\left(x, \xi, t ; P^{3}\right)\right] u(p, \lambda)\right.}
$$

$$
F^{\left[\gamma^{3}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime} ; P^{3}\right)=\frac{1}{2 P^{0}} \bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\gamma^{3} H_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)+\frac{i \sigma^{3 \mu} \Delta_{\mu}}{2 M} E_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)\right] u(p, \lambda)
$$

\square finite mixing with scalar
[Constantinou \& Panagopoulos (2017)]

- Lorentz non-invariant parametrization
- Typically used in symmetric frame
- A non-symmetric setup may result to different functional form for GPDs compared to the symmetric one

Motivation - Outline of work

Calculation expected to be performed in symmetric frame to extract the "standard" GPDs
\star Symmetric frame requires separate calculations at each t

Motivation - Outline of work

Calculation expected to be performed in symmetric frame to extract the "standard" GPDs
\star Symmetric frame requires separate calculations at each t
$1^{\text {st }}$ goal:
Extraction of GPDs in the symmetric frame using lattice correlators calculated in non-symmetric frames

Motivation - Outline of work

* Calculation expected to be performed in symmetric frame to extract the "standard" GPDs
* Symmetric frame requires separate calculations at each t
$1^{\text {st }}$ goal:
Extraction of GPDs in the symmetric frame using lattice correlators calculated in non-symmetric frames
$2^{\text {nd }}$ goal:
New definition of Lorentz covariant quasi-GPDs that may have faster convergence to light-cone GPDs (elimination of kinematic corrections)

Theoretical setup

* Parametrization of matrix elements in Lorentz invariant amplitudes [see S. Bhattacharya talk]

$$
F_{\lambda, \lambda^{\prime}}^{\mu}=\bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\frac{P^{\mu}}{M} A_{1}+z^{\mu} M A_{2}+\frac{\Delta^{\mu}}{M} A_{3}+i \sigma^{\mu z} M A_{4}+\frac{i \sigma^{\mu \Delta}}{M} A_{5}+\frac{P^{\mu} i \sigma^{z \Delta}}{M} A_{6}+\frac{z^{\mu} i \sigma^{z \Delta}}{M} A_{7}+\frac{\Delta^{\mu} i \sigma^{z \Delta}}{M} A_{8}\right] u(p, \lambda)
$$

Advantages

- Applicable to any kinematic frame and have definite symmetries
- Lorentz invariant amplitudes A_{i} can be related to the standard H, E GPDs
- Quasi H, E may be redefined (Lorentz covariant) to eliminate $1 / P_{3}$ contributions:

Theoretical setup

* Parametrization of matrix elements in Lorentz invariant amplitudes [see S. Bhattacharya talk]
$F_{\lambda, \lambda^{\prime}}^{\mu}=\bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\frac{P^{\mu}}{M} A_{1}+z^{\mu} M A_{2}+\frac{\Delta^{\mu}}{M} A_{3}+i \sigma^{\mu z} M A_{4}+\frac{i \sigma^{\mu \Delta}}{M} A_{5}+\frac{P^{\mu} i \sigma^{z \Delta}}{M} A_{6}+\frac{z^{\mu} i \sigma^{z \Delta}}{M} A_{7}+\frac{\Delta^{\mu} i \sigma^{z \Delta}}{M} A_{8}\right] u(p, \lambda)$

Advantages

- Applicable to any kinematic frame and have definite symmetries
- Lorentz invariant amplitudes A_{i} can be related to the standard H, E GPDs
- Quasi H, E may be redefined (Lorentz covariant) to eliminate $1 / P_{3}$ contributions:

$$
\begin{aligned}
& H\left(z \cdot P, z \cdot \Delta, t=\Delta^{2}, z^{2}\right)=A_{1}+\frac{\Delta_{s / a} \cdot z}{P_{\text {avg } s / a} \cdot z} A_{3} \\
& E\left(z \cdot P, z \cdot \Delta, t=\Delta^{2}, z^{2}\right)=-A_{1}-\frac{\Delta_{\text {s/a }} \cdot z}{P_{\text {avg,s/a }} \cdot z} A_{3}+2 A_{5}+2 P_{\text {avg }, s / a} \cdot z A_{6}+2 \Delta_{s / a} \cdot z A_{8}
\end{aligned}
$$

Theoretical setup

* Parametrization of matrix elements in Lorentz invariant amplitudes [see S. Bhattacharya talk]
$F_{\lambda, \lambda^{\prime}}^{\mu}=\bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\frac{P^{\mu}}{M} A_{1}+z^{\mu} M A_{2}+\frac{\Delta^{\mu}}{M} A_{3}+i \sigma^{\mu z} M A_{4}+\frac{i \sigma^{\mu \Delta}}{M} A_{5}+\frac{P^{\mu} i \sigma^{z \Delta}}{M} A_{6}+\frac{z^{\mu} i \sigma^{z \Delta}}{M} A_{7}+\frac{\Delta^{\mu} i \sigma^{z \Delta}}{M} A_{8}\right] u(p, \lambda)$

Advantages

- Applicable to any kinematic frame and have definite symmetries
- Lorentz invariant amplitudes A_{i} can be related to the standard H, E GPDs
- Quasi H, E may be redefined (Lorentz covariant) to eliminate $1 / P_{3}$ contributions:

$$
\begin{aligned}
& H\left(z \cdot P, z \cdot \Delta, t=\Delta^{2}, z^{2}\right)=A_{1}+\frac{\Delta_{s / a} \cdot z}{P_{\text {avg } s / a} \cdot z} A_{3} \\
& E\left(z \cdot P, z \cdot \Delta, t=\Delta^{2}, z^{2}\right)=-A_{1}-\frac{\Delta_{\text {sla }} \cdot z}{P_{\text {avg,s/a }} \cdot z} A_{3}+2 A_{5}+2 P_{\text {avg }, s / a} \cdot z A_{6}+2 \Delta_{s / a} \cdot z A_{8}
\end{aligned}
$$

Proof-of-concept calculation (zero quasi-skewness):

- symmetric frame:

$$
\begin{aligned}
\vec{p}_{f}^{s} & =\vec{P}+\frac{\vec{Q}}{2} \\
\vec{p}_{f}^{a} & =\vec{P}
\end{aligned}
$$

$$
\vec{p}_{i}^{s}=\vec{P}-\frac{\vec{Q}}{2}
$$

$$
t^{s}=-\vec{Q}^{2}
$$

- asymmetric frame:

$$
\vec{p}_{i}^{a}=\vec{P}-\vec{Q}
$$

$$
t^{a}=-\vec{Q}^{2}+\left(E_{f}-E_{i}\right)^{2}
$$

Matrix element decomposition

Symmetric

$$
\begin{aligned}
& C_{s}=\frac{2 m^{2}}{E(E+m)} \\
& \Gamma_{0}=\frac{1}{2}\left(1+\gamma^{0}\right) \\
& \Gamma_{j}=\frac{i}{4}\left(1+\gamma^{0}\right) \gamma^{5} \gamma^{j} \\
&(j=1,2,3)
\end{aligned}
$$

$$
\begin{aligned}
& \Pi_{s}^{0}\left(\Gamma_{0}\right)=C_{s}\left(\frac{E\left(E(E+m)-P_{3}^{2}\right)}{2 m^{3}} A_{1}+\frac{(E+m)\left(-E^{2}+m^{2}+P_{3}^{2}\right)}{m^{3}} A_{5}+\frac{E P_{3}\left(-E^{2}+m^{2}+P_{3}^{2}\right) z}{m^{3}} A_{6}\right) \\
& \Pi_{s}^{0}\left(\Gamma_{1}\right)=i C_{s}\left(\frac{E P_{3} Q_{2}}{4 m^{3}} A_{1}-\frac{(E+m) P_{3} Q_{2}}{2 m^{3}} A_{5}-\frac{E\left(P_{3}^{2}+m(E+m)\right) z Q_{2}}{2 m^{3}} A_{6}\right) \\
& \Pi_{s}^{0}\left(\Gamma_{2}\right)=i C_{s}\left(-\frac{E P_{3} Q_{1}}{4 m^{3}} A_{1}+\frac{(E+m) P_{3} Q_{1}}{2 m^{3}} A_{5}+\frac{E\left(P_{3}^{2}+m(E+m)\right) z Q_{1}}{2 m^{3}} A_{6}\right)
\end{aligned}
$$

Asymmetric

$$
C_{a}=\frac{2 m^{2}}{\sqrt{E_{i} E_{f}\left(E_{i}+m\right)\left(E_{f}+m\right)}}
$$

$$
\begin{aligned}
\Pi_{0}^{a}\left(\Gamma_{0}\right)=C_{a}(& -\frac{\left(E_{f}+E_{i}\right)\left(E_{f}-E_{i}-2 m\right)\left(E_{f}+m\right)}{8 m^{3}} A_{1}-\frac{\left(E_{f}-E_{i}-2 m\right)\left(E_{f}+m\right)\left(E_{f}-E_{i}\right)}{4 m^{3}} A_{3} \\
& +\frac{\left(E_{i}-E_{f}\right) P_{3} z}{4 m} A_{4}+\frac{\left(E_{f}+E_{i}\right)\left(E_{f}+m\right)\left(E_{f}-E_{i}\right)}{4 m^{3}} A_{5}+\frac{E_{f}\left(E_{f}+E_{i}\right) P_{3}\left(E_{f}-E_{i}\right) z}{4 m^{3}} A_{6} \\
& \left.+\frac{E_{f} P_{3}\left(E_{f}-E_{i}\right)^{2} z}{2 m^{3}} A_{8}\right) \\
\Pi_{0}^{a}\left(\Gamma_{1}\right)= & i C_{a}\left(\frac{\left(E_{f}+E_{i}\right) P_{3} Q_{2}}{8 m^{3}} A_{1}+\frac{\left(E_{f}-E_{i}\right) P_{3} Q_{2}}{4 m^{3}} A_{3}+\frac{\left(E_{f}+m\right) Q_{2} z}{4 m} A_{4}-\frac{\left(E_{f}+E_{i}+2 m\right) P_{3} Q_{2}}{4 m^{3}} A_{5}\right. \\
& \left.-\frac{E_{f}\left(E_{f}+E_{i}\right)\left(E_{f}+m\right) Q_{2} z}{4 m^{3}} A_{6}-\frac{E_{f}\left(E_{f}-E_{i}\right)\left(E_{f}+m\right) Q_{2} z}{2 m^{3}} A_{8}\right) \\
\Pi_{0}^{a}\left(\Gamma_{2}\right)= & i C_{a}\left(-\frac{\left(E_{f}+E_{i}\right) P_{3} Q_{1}}{8 m^{3}} A_{1}-\frac{\left(E_{f}-E_{i}\right) P_{3} Q_{1}}{4 m^{3}} A_{3}-\frac{\left(E_{f}+m\right) Q_{1} z}{4 m} A_{4}+\frac{\left(E_{f}+E_{i}+2 m\right) P_{3} Q_{1}}{4 m^{3}} A_{5}\right. \\
& \left.+\frac{E_{f}\left(E_{f}+E_{i}\right)\left(E_{f}+m\right) Q_{1} z}{4 m^{3}} A_{6}+\frac{E_{f}\left(E_{f}-E_{i}\right)\left(E_{f}+m\right) Q_{1} z}{2 m^{3}} A_{8}\right)
\end{aligned}
$$

Matrix element decomposition

Symmetric

$$
\begin{aligned}
& C_{s}=\frac{2 m^{2}}{E(E+m)} \\
& \Gamma_{0}=\frac{1}{2}\left(1+\gamma^{0}\right) \\
& \Gamma_{j}=\frac{i}{4}\left(1+\gamma^{0}\right) \gamma^{5} \gamma^{j} \\
&(j=1,2,3)
\end{aligned}
$$

$$
\begin{aligned}
& \Pi_{s}^{0}\left(\Gamma_{0}\right)=C_{s}\left(\frac{E\left(E(E+m)-P_{3}^{2}\right)}{2 m^{3}} A_{1}+\frac{(E+m)\left(-E^{2}+m^{2}+P_{3}^{2}\right)}{m^{3}} A_{5}+\frac{E P_{3}\left(-E^{2}+m^{2}+P_{3}^{2}\right) z}{m^{3}} A_{6}\right) \\
& \Pi_{s}^{0}\left(\Gamma_{1}\right)=i C_{s}\left(\frac{E P_{3} Q_{2}}{4 m^{3}} A_{1}-\frac{(E+m) P_{3} Q_{2}}{2 m^{3}} A_{5}-\frac{E\left(P_{3}^{2}+m(E+m)\right) z Q_{2}}{2 m^{3}} A_{6}\right)
\end{aligned}
$$

$$
\Pi_{s}^{0}\left(\Gamma_{2}\right)=i C_{s}\left(-\frac{E P_{3} Q_{1}}{4 m^{3}} A_{1}+\frac{(E+m) P_{3} Q_{1}}{2 m^{3}} A_{5}+\frac{E\left(P_{3}^{2}+m(E+m)\right) z Q_{1}}{2 m^{3}} A_{6}\right)
$$

Novel feature: z-dependence

Asymmetric

$$
C_{a}=\frac{2 m^{2}}{\sqrt{E_{i} E_{f}\left(E_{i}+m\right)\left(E_{f}+m\right)}}
$$

$$
\begin{aligned}
& \Pi_{0}^{a}\left(\Gamma_{0}\right)=C_{a}(-\frac{\left(E_{f}+E_{i}\right)\left(E_{f}-E_{i}-2 m\right)\left(E_{f}+m\right)}{8 m^{3}} A_{1}-\frac{\left(E_{f}-E_{i}-2 m\right)\left(E_{f}+m\right)\left(E_{f}-E_{i}\right)}{4 m^{3}} A_{3} \\
&+\frac{\left(E_{i}-E_{f}\right) P_{3} z}{4 m} A_{4}+\frac{\left(E_{f}+E_{i}\right)\left(E_{f}+m\right)\left(E_{f}-E_{i}\right)}{4 m^{3}} A_{5}+\frac{E_{f}\left(E_{f}+E_{i}\right) P_{3}\left(E_{f}-E_{i}\right) z}{4 m^{3}} A_{6} \\
&\left.+\frac{E_{f} P_{3}\left(E_{f}-E_{i}\right)^{2} z}{2 m^{3}} A_{8}\right) \\
& \Pi_{0}^{a}\left(\Gamma_{1}\right)=i C_{a}\left(\frac{\left(E_{f}+E_{i}\right) P_{3} Q_{2}}{8 m^{3}} A_{1}+\frac{\left(E_{f}-E_{i}\right) P_{3} Q_{2}}{4 m^{3}} A_{3}+\frac{\left(E_{f}+m\right) Q_{2} z}{4 m} A_{4}-\frac{\left(E_{f}+E_{i}+2 m\right) P_{3} Q_{2}}{4 m^{3}} A_{5}\right. \\
&\left.-\frac{E_{f}\left(E_{f}+E_{i}\right)\left(E_{f}+m\right) Q_{2} z}{4 m^{3}} A_{6}-\frac{E_{f}\left(E_{f}-E_{i}\right)\left(E_{f}+m\right) Q_{2} z}{2 m^{3}} A_{8}\right) \\
& \Pi_{0}^{a}\left(\Gamma_{2}\right)= i C_{a}\left(-\frac{\left(E_{f}+E_{i}\right) P_{3} Q_{1}}{8 m^{3}} A_{1}-\frac{\left(E_{f}-E_{i}\right) P_{3} Q_{1}}{4 m^{3}} A_{3}-\frac{\left(E_{f}+m\right) Q_{1} z}{4 m} A_{4}+\frac{\left(E_{f}+E_{i}+2 m\right) P_{3} Q_{1}}{4 m^{3}} A_{5}\right. \\
&\left.+\frac{E_{f}\left(E_{f}+E_{i}\right)\left(E_{f}+m\right) Q_{1} z}{4 m^{3}} A_{6}+\frac{E_{f}\left(E_{f}-E_{i}\right)\left(E_{f}+m\right) Q_{1} z}{2 m^{3}} A_{8}\right)
\end{aligned}
$$

Matrix element decomposition

Symmetric

$$
C_{s}=\frac{2 m^{2}}{E(E+m)}
$$

$$
\Gamma_{0}=\frac{1}{2}\left(1+\gamma^{0}\right)
$$

$$
\begin{aligned}
& \Pi_{s}^{0}\left(\Gamma_{0}\right)=C_{s}\left(\frac{E\left(E(E+m)-P_{3}^{2}\right)}{2 m^{3}} A_{1}+\frac{(E+m)\left(-E^{2}+m^{2}+P_{3}^{2}\right)}{m^{3}} A_{5}+\frac{E P_{3}\left(-E^{2}+m^{2}+P_{3}^{2}\right) z}{m^{3}} A_{6}\right) \\
& \Pi_{s}^{0}\left(\Gamma_{1}\right)=i C_{s}\left(\frac{E P_{3} Q_{2}}{4 m^{3}} A_{1}-\frac{(E+m) P_{3} Q_{2}}{2 m^{3}} A_{5}-\frac{E\left(P_{3}^{2}+m(E+m)\right) z Q_{2}}{2 m^{3}} A_{6}\right)
\end{aligned}
$$

$$
\Gamma_{j}=\frac{i}{4}\left(1+\gamma^{0}\right) \gamma^{5} \gamma^{j}
$$

$$
\Pi_{s}^{0}\left(\Gamma_{2}\right)=i C_{s}\left(-\frac{E P_{3} Q_{1}}{4 m^{3}} A_{1}+\frac{(E+m) P_{3} Q_{1}}{2 m^{3}} A_{5}+\frac{E\left(P_{3}^{2}+m(E+m)\right) z Q_{1}}{2 m^{3}} A_{6}\right)
$$

Novel feature: z-dependence

$$
(j=1,2,3)
$$

Asymmetric

$$
C_{a}=\frac{2 m^{2}}{\sqrt{E_{i} E_{f}\left(E_{i}+m\right)\left(E_{f}+m\right)}}
$$

$$
\begin{aligned}
\Pi_{0}^{a}\left(\Gamma_{0}\right)=C_{a} & \left(-\frac{\left(E_{f}+E_{i}\right)\left(E_{f}-E_{i}-2 m\right)\left(E_{f}+m\right)}{8 m^{3}} A_{1}-\frac{\left(E_{f}-E_{i}-2 m\right)\left(E_{f}+m\right)\left(E_{f}-E_{i}\right)}{4 m^{3}} A_{3}\right. \\
& +\frac{\left(E_{i}-E_{f}\right) P_{3} z}{4 m} A_{4}+\frac{\left(E_{f}+E_{i}\right)\left(E_{f}+m\right)\left(E_{f}-E_{i}\right)}{4 m^{3}} A_{5}+\frac{E_{f}\left(E_{f}+E_{i}\right) P_{3}\left(E_{f}-E_{i}\right) z}{4 m^{3}} A_{6} \\
& \left.+\frac{E_{f} P_{3}\left(E_{f}-E_{i}\right)^{2} z}{2 m^{3}} A_{8}\right)
\end{aligned}
$$

$$
\Pi_{0}^{a}\left(\Gamma_{1}\right)=i C_{a}\left(\frac{\left(E_{f}+E_{i}\right) P_{3} Q_{2}}{8 m^{3}} A_{1}+\frac{\left(E_{f}-E_{i}\right) P_{3} Q_{2}}{4 m^{3}} A_{3}+\frac{\left(E_{f}+m\right) Q_{2} z}{4 m} A_{4}-\frac{\left(E_{f}+E_{i}+2 m\right) P_{3} Q_{2}}{4 m^{3}} A_{5}\right.
$$

$$
\left.-\frac{E_{f}\left(E_{f}+E_{i}\right)\left(E_{f}+m\right) Q_{2} z}{4 m^{3}} A_{6}-\frac{E_{f}\left(E_{f}-E_{i}\right)\left(E_{f}+m\right) Q_{2} z}{2 m^{3}} A_{8}\right)
$$

$$
\begin{aligned}
\Pi_{0}^{a}\left(\Gamma_{2}\right)=i C_{a} & \left(-\frac{\left(E_{f}+E_{i}\right) P_{3} Q_{1}}{8 m^{3}} A_{1}-\frac{\left(E_{f}-E_{i}\right) P_{3} Q_{1}}{4 m^{3}} A_{3}-\frac{\left(E_{f}+m\right) Q_{1} z}{4 m} A_{4}+\frac{\left(E_{f}+E_{i}+2 m\right) P_{3} Q_{1}}{4 m^{3}} A_{5}\right. \\
& \left.+\frac{E_{f}\left(E_{f}+E_{i}\right)\left(E_{f}+m\right) Q_{1} z}{4 m^{3}} A_{6}+\frac{E_{f}\left(E_{f}-E_{i}\right)\left(E_{f}+m\right) Q_{1} z}{2 m^{3}} A_{8}\right)
\end{aligned}
$$

Matrix element decomposition

Symmetric

$$
\begin{aligned}
& C_{s}=\frac{2 m^{2}}{E(E+m)} \\
& \Gamma_{0}=\frac{1}{2}\left(1+\gamma^{0}\right) \\
& \Gamma_{j}=\frac{i}{4}\left(1+\gamma^{0}\right) \gamma^{5} \gamma^{j} \\
&(j=1,2,3)
\end{aligned}
$$

Asymmetric

$$
C_{a}=\frac{2 m^{2}}{\sqrt{E_{i} E_{f}\left(E_{i}+m\right)\left(E_{f}+m\right)}}
$$

$$
\begin{aligned}
\Pi_{1}^{a}\left(\Gamma_{0}\right)=i C_{a} & \left(-\frac{\left(E_{f}-E_{i}-2 m\right)\left(E_{f}+m\right) Q_{1}}{8 m^{3}} A_{1}+\frac{\left(E_{f}-E_{i}-2 m\right)\left(E_{f}+m\right) Q_{1}}{4 m^{3}} A_{3}+\frac{P_{3} Q_{1} z}{4 m} A_{4}\right. \\
& \left.+\frac{\left(E_{f}-E_{i}\right)\left(E_{f}+m\right) Q_{1}}{4 m^{3}} A_{5}+\frac{E_{f}\left(E_{f}-E_{i}\right) P_{3} Q_{1} z}{4 m^{3}} A_{6}+\frac{E_{f}\left(E_{i}-E_{f}\right) P_{3} Q_{1} z}{2 m^{3}} A_{8}\right) \\
\Pi_{1}^{a}\left(\Gamma_{1}\right)=C_{a}(& -\frac{P_{3} Q_{1} Q_{2}}{8 m^{3}} A_{1}+\frac{P_{3} Q_{1} Q_{2}}{4 m^{3}} A_{3}+\frac{P_{3} Q_{1} Q_{2}}{4 m^{3}} A_{5}+\frac{E_{f}\left(E_{f}+m\right) Q_{1} Q_{2} z}{4 m^{3}} A_{6} \\
& \left.-\frac{E_{f}\left(E_{f}+m\right) Q_{1} Q_{2} z}{2 m^{3}} A_{8}\right)
\end{aligned}
$$

No definite symmetries
for Π_{μ}^{a}

$$
\begin{aligned}
& \Pi_{s}^{1}\left(\Gamma_{0}\right)=i C_{s}\left(-\frac{\left(E(E+m)-P_{3}^{2}\right) Q_{1}}{2 m^{3}} A_{3}+\frac{P_{3} Q_{1} z}{4 m} A_{4}-\frac{P_{3}\left(-E^{2}+m^{2}+P_{3}^{2}\right) z Q_{1}}{m^{3}} A_{8}\right) \\
& \Pi_{s}^{1}\left(\Gamma_{1}\right)=C_{s}\left(\frac{P_{3} Q_{1} Q_{2}}{4 m^{3}} A_{3}+\frac{Q_{1} Q_{2} z}{8 m} A_{4}-\frac{\left(P_{3}^{2}+m(E+m)\right) Q_{1} Q_{2} z}{2 m^{3}} A_{8}\right) \\
& \Pi_{s}^{1}\left(\Gamma_{2}\right)=C_{s}\left(-\frac{P_{3} Q_{1}^{2}}{4 m^{3}} A_{3}+\frac{\left(4 E(E+m)-Q_{1}^{2}\right) z}{8 m} A_{4}+\frac{\left(P_{3}^{2}+m(E+m)\right) Q_{1}^{2} z}{2 m^{3}} A_{8}\right) \\
& \Pi_{s}^{1}\left(\Gamma_{3}\right)=C_{s} \frac{(E+m) Q_{2}}{2 m^{2}} A_{5}
\end{aligned}
$$

$$
\begin{aligned}
\Pi_{1}^{a}\left(\Gamma_{2}\right)=C_{a} & \left(\frac{P_{3} Q_{1}^{2}}{8 m^{3}} A_{1}-\frac{P_{3} Q_{1}^{2}}{4 m^{3}} A_{3}+\frac{\left(E_{f}+E_{i}\right)\left(E_{f}+m\right) z}{4 m} A_{4}+\frac{P_{3}\left(2\left(E_{f}-E_{i}\right) m-Q_{1}^{2}\right)}{4 m^{3}} A_{5}\right. \\
& \left.-\frac{E_{f}\left(E_{f}+m\right) Q_{1}^{2} z}{4 m^{3}} A_{6}+\frac{E_{f}\left(E_{f}+m\right) Q_{1}^{2} z}{2 m^{3}} A_{8}\right) \\
\Pi_{1}^{a}\left(\Gamma_{3}\right)= & C_{a}\left(\frac{P_{3} z Q_{2}}{4 m} A_{4}+\frac{\left(E_{f}+m\right) Q_{2}}{2 m^{2}} A_{5}\right)
\end{aligned}
$$

Lorentz-Invariant amplitudes

Symmetric

$$
\begin{aligned}
& A_{1}=\frac{\left(m(E+m)+P_{3}^{2}\right)}{E(E+m)} \Pi_{0}^{s}\left(\Gamma_{0}\right)-i \frac{P_{3} Q_{1}}{2 E(E+m)} \Pi_{0}^{s}\left(\Gamma_{2}\right)-\frac{Q_{1}}{2 E} \Pi_{2}^{s}\left(\Gamma_{3}\right) \\
& A_{5}=-\frac{E}{Q_{1}} \Pi_{2}^{s}\left(\Gamma_{3}\right) \\
& A_{6}=\frac{P_{3}}{2 E z(E+m)} \Pi_{0}^{s}\left(\Gamma_{0}\right)+i \frac{\left(P_{3}^{2}-E(E+m)\right)}{E Q_{1} z(E+m)} \Pi_{0}^{s}\left(\Gamma_{2}\right)+\frac{P_{3}}{E Q_{1} z} \Pi_{2}^{s}\left(\Gamma_{3}\right)
\end{aligned}
$$

Asymmetric $\quad A_{1}=\frac{2 m^{2}}{E_{f}\left(E_{i}+m\right)} \frac{\Pi_{0}^{a}\left(\Gamma_{0}\right)}{C_{a}}+i \frac{2\left(E_{f}-E_{i}\right) P_{3} m^{2}}{E_{f}\left(E_{f}+m\right)\left(E_{i}+m\right) Q_{1}} \frac{\Pi_{0}^{a}\left(\Gamma_{2}\right)}{C_{a}}+\frac{2\left(E_{i}-E_{f}\right) P_{3} m^{2}}{E_{f}\left(E_{f}+E_{i}\right)\left(E_{f}+m\right)\left(E_{i}+m\right)} \frac{\Pi_{1}^{a}\left(\Gamma_{2}\right)}{C_{a}}$

$$
+i \frac{2\left(E_{i}-E_{f}\right) m^{2}}{E_{f}\left(E_{i}+m\right) Q_{1}} \frac{\Pi_{1}^{a}\left(\Gamma_{0}\right)}{C_{a}}+\frac{2\left(E_{i}-E_{f}\right) P_{3} m^{2}}{E_{f}\left(E_{f}+E_{i}\right)\left(E_{f}+m\right)\left(E_{i}+m\right)} \frac{\Pi_{2}^{a}\left(\Gamma_{1}\right)}{C_{a}}+\frac{2\left(E_{f}-E_{i}\right) m^{2}}{E_{f}\left(E_{i}+m\right) Q_{1}} \frac{\Pi_{2}^{a}\left(\Gamma_{3}\right)}{C_{a}}
$$

$$
A_{5}=\frac{m^{2} P_{3}}{E_{f}\left(E_{f}+m\right)\left(E_{i}+m\right)} \frac{\Pi_{2}^{a}\left(\Gamma_{1}\right)}{C_{a}}-\frac{\left(E_{f}+E_{i}\right) m^{2}}{E_{f}\left(E_{i}+m\right) Q_{1}} \frac{\Pi_{2}^{a}\left(\Gamma_{3}\right)}{C_{a}}
$$

$$
A_{6}=\frac{P_{3} m^{2}}{E_{f}^{2}\left(E_{f}+m\right)\left(E_{i}+m\right) z} \frac{\Pi_{0}^{a}\left(\Gamma_{0}\right)}{C_{a}}+i \frac{\left(E_{f}-E_{i}-2 m\right) m^{2}}{E_{f}^{2}\left(E_{i}+m\right) Q_{1} z} \frac{\Pi_{0}^{a}\left(\Gamma_{2}\right)}{C_{a}}+i \frac{\left(E_{i}-E_{f}\right) P_{3} m^{2}}{E_{f}^{2}\left(E_{f}+m\right)\left(E_{i}+m\right) Q_{1} z} \frac{\Pi_{1}^{a}\left(\Gamma_{0}\right)}{C_{a}}
$$

$$
+\frac{\left(-E_{f}+E_{i}+2 m\right) m^{2}}{E_{f}^{2}\left(E_{f}+E_{i}\right)\left(E_{i}+m\right) z} \frac{\Pi_{1}^{a}\left(\Gamma_{2}\right)}{C_{a}}+\frac{2\left(m-E_{f}\right) m^{2}}{E_{f}^{2}\left(E_{f}+E_{i}\right)\left(E_{i}+m\right) z} \frac{\Pi_{2}^{a}\left(\Gamma_{1}\right)}{C_{a}}+\frac{2 P_{3} m^{2}}{E_{f}^{2}\left(E_{i}+m\right) Q_{1} z} \frac{\Pi_{2}^{a}\left(\Gamma_{3}\right)}{C_{a}}
$$

\star Asymmetric frame equations more complex

$\star A_{i}$ have definite symmetries

System of 8 independent matrix elements to disentangle the A_{i}

Lorentz-Invariant amplitudes

Symmetric

$$
\begin{aligned}
A_{1}= & \frac{\left(m(E+m)+P_{3}^{2}\right)}{E(E+m)} \Pi_{0}^{s}\left(\Gamma_{0}\right)-i \frac{P_{3} Q_{1}}{2 E(E+m)} \Pi_{0}^{s}\left(\Gamma_{2}\right)-\frac{Q_{1}}{2 E} \Pi_{2}^{s}\left(\Gamma_{3}\right) \\
A_{5}= & -\frac{E}{Q_{1}} \Pi_{2}^{s}\left(\Gamma_{3}\right) \\
A_{6}= & \frac{P_{3}}{2 E z(E+m)} \Pi_{0}^{s}\left(\Gamma_{0}\right)+i \frac{\left(P_{3}^{2}-E(E+m)\right)}{E Q_{1} z(E+m)} \Pi_{0}^{s}\left(\Gamma_{2}\right)+\frac{P_{3}}{E Q_{1} z} \Pi_{2}^{s}\left(\Gamma_{3}\right) \\
A_{1}= & \frac{2 m^{2}}{E_{f}\left(E_{i}+m\right)} \frac{\Pi_{0}^{a}\left(\Gamma_{0}\right)}{C_{a}}+i \frac{2\left(E_{f}-E_{i}\right) P_{3} m^{2}}{E_{f}\left(E_{f}+m\right)\left(E_{i}+m\right) Q_{1}} \frac{\Pi_{0}^{a}\left(\Gamma_{2}\right)}{C_{a}}+\frac{2\left(E_{i}-E_{f}\right) P_{3} m^{2}}{E_{f}\left(E_{f}+E_{i}\right)\left(E_{f}+m\right)\left(E_{i}+m\right)} \frac{\Pi_{1}^{a}\left(\Gamma_{2}\right)}{C_{a}} \\
& +i \frac{2\left(E_{i}-E_{f}\right) m^{2}}{E_{f}\left(E_{i}+m\right) Q_{1}} \frac{\Pi_{1}^{a}\left(\Gamma_{0}\right)}{C_{a}}+\frac{2\left(E_{i}-E_{f}\right) P_{3} m^{2}}{E_{f}\left(E_{f}+E_{i}\right)\left(E_{f}+m\right)\left(E_{i}+m\right)} \frac{\Pi_{2}^{a}\left(\Gamma_{1}\right)}{C_{a}}+\frac{2\left(E_{f}-E_{i}\right) m^{2}}{E_{f}\left(E_{i}+m\right) Q_{1}} \frac{\Pi_{2}^{a}\left(\Gamma_{3}\right)}{C_{a}} \\
A_{5}= & \frac{m^{2} P_{3}}{E_{f}\left(E_{f}+m\right)\left(E_{i}+m\right)} \frac{\Pi_{2}^{a}\left(\Gamma_{1}\right)}{C_{a}}-\frac{\left(E_{f}+E_{i}\right) m^{2}}{E_{f}\left(E_{i}+m\right) Q_{1}} \frac{\Pi_{2}^{a}\left(\Gamma_{3}\right)}{C_{a}} \\
A_{6}= & \frac{P_{3} m^{2}}{E_{f}^{2}\left(E_{f}+m\right)\left(E_{i}+m\right) z} \frac{\Pi_{0}^{a}\left(\Gamma_{0}\right)}{C_{a}}+i \frac{\left(E_{f}-E_{i}-2 m\right) m^{2}}{E_{f}^{2}\left(E_{i}+m\right) Q_{1} z} \frac{\Pi_{0}^{a}\left(\Gamma_{2}\right)}{C_{a}}+i \frac{\left(E_{i}-E_{f}\right) P_{3} m^{2}}{E_{f}^{2}\left(E_{f}+m\right)\left(E_{i}+m\right) Q_{1} z} \frac{\Pi_{1}^{a}\left(\Gamma_{0}\right)}{C_{a}} \\
& +\frac{\left(-E_{f}+E_{i}+2 m\right) m^{2}}{E_{f}^{2}\left(E_{f}+E_{i}\right)\left(E_{i}+m\right) z} \frac{\Pi_{1}^{a}\left(\Gamma_{2}\right)}{C_{a}}+\frac{2\left(m-E_{f}\right) m^{2}}{E_{f}^{2}\left(E_{f}+E_{i}\right)\left(E_{i}+m\right) z} \frac{\Pi_{2}^{a}\left(\Gamma_{1}\right)}{C_{a}}+\frac{2 P_{3} m^{2}}{E_{f}^{2}\left(E_{i}+m\right) Q_{1} z} \frac{\Pi_{2}^{a}\left(\Gamma_{3}\right)}{C_{a}}
\end{aligned}
$$

Asymmetric frame equations more complex

A_{i} have definite symmetries

System of 8 independent matrix elements to disentangle the A_{i}

Parameters of calculation

$\mathrm{Nf}=2+1+1$ twisted mass (TM) fermions \& clover improvement

Calculation:

- isovector combination
- zero skewness
- $\mathrm{T}_{\text {sink }}=1 \mathrm{fm}$

Pion mass: $\quad 260 \mathrm{MeV}$

Lattice spacing: 0.093 fm
Volume: $32^{3} \times 64$
Spatial extent:
3 fm

frame	$P_{3}[\mathrm{GeV}]$	$\mathbf{Q}\left[\frac{2 \pi}{L}\right]$	$-t\left[\mathrm{GeV}^{2}\right]$	ξ	N_{ME}	$N_{\text {confs }}$	$N_{\text {src }}$	$N_{\text {tot }}$
symm	1.25	$(\pm 2,0,0),(0, \pm 2,0)$	0.69	0	8	249	8	15936
non-symm	1.25	$(\pm 2,0,0),(0, \pm 2,0)$	0.64	0	8	269	8	17216

\star Computational cost:

- symmetric frame 4 times more expensive than asymmetric frame for same set of \vec{Q} (requires separate calculations at each t)

Parameters of calculation

$\mathrm{Nf}=2+1+1$ twisted mass (TM) fermions \& clover improvement

Calculation:

- isovector combination
- zero skewness
- $\mathrm{T}_{\text {sink }}=1 \mathrm{fm}$

frame	$P_{3}[\mathrm{GeV}]$	$\mathbf{Q}\left[\frac{2 \pi}{L}\right]$	$-t\left[\mathrm{GeV}^{2}\right]$	ξ	N_{ME}	$N_{\text {confs }}$	$N_{\text {src }}$	$N_{\text {tot }}$
symm	1.25	$(\pm 2,0,0),(0, \pm 2,0)$	0.69	0	8	249	8	15936
non-symm	1.25	$(\pm 2,0,0),(0, \pm 2,0)$	0.64	0	8	269	8	17216

Small difference: $\quad t^{s}=-\vec{Q}^{2} \quad t^{a}=-\vec{Q}^{2}+\left(E_{f}-E_{i}\right)^{2}$

$$
A\left(-0.64 \mathrm{GeV}^{2}\right) \sim A\left(-0.69 \mathrm{GeV}^{2}\right)
$$

\star Computational cost:

- symmetric frame 4 times more expensive than asymmetric frame for same set of \vec{Q} (requires separate calculations at each t)

Results: matrix elements

Real

Imag

asymmetric

\star Lattice data confirm symmetries where applicable (e.g., $\Pi_{0}^{s}\left(\Gamma_{0}\right)$ in $\left.\pm P_{3}, \pm Q, \pm z\right)$
\star ME decompose to different A_{i}

* Multiple ME contribute to the same quantity

Results: matrix elements

Real

Imag

* Matrix elements depend on frame (comparison pedagogical)
* ME in asymmetric frame do not have definite symmetries in $\pm P_{3}, \pm Q, \pm z$

Frame comparison and symmetries applied on Lorentz-invariant amplitudes

Results: matrix elements

$\star \quad \Pi_{1}\left(\Gamma_{2}\right)$ theoretically nonzero
\star Noisy contributions lead to challenges in extracting A_{i} of sub-leading magnitude

Results: A_{i}

$\star A_{1}, A_{5}$ dominant contributions
\star Full agreement in two frames for both Re and Im parts of A_{1}, A_{5}
$\star A_{6}$ small but non-negligible. Tension between frames is statistical effect
$\star A_{3}, A_{4}, A_{8}$ negligible
$\star A_{2}, A_{7}$ appear only in Π_{3} and are negligible

Π_{H}, Π_{E} in terms of A_{i}

* Mapping of $\left\{\Pi_{H}, \Pi_{E}\right\}$ to A_{i} using $F^{\left[\gamma^{0}\right]} \sim\left[\gamma^{0} H_{(\mathbb{Q} 0}\left(x, \xi, t ; P^{3}\right)+\frac{i \sigma^{0 \mu} \Delta_{\mu}}{2 M} E_{(00)}\left(x, \xi, t ; P^{P^{3}}\right]\right.$ in each frame leading to frame dependent relations:
[see S. Bhattacharya talk]

Π_{H}, Π_{E} in terms of A_{i}

Mapping of $\left\{\Pi_{H}, \Pi_{E}\right\}$ to A_{i} using $F^{\left[\gamma^{0}\right]} \sim\left[\gamma^{0} H_{Q(0)}\left(x, \xi, t ; P^{3}\right)+\frac{i \sigma^{0 \mu} \Delta_{\mu}}{2 M} E_{(0)\left(x, \xi, t ; P^{3}\right)}\right]$
in each frame leading to frame dependent relations:

$$
\begin{aligned}
\Pi_{H}^{s}= & A_{1}+\frac{z Q_{1}^{2}}{2 P_{3}} A_{6} \\
\Pi_{E}^{s}= & -A_{1}-\frac{m^{2} z}{P_{3}} A_{4}+2 A_{5}-\frac{z\left(4 E^{2}+Q x^{2}+Q y^{2}\right)}{2 P_{3}} A_{6} \\
\Pi_{H}^{a}= & A_{1}+\frac{Q_{0}}{P_{0}} A_{3}+\frac{m^{2} z Q_{0}}{2 P_{0} P_{3}} A_{4}+\frac{z\left(Q_{0}^{2}+Q_{\perp}^{2}\right.}{2 P_{3}} A_{6}+\frac{z\left(Q_{0}^{3}+Q_{0} Q_{\perp}^{2}\right)}{2 P_{0} P_{3}} A_{8} \\
\Pi_{E}^{a}= & -A_{1}-\frac{Q_{0}}{P_{0}} A_{3}-\frac{m^{2} z\left(Q_{0}+2 P_{0}\right)}{2 P_{0} P_{3}} A_{4}+2 A_{5} \\
& -\frac{z\left(Q_{0}^{2}+2 P_{0} Q_{0}+4 P_{0}^{2}+Q_{\perp}^{2}\right)}{2 P_{3}} A_{6}-\frac{z Q_{0}\left(Q_{0}^{2}+2 Q_{0} P_{0}+4 P_{0}^{2}+Q_{\perp}^{2}\right)}{2 P_{0} P_{3}} A_{8}
\end{aligned}
$$

Π_{H}, Π_{E} in terms of A_{i}

in each frame leading to frame dependent relations:
[see S. Bhattacharya talk]

$$
\begin{aligned}
\Pi_{H}^{s}= & A_{1}+\frac{z Q_{1}^{2}}{2 P_{3}} A_{6} \\
\Pi_{E}^{s}= & -A_{1}-\frac{m^{2} z}{P_{3}} A_{4}+2 A_{5}-\frac{z\left(4 E^{2}+Q x^{2}+Q y^{2}\right)}{2 P_{3}} A_{6} \\
\Pi_{H}^{a}= & A_{1}+\frac{Q_{0}}{P_{0}} A_{3}+\frac{m^{2} z Q_{0}}{2 P_{0} P_{3}} A_{4}+\frac{z\left(Q_{0}^{2}+Q_{\perp}^{2}\right.}{2 P_{3}} A_{6}+\frac{z\left(Q_{0}^{3}+Q_{0} Q_{\perp}^{2}\right)}{2 P_{0} P_{3}} A_{8} \\
\Pi_{E}^{a}= & -A_{1}-\frac{Q_{0}}{P_{0}} A_{3}-\frac{m^{2} z\left(Q_{0}+2 P_{0}\right)}{2 P_{0} P_{3}} A_{4}+2 A_{5} \\
& -\frac{z\left(Q_{0}^{2}+2 P_{0} Q_{0}+4 P_{0}^{2}+Q_{\perp}^{2}\right)}{2 P_{3}} A_{6}-\frac{z Q_{0}\left(Q_{0}^{2}+2 Q_{0} P_{0}+4 P_{0}^{2}+Q_{\perp}^{2}\right)}{2 P_{0} P_{3}} A_{8}
\end{aligned}
$$

Definition of Lorentz invariant $\Pi_{H} \& \Pi_{E}$
$\Pi_{H}^{\mathrm{impr}}=A_{1}$
$\Pi_{E}^{\mathrm{impr}}=-A_{1}+2 A_{5}+2 z P_{3} A_{6}$

Π_{H}, Π_{E} in terms of A_{i}

in each frame leading to frame dependent relations:
[see S. Bhattacharya talk]

$$
\begin{aligned}
\Pi_{H}^{s}= & A_{1}+\frac{z Q_{1}^{2}}{2 P_{3}} A_{6} \\
\Pi_{E}^{s}= & -A_{1}-\frac{m^{2} z}{P_{3}} A_{4}+2 A_{5}-\frac{z\left(4 E^{2}+Q x^{2}+Q y^{2}\right)}{2 P_{3}} A_{6} \\
\Pi_{H}^{a}= & A_{1}+\frac{Q_{0}}{P_{0}} A_{3}+\frac{m^{2} z Q_{0}}{2 P_{0} P_{3}} A_{4}+\frac{z\left(Q_{0}^{2}+Q_{\perp}^{2}\right.}{2 P_{3}} A_{6}+\frac{z\left(Q_{0}^{3}+Q_{0} Q_{\perp}^{2}\right)}{2 P_{0} P_{3}} A_{8} \\
\Pi_{E}^{a}= & -A_{1}-\frac{Q_{0}}{P_{0}} A_{3}-\frac{m^{2} z\left(Q_{0}+2 P_{0}\right)}{2 P_{0} P_{3}} A_{4}+2 A_{5} \\
& -\frac{z\left(Q_{0}^{2}+2 P_{0} Q_{0}+4 P_{0}^{2}+Q_{\perp}^{2}\right)}{2 P_{3}} A_{6}-\frac{z Q_{0}\left(Q_{0}^{2}+2 Q_{0} P_{0}+4 P_{0}^{2}+Q_{\perp}^{2}\right)}{2 P_{0} P_{3}} A_{8}
\end{aligned}
$$

$1^{\text {st }}$ approach: extraction of $\left\{\Pi_{H}^{s}, \Pi_{E}^{s}\right\}$ using A_{i} from any frame (universal)

Definition of Lorentz invariant $\Pi_{H} \& \Pi_{E}$
$\Pi_{H}^{\mathrm{impr}}=A_{1}$
$\Pi_{E}^{\mathrm{impr}}=-A_{1}+2 A_{5}+2 z P_{3} A_{6}$

Π_{H}, Π_{E} in terms of A_{i}

in each frame leading to frame dependent relations:
[see S. Bhattacharya talk]
$(\xi=0)$
$\Pi_{H}^{s}=A_{1}+\frac{z Q_{1}^{2}}{2 P_{3}} A_{6}$
$\Pi_{E}^{s}=-A_{1}-\frac{m^{2} z}{P_{3}} A_{4}+2 A_{5}-\frac{z\left(4 E^{2}+Q x^{2}+Q y^{2}\right)}{2 P_{3}} A_{6}$
$\Pi_{H}^{a}=A_{1}+\frac{Q_{0}}{P_{0}} A_{3}+\frac{m^{2} z Q_{0}}{2 P_{0} P_{3}} A_{4}+\frac{z\left(Q_{0}^{2}+Q_{\perp}^{2}\right.}{2 P_{3}} A_{6}+\frac{z\left(Q_{0}^{3}+Q_{0} Q_{\perp}^{2}\right)}{2 P_{0} P_{3}} A_{8}$
$\Pi_{E}^{a}=-A_{1}-\frac{Q_{0}}{P_{0}} A_{3}-\frac{m^{2} z\left(Q_{0}+2 P_{0}\right)}{2 P_{0} P_{3}} A_{4}+2 A_{5}$
$-\frac{z\left(Q_{0}^{2}+2 P_{0} Q_{0}+4 P_{0}^{2}+Q_{\perp}^{2}\right)}{2 P_{3}} A_{6}-\frac{z Q_{0}\left(Q_{0}^{2}+2 Q_{0} P_{0}+4 P_{0}^{2}+Q_{\perp}^{2}\right)}{2 P_{0} P_{3}} A_{8}$
$1^{\text {st }}$ approach: extraction of $\left\{\Pi_{H}^{s}, \Pi_{E}^{s}\right\}$ using A_{i} from any frame (universal)
$2^{\text {nd }}$ approach: extraction of $\left\{\Pi_{H}, \Pi_{E}\right\}$ from a purely asymmetric frame; GPDs may differ in functional form from $\left\{\Pi_{H}^{s}, \Pi_{E}^{S}\right\}$

Definition of Lorentz invariant $\Pi_{H} \& \Pi_{E}$

$$
\begin{array}{ll}
(\xi=0) & \Pi_{H}^{\mathrm{impr}}=A_{1} \\
& \Pi_{E}^{\mathrm{impr}}=-A_{1}+2 A_{5}+2 z P_{3} A_{6}
\end{array}
$$

Π_{H}, Π_{E} in terms of A_{i}

in each frame leading to frame dependent relations:
[see S. Bhattacharya talk]
$(\xi=0)$

$$
\begin{aligned}
\Pi_{H}^{s}= & A_{1}+\frac{z Q_{1}^{2}}{2 P_{3}} A_{6} \\
\Pi_{E}^{s}= & -A_{1}-\frac{m^{2} z}{P_{3}} A_{4}+2 A_{5}-\frac{z\left(4 E^{2}+Q x^{2}+Q y^{2}\right)}{2 P_{3}} A_{6} \\
\Pi_{H}^{a}= & A_{1}+\frac{Q_{0}}{P_{0}} A_{3}+\frac{m^{2} z Q_{0}}{2 P_{0} P_{3}} A_{4}+\frac{z\left(Q_{0}^{2}+Q_{\perp}^{2}\right.}{2 P_{3}} A_{6}+\frac{z\left(Q_{0}^{3}+Q_{0} Q_{\perp}^{2}\right)}{2 P_{0} P_{3}} A_{8} \\
\Pi_{E}^{a}= & -A_{1}-\frac{Q_{0}}{P_{0}} A_{3}-\frac{m^{2} z\left(Q_{0}+2 P_{0}\right)}{2 P_{0} P_{3}} A_{4}+2 A_{5} \\
& -\frac{z\left(Q_{0}^{2}+2 P_{0} Q_{0}+4 P_{0}^{2}+Q_{\perp}^{2}\right)}{2 P_{3}} A_{6}-\frac{z Q_{0}\left(Q_{0}^{2}+2 Q_{0} P_{0}+4 P_{0}^{2}+Q_{\perp}^{2}\right)}{2 P_{0} P_{3}} A_{8}
\end{aligned}
$$

1st approach: extraction of $\left\{\Pi_{H}^{s}, \Pi_{E}^{s}\right\}$ using A_{i} from any frame (universal)
$2^{\text {nd }}$ approach: extraction of $\left\{\Pi_{H}, \Pi_{E}\right\}$ from a purely asymmetric frame; GPDs may differ in functional form from $\left\{\Pi_{H}^{s}, \Pi_{E}^{S}\right\}$

Definition of Lorentz invariant $\Pi_{H} \& \Pi_{E}$

$$
\begin{array}{ll}
(\xi=0) & \Pi_{H}^{\mathrm{impr}}=A_{1} \\
& \Pi_{E}^{\mathrm{impr}}=-A_{1}+2 A_{5}+2 z P_{3} A_{6}
\end{array}
$$

Results: H - GPD

Π_{H}^{a} vs $\Pi_{H}^{a, i m p r}$

$$
\Pi_{H}^{s, i m p r} \text { vs } \Pi_{H}^{a, i m p r}
$$

Π_{H} agree with $\Pi_{H}^{i m p r}$ for both frames despite different definitions (agreement not by construction)

Agreement between Π_{H}^{s} and Π_{H}^{a} also not required theoretically
Π_{H}^{s} \& Π_{H}^{a} agreement achieved for improved definition, as expected from Lorentz invariance

Results: Π_{E} - GPD

Both frames:
$\operatorname{Im}\left[\Pi_{E}^{\text {impr }}\right]$ enhanced compared to $\operatorname{Im}\left[\Pi_{E}\right]$.
$\operatorname{Re}\left[\Pi_{E}^{s, i m p r}\right]$ larger than other $\operatorname{Re}\left[\Pi_{E}^{s}\right], \operatorname{Re}\left[\Pi_{E}^{a}\right]$ and $\operatorname{Re}\left[\Pi_{E}^{a, i m p r}\right]$

Agreement reached between frames for improved definition (expected theoretically)

A comment on Lorentz covariant definitions

Example: symmetric frame

Lorentz covariant definition leads to more precise results for Π_{E}

Same effect of improvement also for asymmetric frame

Numerical indications that using Π_{E} leads to better converge to lightcone GPDs with respect to P_{3}

Signal quality in Π_{H} same across all cases (not shown)

Summary

* quasi-GPDs are intrinsically frame dependent
* Widely used symmetric frame is computationally very expensive

Novel Lorentz invariant decomposition has great advantages:

- access to symmetric-frame GPDs from matrix elements in any frame
- Lorentz covariant quasi-GPDs eliminate power corrections
- Level of P_{3} convergence to light-cone for Lorentz covariant definition will be addressed with lattice and models
* Numerical results demonstrate the validity of the approach
\star Computational cost decreased at a minimum of 4 times
* Potential to extract more than one t within the same computational cost (different levels of signal quality)
* Generalized for mesons, and all types of GPDs including twist-3

Summary

* quasi-GPDs are intrinsically frame dependent
* Widely used symmetric frame is computationally very expensive
\star Novel Lorentz invariant decomposition has great advantages: - access to symmetric-frame GPDs from matrix elements in any frame
- Lorentz covariant quasi-GPDs eliminate power corrections
- Level of P_{3} convergence to light-cone for Lorentz covariant definition will be addressed with lattice and models
\star Numerical results demonstrate the validity of the approach
\star Computational cost decreased at a minimum of 4 times
Potential to extract more than one t within the same computational cost (different levels of signal quality)
* Generalized for mesons, and all types of GPDs including twist-3

