GPDs in non-symmetric frames

Shohini Bhattacharya

BNL
11 August 2022
In Collaboration with:
Krzysztof Cichy (Adam Mickiewicz U.)
Martha Constantinou (Temple U.)
Jack Dodson (Temple U.)
Xiang Gao (ANL)
Andreas Metz (Temple U.)
Swagato Mukherjee (BNL)
Aurora Scapellato (Temple U.)
Fernanda Steffens (Bonn U.)
Yong Zhao (ANL)

The 39 ${ }^{\text {th }}$ International Symposium on Lattice Field Theory

Bonn, Germany

Background

Background

Generalized Parton Distributions (GPDs): (See Diehl, arXiv: 0307382)

$$
F^{[\Gamma]}\left(x, \Delta ; \lambda, \lambda^{\prime}\right)=\left.\frac{1}{2} \int \frac{d z^{-}}{2 \pi} e^{i k \cdot z}\left\langle p^{\prime} ; \lambda^{\prime}\right| \bar{\psi}\left(-\frac{z}{2}\right) \Gamma \mathcal{W}\left(-\frac{z}{2}, \frac{z}{2}\right) \psi\left(\frac{z}{2}\right)|p ; \lambda\rangle\right|_{z^{+}=0, \vec{z}_{\perp}=\overrightarrow{0}_{\perp}}
$$

Background

Generalized Parton Distributions (GPDs): (See Diehl, arXiv: 0307382)

$$
F^{[\Gamma]}\left(x, \Delta ; \lambda, \lambda^{\prime}\right)=\left.\frac{1}{2} \int \frac{d z^{-}}{2 \pi} e^{i k \cdot z}\left\langle p^{\prime} ; \lambda^{\prime}\right| \bar{\psi}\left(-\frac{z}{2}\right) \Gamma \mathcal{W}\left(-\frac{z}{2}, \frac{z}{2}\right) \psi\left(\frac{z}{2}\right)|p ; \lambda\rangle\right|_{z^{+}=0, \vec{z}_{\perp}=\overrightarrow{0}_{\perp}}
$$

Relation with PDFs \& FFs:

Background
What Why? How?

Physical processes giving access to GPDs:

Amplitude:

$$
\mathcal{M} \propto \int_{-1}^{1} d x \frac{F(x, \xi, t)}{x \pm \xi+i \epsilon}
$$

Background
What Why? How?

Physical processes giving access to GPDs:

Amplitude:

Background
What Why? Iow?

Physical processes giving access to GPDs:

We need GPD measurements from Lattice QCD

Amplitude:

Background

Background

Background

Key findings: QCD calculations of GPDs in asymmetric frames

- Lorentz covariant formalism for calculating quasi-GPDs in any frame

Key findings: QCD calculations of GPDs in asymmetric frames

- Lorentz covariant formalism for calculating quasi-GPDs in any frame
- Elimination of (frame-dependent) power corrections allowing faster convergence to light-cone GPDs at LO

Preamble

Preamble

Symmetric \& asymmetric frames

Approach 1: Can we calculate a quasi-GPD in symmetric frame through an asymmetric frame?

Preamble

Symmetric \& asymmetric frames

Related via
Lorentz transformation?

Approach 1: Can we calculate a quasi-GPD in symmetric frame through an asymmetric frame?

Preamble

Symmetric \& asymmetric frames

Related via
Lorentz transformation?

What kind?

Approach 1: Can we calculate a quasi-GPD in symmetric frame
through an asymmetric frame?

Yes, since symmetric $\mathcal{\&}$ asymmetric frames are connected via Lorentz transformation

Preamble

Symmetric \& asymmetric frames

Related via
Lorentz transformation?

What kind?

Case 1: Lorentz transformation in the z-direction

$$
\begin{array}{r}
\left.\left(\begin{array}{c}
z_{s}^{0} \\
z_{s}^{x} \\
z_{s}^{z}
\end{array}\right)=\begin{array}{ccc}
\gamma & 0 & -\gamma \beta \\
0 & 1 & 0 \\
-\gamma \beta & 0 & \gamma
\end{array}\right) \times\left(\begin{array}{c}
0 \\
0 \\
z_{a}^{z}
\end{array}\right) \\
\stackrel{\bar{\psi} \uparrow}{-z^{z} / 2} z^{z} / 2
\end{array}
$$

Preamble

Symmetric \& asymmetric frames

Related via
Lorentz transformation?

What kind?

Case 1: Lorentz transformation in the z-direction

$$
\left.\begin{array}{r}
\left(\begin{array}{c}
z_{s}^{0} \\
z_{s}^{x} \\
z_{s}^{z}
\end{array}\right)=\left(\begin{array}{ccc}
\gamma & 0 & -\gamma \beta \\
0 & 1 & 0 \\
-\gamma \beta & 0 & \gamma
\end{array}\right)
\end{array}\right) \times\left(\begin{array}{c}
0 \\
0 \\
z_{a}^{z}
\end{array}\right)
$$

Operator distance develops a non-zero temporal component

Preamble

Symmetric \& asymmetric frames

Related via
Lorentz transformation?

What kind?

Case 2: Transverse boost in the x-direction

$$
\begin{aligned}
& \left(\begin{array}{l}
z_{s}^{0} \\
z_{s}^{x} \\
z_{s}^{z}
\end{array}\right)=\left(\begin{array}{ccc}
\gamma & -\gamma \beta & 0 \\
-\gamma \beta & \gamma & 0 \\
0 & 0 & 1
\end{array}\right) \times\left(\begin{array}{c}
0 \\
0 \\
z_{a}^{z}
\end{array}\right) \\
& \underset{-z^{z} / 2}{\bar{\psi}} \begin{array}{c}
\overline{z^{z}} / 2
\end{array}
\end{aligned}
$$

Preamble

Symmetric \& asymmetric frames

Related via
Lorentz transformation?

What kind?

Case 2: Transverse boost in the x-direction

$$
\begin{aligned}
& \left(\begin{array}{l}
z_{s}^{0} \\
z_{s}^{x} \\
z_{s}^{z}
\end{array}\right)=\left(\begin{array}{ccc}
\gamma & -\gamma \beta & 0 \\
-\gamma \beta & \gamma & 0 \\
0 & 0 & 1
\end{array}\right) \times\left(\begin{array}{c}
0 \\
0 \\
z_{a}^{z}
\end{array}\right) \\
& \underset{-z^{z} / 2}{\bar{\psi}} \begin{array}{c}
\overline{z^{z}} / 2
\end{array}
\end{aligned}
$$

Results:

$$
\begin{aligned}
& z_{s}^{0}=0 \\
& z_{s}^{z}=z_{a}^{z}
\end{aligned}
$$

Operator distance remains spatial (\& same)

Preamble

Symmetric \& asymmetric frames

Related via
Lorentz transformation?

What kind?

Case 2: Transve Approach 1: Can we calculate a quasi-GPD in symmetric frame through an asymmetric frame?

Transverse boost: This Lorentz transformation allows for an exact calculation of quasi-GPDs in symmetric frame through matrix elements of asymmetric frame

```
-\mp@subsup{z}{}{z}/2 z
```


Main results

Main results

Definitions of quasi-GPDs

Definition of quasi-GPDs in symmetric frames: (Historical)

$$
\begin{aligned}
\left.F_{\lambda, \lambda^{\prime}}^{0}\right|_{s} & =\left.\left\langle p_{s}^{\prime}, \lambda^{\prime}\right| \bar{q}(-z / 2) \gamma^{0} q(z / 2)\left|p_{s}, \lambda\right\rangle\right|_{z=0, \vec{z}_{\perp}=\overrightarrow{0}_{\perp}} \\
& =\bar{u}_{s}\left(p_{s}^{\prime}, \lambda^{\prime}\right)\left[\left.\gamma^{0} H_{Q(0)}\left(z, P_{s}, \Delta_{s}\right)\right|_{s}+\left.\frac{i \sigma^{0 \mu} \Delta_{\mu, s}}{2 M} E_{\mathrm{Q}(0)}\left(z, P_{s}, \Delta_{s}\right)\right|_{s}\right] u_{s}\left(p_{s}, \lambda\right)
\end{aligned}
$$

Main results

Main results

Main results

Main results

Main results

Definitions of quasi-GPDs

Definition of quasi-GPDs in symmetric frames: (Historical)

Historic definitions of $\mathbf{H} \& E$ quasi-GPDs are not manifestly Lorentz covariant

Definition of quasi-GPDs in asymmetric frames:

Main results

Main results

We do not dismiss these definitions since they do work in the large-momentum limit (I will show this formally later)

This means that the basis vectors $\left(\gamma^{0}, i \sigma^{0 \Delta_{s / a}}\right)$ do not form a
complete basis for a spatially-separated bi-local operator at finite momentum

Main results

We do not dismiss these definitions since they do work in the large-momentum limit (I will show this formally later)

Can we come up with a
com manifestly Lorentz covariant definition of quasi-GPDs for finite values of momentum?

Main results

Main results

Lorentz covariant formalism

Novel parameterization of position-space matrix element: (Inspired from Meissner, Metz, Schlegel, 2009)

$$
F_{\lambda, \lambda^{\prime}}^{\mu}=\bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\frac{P^{\mu}}{M} \boldsymbol{A}_{1}+\frac{z^{\mu}}{M} \boldsymbol{A}_{\mathbf{2}}+\frac{\Delta^{\mu}}{M} \boldsymbol{A}_{3}+\frac{i \sigma^{\mu z}}{M} \boldsymbol{A}_{4}+\frac{i \sigma^{\mu \Delta}}{M} \boldsymbol{A}_{5}+\frac{P^{\mu} i \sigma^{z \Delta}}{M^{3}} \boldsymbol{A}_{6}+\frac{z^{\mu} i \sigma^{z \Delta}}{M^{3}} \boldsymbol{A}_{7}+\frac{\Delta^{\mu} i \sigma^{z \Delta}}{M^{3}} \boldsymbol{A}_{8}\right] u(p, \lambda)
$$

Vector operator $F_{\lambda, \lambda^{\prime}}^{\mu}=\left.\left\langle p^{\prime}, \lambda^{\prime}\right| \bar{q}(-z / 2) \gamma^{\mu} q(z / 2)|p, \lambda\rangle\right|_{z=0, \vec{z}_{\perp}=\overrightarrow{0}_{\perp}}$

Main results

Lorentz covariant formalism

Novel parameterization of position-space matrix element: (Vector operator)

$$
F_{\lambda, \lambda^{\prime}}^{\mu}=\bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\frac{P^{\mu}}{M} \boldsymbol{A}_{1}+\frac{z^{\mu}}{M} \boldsymbol{A}_{\mathbf{2}}+\frac{\Delta^{\mu}}{M} \boldsymbol{A}_{3}+\frac{i \sigma^{\mu z}}{M} \boldsymbol{A}_{4}+\frac{i \sigma^{\mu \Delta}}{M} \boldsymbol{A}_{5}+\frac{P^{\mu} i \sigma^{z \Delta}}{M^{3}} \boldsymbol{A}_{6}+\frac{z^{\mu} i \sigma^{z \Delta}}{M^{3}} \boldsymbol{A}_{7}+\frac{\Delta^{\mu} i \sigma^{z \Delta}}{M^{3}} \boldsymbol{A}_{8}\right] u(p, \lambda)
$$

Features:

- General structure of matrix element based on constraints from Parity
- 8 linearly-independent Dirac structures (Lorentz vectors change with frames)
- $\mathbf{8 \text { Lorentz-covariant amplitudes (or Form Factors) } A _ { i } \equiv A _ { i } (z \cdot P , z \cdot \Delta , t = \Delta ^ { 2 } , z ^ { 2 })}$

Main results

Lorentz covariant formalism

Novel parameterization of position-space matrix element: (Vector operator)
$F_{\lambda, \lambda^{\prime}}^{\mu}=\bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\frac{P^{\mu}}{M} \boldsymbol{A}_{1}+\frac{z^{\mu}}{M} \boldsymbol{A}_{2}+\frac{\Delta^{\mu}}{M} \boldsymbol{A}_{3}+\frac{i \sigma^{\mu z}}{M} \boldsymbol{A}_{4}+\frac{i \sigma^{\mu \Delta}}{M} \boldsymbol{A}_{5}+\frac{P^{\mu} i \sigma^{z \Delta}}{M^{3}} A_{6}+\frac{z^{\mu} i \sigma^{z \Delta}}{M^{3}} A_{7}+\frac{\Delta^{\mu} i \sigma^{z \Delta}}{M^{3}} \boldsymbol{A}_{8}\right] u(p, \lambda)$

Features:

Martha's talk: Validating the frame-independence of A's

- General structure of matrix element based on constraints from Parity
- 8 linearly-independent Dirac structures (Lorentz vectors change with frames)
- $\mathbf{8 \text { Lorentz-covariant amplitudes (or Form Factors) }} A_{i} \equiv A_{i}\left(z \cdot P, z \cdot \Delta, t=\Delta^{2}, z^{2}\right.$)

Main results

Exploring historical definitions of quasi-GPDs

Mapping Form Factors to the Lorentz non-covariant definitions of quasi-GPDs:

Main results

Exploring historical definitions of quasi-GPDs

Mapping Form Factors to the Lorentz non-covariant definitions of quasi-GPDs:
Symmetric frame:

$$
\begin{aligned}
\left.H_{\mathrm{Q}(0)}\left(z, P_{s}, \Delta_{s}\right)\right|_{s} & =A_{1}+\frac{\Delta_{s}^{0}}{P_{s}^{0}} A_{3}-\frac{\Delta_{s}^{0} z^{3}}{2 P_{s}^{0} P_{s}^{3}} A_{4}+\left(\frac{\left(\Delta_{s}^{0}\right)^{2} z^{3}}{2 M^{2} P_{s}^{3}}-\frac{\Delta_{s}^{0} \Delta_{s}^{3} z^{3} P_{s}^{0}}{2 M^{2}\left(P_{s}^{3}\right)^{2}}-\frac{z^{3} \Delta_{\perp}^{2}}{2 M^{2} P_{s}^{3}}\right) A_{6} \\
& +\left(\frac{\left(\Delta_{s}^{0} z^{3}\right.}{2 M^{2} P_{s}^{0} P_{s}^{3}}-\frac{\left(\Delta_{s}^{0}\right)^{2} \Delta_{s}^{3} z^{3}}{2 M^{2}\left(P_{s}^{3}\right)^{2}}-\frac{\Delta_{s}^{0} z^{3} \Delta_{\perp}^{2}}{2 M^{2} P_{s}^{0} P_{s}^{3}}\right) A_{8}
\end{aligned}
$$

Main results

Exploring historical definitions of quasi-GPDs

Mapping Form Factors to the Lorentz non-covariant definitions of quasi-GPDs:
Symmetric frame:

$$
\begin{aligned}
\left.H_{\mathrm{Q}(0)}\left(z, P_{s}, \Delta_{s}\right)\right|_{s} & =A_{1}+\frac{\Delta_{s}^{0}}{P_{s}^{0}} \boldsymbol{A}_{3}-\frac{\Delta_{s}^{0} z^{3}}{2 P_{s}^{0} P_{s}^{3}} \boldsymbol{A}_{4}+\left(\frac{\left(\Delta_{s}^{0}\right)^{2} z^{3}}{2 M^{2} P_{s}^{3}}-\frac{\Delta_{s}^{0} \Delta_{s}^{3} z^{3} P_{s}^{0}}{2 M^{2}\left(P_{s}^{3}\right)^{2}}-\frac{z^{3} \Delta_{\perp}^{2}}{2 M^{2} P_{s}^{3}}\right) \boldsymbol{A}_{6} \\
& +\left(\frac{\left(\Delta_{s}^{0}\right)^{3} z^{3}}{2 M^{2} P_{s}^{0} P_{s}^{3}}-\frac{\left(\Delta_{s}^{0}\right)^{2} \Delta_{s}^{3} z^{3}}{2 M^{2}\left(P_{s}^{3}\right)^{2}}-\frac{\Delta_{s}^{0} z^{3} \Delta_{\perp}^{2}}{2 M^{2} P_{s}^{0} P_{s}^{3}}\right) \boldsymbol{A}_{8}
\end{aligned}
$$

Asymmetric frame:

$$
\begin{aligned}
& \left.H_{\mathrm{Q}(0)}\right|_{a}\left(z, P_{a}, \Delta_{a}\right)=A_{1}+\frac{\Delta_{a}^{0}}{P_{a v g, a}^{0}} A_{3}-\left(\frac{\Delta_{a}^{0} z^{3}}{2 P_{a v g, a}^{0} P_{a v g, a}^{3}}-\frac{1}{\left(1+\frac{\Delta_{a}^{3}}{2 P_{a v g, a}^{3}}\right)} \frac{\Delta_{a}^{0} \Delta_{a}^{3} z^{3}}{4 P_{a v g, a}^{0}\left(P_{a v g, a}^{3}\right)^{2}}\right) \boldsymbol{A}_{4} \\
& +\left(\frac{\left(\Delta_{a}^{0}\right)^{2} z^{3}}{2 M^{2} P_{a v g, a}^{3}}-\frac{1}{\left(1+\frac{\Delta_{a}^{3}}{2 P_{a v g, a}^{3}}\right)} \frac{\left(\Delta_{a}^{0}\right)^{2} \Delta_{a}^{3} z^{3}}{4 M^{2}\left(P_{a v g, a}^{3}\right)^{2}}-\frac{1}{\left(1+\frac{\Delta_{a}^{3}}{2 P_{a v g, a}^{3}}\right)} \frac{P_{a v g, a}^{0} \Delta_{a}^{0} \Delta_{a}^{3} z^{3}}{2 M^{2}\left(P_{a v g, a}^{3}\right)^{2}}-\frac{z^{3} \Delta_{\perp}^{2}}{2 M^{2} P_{a v g, a}^{3}}\right) \boldsymbol{A}_{6} \\
& +\left(\frac{\left(\Delta_{a}^{0}\right)^{3} z^{3}}{2 M^{2} P_{a v g, a}^{0} P_{a v g, a}^{3}}-\frac{1}{\left(1+\frac{\Delta_{a}^{3}}{2 P_{a v g, a}^{3}}\right)} \frac{\left(\Delta_{a}^{0}\right)^{3} \Delta_{a}^{3} z^{3}}{4 M^{2} P_{a v g, a}^{0}\left(P_{a v g, a}^{3}\right)^{2}}-\frac{1}{\left(1+\frac{\Delta_{a}^{3}}{2 P_{a v g, a}^{3}}\right)} \frac{\left(\Delta_{a}^{0}\right)^{2} \Delta_{a}^{3} z^{3}}{2 M^{2}\left(P_{a v g, a}^{3}\right)^{2}}-\frac{z^{3} \Delta_{\perp}^{2} \Delta_{a}^{0}}{2 M^{2} P_{a v g, a}^{0} P_{a v g, a}^{3}}\right) A_{8}
\end{aligned}
$$

Main results

Exploring historical definitions of quasi-GPDs

Frame-dependent expressions: Lorentz non-covariance from explicit kinematic factors

Symmetric frame:

$$
\begin{aligned}
\left.H_{Q(0)}\left(z, P_{s}, \Delta_{s}\right)\right|_{s} & =A_{1}+\frac{\Delta_{s}^{0}}{P_{s}^{0}} A_{3}-\frac{\Delta_{s}^{0} z^{3}}{2 P_{s}^{0} P_{s}^{3}} A_{4}+\left(\frac{\left(\Delta_{s}^{0}\right)^{2} z^{3}}{2 M^{2} P_{s}^{3}}-\frac{\Delta_{s}^{0} \Delta_{s}^{3} z^{3} P_{s}^{0}}{2 M^{2}\left(P_{s}^{3}\right)^{2}}-\frac{z^{3} \Delta_{\perp}^{2}}{2 M^{2} P_{s}^{3}}\right) A_{6} \\
& +\left(\frac{\left(\Delta_{s}^{0} z^{3}\right.}{2 M^{2} P_{s}^{0} P_{s}^{3}}-\frac{\left(\Delta_{s}^{0}\right)^{2} \Delta_{s}^{3} z^{3}}{2 M^{2}\left(P_{s}^{3}\right)^{2}}-\frac{\Delta_{s}^{0} z^{3} \Delta_{\perp}^{2}}{2 M^{2} P_{s}^{0} P_{s}^{3}}\right) A_{8}
\end{aligned}
$$

Asymmetric frame:

$$
\begin{aligned}
& \left.H_{\mathrm{Q}(0)}\right|_{a}\left(z, P_{a}, \Delta_{a}\right)=A_{1}+\frac{\Delta_{a}^{0}}{P_{a v g, a}^{0}} A_{3}-\left(\frac{\Delta_{a}^{0} z^{3}}{2 P_{a v g, a}^{0} P_{a v g, a}^{3}}-\frac{1}{\left(1+\frac{\Delta_{a}^{3}}{2 P_{a v g, a}^{3}}\right)} \frac{\Delta_{a}^{0} \Delta_{a}^{3} z^{3}}{4 P_{a v g, a}^{0}\left(P_{a v g, a}^{3}\right)^{2}}\right) \boldsymbol{A}_{4} \\
& +\left(\frac{\left(\Delta_{a}^{0}\right)^{2} z^{3}}{2 M^{2} P_{a v g, a}^{3}}-\frac{1}{\left(1+\frac{\Delta_{a}^{3}}{2 P_{a v g, a}^{3}}\right)} \frac{\left(\Delta_{a}^{0}\right)^{2} \Delta_{a}^{3} z^{3}}{4 M^{2}\left(P_{a v g, a}^{3}\right)^{2}}-\frac{1}{\left(1+\frac{\Delta_{a}^{3}}{2 P_{a v g, a}^{3}}\right)} \frac{P_{a v g, a}^{0} \Delta_{a}^{0} \Delta_{a}^{3} z^{3}}{2 M^{2}\left(P_{a v g, a}^{3}\right)^{2}}-\frac{z^{3} \Delta_{\perp}^{2}}{2 M^{2} P_{a v g, a}^{3}}\right) \boldsymbol{A}_{6} \\
& +\left(\frac{\left(\Delta_{a}^{0}\right)^{3} z^{3}}{2 M^{2} P_{a v g, a}^{0} P_{a v g, a}^{3}}-\frac{1}{\left(1+\frac{\Delta_{a}^{3}}{2 P_{a v g, a}^{3}}\right)} \frac{\left(\Delta_{a}^{0}\right)^{3} \Delta_{a}^{3} z^{3}}{4 M^{2} P_{a v g, a}^{0}\left(P_{a v g, a}^{3}\right)^{2}}-\frac{1}{\left(1+\frac{\Delta_{a}^{3}}{2 P_{a v g, a}^{3}}\right)} \frac{\left(\Delta_{a}^{0}\right)^{2} \Delta_{a}^{3} z^{3}}{2 M^{2}\left(P_{a v g, a}^{3}\right)^{2}}-\frac{z^{3} \Delta_{\perp}^{2} \wedge^{0}}{2 M^{2} P_{a v g, a}^{0}} \frac{1}{3 v g, a}\right) A_{8}
\end{aligned}
$$

Main results

Exploring historical definitions of quasi-GPDs

Frame-dependent expressions: Lorentz non-covariance from explicit kinematic factors

Main results

Light-cone GPDs

Mapping Form Factors to the light-cone GPDs: (Sample results)

Mapping Form Factors to the light-cone GPDs: (Sample results)

Definition:

$$
\begin{aligned}
\left.F_{\lambda, \lambda^{\prime}}^{+}\right|_{s / a} & =\left.\left\langle p_{s / a}^{\prime}, \lambda^{\prime}\right| \bar{q}(-z / 2) \gamma^{+} q(z / 2)\left|p_{s / a}, \lambda\right\rangle\right|_{z=0, \vec{z}_{\perp}=\overrightarrow{0}_{\perp}} \\
& =\bar{u}_{s / a}\left(p_{s / a}^{\prime}, \lambda^{\prime}\right)\left[\gamma^{+} H\left(z, P_{s / a}, \Delta_{s / a}\right)+\frac{i \sigma^{\mu} \Delta_{\mu, s / a}}{2 M} E\left(z, P_{s / a}, \Delta_{s / a}\right)\right] u_{s / a}\left(p_{s / a}, \lambda\right)
\end{aligned}
$$

Relation between light-cone GPD H \& Form Factors:

$$
H\left(z \cdot P, z \cdot \Delta, t=\Delta^{2}, z^{2}\right)=A_{1}+\frac{\Delta_{s / a} \cdot z}{P_{a v g, s / a} \cdot z} A_{3}
$$

Lorentz covariant expression!

Main results

Main results

Relation between light-cone GPD H \& Form Factors:

Lorentz covariant formalism
Quasi-GPDs \& Form Factors: (Sample results)

$$
H\left(z \cdot P, z \cdot \Delta, t=\Delta^{2}, z^{2}\right)=A_{1}+\frac{\Delta_{s / a} \cdot z}{P_{\text {avg }, s / a} \cdot z} A_{3}
$$

Symmetric frame:

$$
\begin{aligned}
\left.H_{\mathrm{Q}(0)}\left(z, P_{s}, \Delta_{s}\right)\right|_{s} & =A_{1}+\frac{\Delta_{s}^{0}}{P_{s}^{0}} A_{3}-\frac{\Delta_{s}^{0} z^{3}}{2 P_{s}^{0} P_{s}^{3}} \boldsymbol{A}_{4}+\left(\frac{\left(\Delta_{s}^{0}\right)^{2} z^{3}}{2 M^{2} P_{s}^{3}}-\frac{\Delta_{s}^{0} \Delta_{s}^{3} z^{3} P_{s}^{0}}{2 M^{2}\left(P_{s}^{3}\right)^{2}}-\frac{z^{3} \Delta_{\perp}^{2}}{2 M^{2} P_{s}^{3}}\right) \boldsymbol{A}_{6} \\
& +\left(\frac{\left(\Delta_{s}^{0}\right)^{3} z^{3}}{2 M^{2} P_{s}^{0} P_{s}^{3}}-\frac{\left(\Delta_{s}^{0}\right)^{2} \Delta_{s}^{3} z^{3}}{2 M^{2}\left(P_{s}^{3}\right)^{2}}-\frac{\Delta_{s}^{0} z^{3} \Delta_{\perp}^{2}}{2 M^{2} P_{s}^{0} P_{s}^{3}}\right) \boldsymbol{A}_{8}
\end{aligned}
$$

Asymmetric frame:

$$
\begin{aligned}
& \left.H_{\mathrm{Q}(0)}\right|_{a}\left(z, P_{a}, \Delta_{a}\right)=A_{1}+\frac{\Delta_{a}^{0}}{P_{a v g, a}^{0}} A_{3}-\left(\frac{\Delta_{a}^{0} z^{3}}{2 P_{a v g, a}^{0} P_{a v g, a}^{3}}-\frac{1}{\left(1+\frac{\Delta_{a}^{3}}{2 P_{a v g, a}^{3}}\right)} \frac{\Delta_{a}^{0} \Delta_{a}^{3} z^{3}}{4 P_{a v g, a}^{0}\left(P_{a v g, a}^{3}\right)^{2}}\right) \boldsymbol{A}_{4} \\
& +\left(\frac{\left(\Delta_{a}^{0}\right)^{2} z^{3}}{2 M^{2} P_{a v g, a}^{3}}-\frac{1}{\left(1+\frac{\Delta_{a}^{3}}{2 P_{a v g, a}^{3}}\right)} \frac{\left(\Delta_{a}^{0}\right)^{2} \Delta_{a}^{3} z^{3}}{4 M^{2}\left(P_{a v g, a}^{3}\right)^{2}}-\frac{1}{\left(1+\frac{\Delta_{a}^{3}}{2 P_{a v g, a}^{3}}\right)} \frac{P_{a v g, a}^{0} \Delta_{a}^{0} \Delta_{a}^{3} z^{3}}{2 M^{2}\left(P_{a v g, a}^{3}\right)^{2}}-\frac{z^{3} \Delta_{\perp}^{2}}{2 M^{2} P_{a v g, a}^{3}}\right) A_{6} \\
& +\left(\frac{\left(\Delta_{a}^{0}\right)^{3} z^{3}}{2 M^{2} P_{a v g, a}^{0} P_{a v g, a}^{3}}-\frac{1}{\left(1+\frac{\Delta_{a}^{3}}{2 P_{a v g, a}^{3}}\right)} \frac{\left(\Delta_{a}^{0}\right)^{3} \Delta_{a}^{3} z^{3}}{4 M^{2} P_{a v g, a}^{0}\left(P_{a v g, a}^{3}\right)^{2}}-\frac{1}{\left(1+\frac{\Delta_{a}^{3}}{2 P_{a v g, a}^{3}}\right)} \frac{\left(\Delta_{a}^{0}\right)^{2} \Delta_{a}^{3} z^{3}}{2 M^{2}\left(P_{a v g, a}^{3}\right)^{2}}-\frac{z^{3} \Delta_{\perp}^{2} \Delta_{a}^{0}}{2 M^{2} P_{a v g, a}^{0} P_{a v g, a}^{3}}\right) A_{8}
\end{aligned}
$$

Main results

Relation between light-cone GPD H \& Form Factors:

Lorentz covariant formalism
Quasi-GPDs \& Form Factors: (Sample results)

$$
H\left(z \cdot P, z \cdot \Delta, t=\Delta^{2}, z^{2}\right)=A_{1}+\frac{\Delta_{s / a} \cdot z}{P_{a v g, s / a} \cdot z} A_{3}
$$

Symmetric frame:

$$
\begin{array}{r}
\left.H_{Q(0)}\left(z, P_{s}, \Delta_{s}\right)\right|_{s}=A_{1}+\frac{\Delta_{s}^{0}}{P_{s}^{0}} A_{3} \frac{\Delta_{s}^{0} z^{3}}{2 P_{s}^{0} P^{3}} A_{4}+\left(\frac{\left(\Delta_{s}^{0}\right)^{2} z^{3}}{2 M^{2} P_{s}^{3}}-\frac{\Delta_{s}^{0} \Delta_{s}^{3} z^{3} P_{s}^{0}}{2 M^{2}\left(P_{s}^{3}\right)^{2}}-\frac{z^{3} \Delta_{\perp}^{2}}{2 M^{2} P_{s}^{3}}\right)_{A_{6}} \\
+\left(\frac{\left(\Delta_{s}^{0}\right)^{3} z^{3}}{2 M^{2} P_{s}^{0} P_{s}^{3}}-\frac{\left(\Delta_{s}^{0}\right)^{2} \Delta_{s}^{3} z^{3}}{2 M^{2}\left(P_{s}^{3}\right)^{2}}-\frac{\Delta_{s}^{0} z^{3} \Delta_{\perp}^{2}}{2 M^{2} P_{s}^{0} P_{s}^{3}}\right) A_{8}
\end{array}
$$

Contamination from frame-dependent power corrections
Asymmetric frame:

$$
\left(\frac{\left(\Delta_{a}^{0}\right)^{3} z^{3}}{2 M^{2} P_{a v g, a}^{0} P_{a v g, a}^{3}}-\frac{1}{\left(1+\frac{\Delta_{a}^{3}}{2 P_{a v g, a}^{3}}\right)} \frac{\left(\Delta_{a}^{0}\right)^{3} \Delta_{a}^{3} z^{3}}{4 M^{2} P_{a v g, a}^{0}\left(P_{a v g, a}^{3}\right)^{2}}-\frac{1}{\left(1+\frac{\Delta_{a}^{3}}{2 P_{a v g, a}^{3}}\right)^{2}} \frac{\left(\Delta_{a}^{0}\right)^{2} \Delta_{a}^{3} z^{3}}{2 M^{2}\left(P_{a v g, a}^{3}\right)^{2}}-\frac{z^{3} \Delta_{\perp}^{2} \Delta_{a}^{0}}{2 M^{2} P_{a v g, a}^{0} P_{a v}^{3}}\right.
$$

Main results

Relation between light-cone GPD H \& Form Factors:

Lorentz covariant formalism
Quasi-GPDs \& Form Factors: (Sample results)

$$
H\left(z \cdot P, z \cdot \Delta, t=\Delta^{2}, z^{2}\right)=A_{1}+\frac{\Delta_{s / a} \cdot z}{P_{\text {avg }, s / a} \cdot z} A_{3}
$$

Symmetric frame:

$$
\begin{aligned}
\left.H_{Q(0)}\left(z, P_{s}, \Delta_{s}\right)\right|_{s}=A_{1}+\frac{\Delta_{s}^{0}}{P_{s}^{0}} A_{3} \frac{\Delta_{s}^{0} z^{3}}{2 P_{s}^{0} P^{3}} A_{4}+\left(\frac{\left(\Delta_{s}^{0}\right)^{2} z^{3}}{2 M^{2} P_{s}^{3}}-\frac{\Delta_{s}^{0} \Delta_{s}^{3} z^{3} P_{s}^{0}}{2 M^{2}\left(P_{s}^{3}\right)^{2}}-\frac{z^{3} \Delta_{\perp}^{2}}{2 M^{2} P_{s}^{3}}\right) A_{6} \\
+\left(\frac{\left(\Delta_{s}^{0}\right)^{3} z^{3}}{2 M^{2} P_{s}^{0} P_{s}^{3}}-\frac{\left(\Delta_{s}^{0}\right)^{2} \Delta_{s}^{3} z^{3}}{2 M^{2}\left(P_{s}^{3}\right)^{2}}-\frac{\Delta_{s}^{0} z^{3} \Delta_{\perp}^{2}}{2 M^{2} P_{s}^{0} P_{s}^{3}}\right) A_{8}
\end{aligned}
$$

Contamination from frame-dependent power corrections

Asymmetric frame:
In the large-momentum limit, these expressions reduce to light-cone results

$$
\begin{aligned}
& +\left(\frac{\left(\Delta^{0}\right)^{2} a^{3}}{2 M^{2} P_{a v g, a}^{3}}-\frac{1}{\left(1+\frac{\Delta_{a}^{3}}{2 P_{a v g, a}^{3}}\right)} \frac{\left(\Delta_{a}^{0}\right)^{2} \Delta_{a}^{3} z^{3}}{4 M^{2}\left(P_{a v g}^{3}, a\right)^{2}}-\frac{1}{\left(1+\frac{\Delta_{a}^{3}}{2 P_{a v g, a}^{3}}\right)} \frac{P_{\text {avg }, a}^{0} \Delta_{a}^{0} \Delta_{a}^{3} z^{3}}{2 M^{2}\left(P_{a v g, a}^{3}\right)^{2}}-\frac{z^{3} \Delta_{\perp}^{2}}{2 M^{2} P_{a v g, a}^{3}}\right) A_{6} \\
& \left(\frac{1}{2 M^{2} P_{a v g, a}^{0} P_{\text {avg }, a}^{3}}-\frac{1}{\left(1+\frac{\Delta_{a}^{3}}{2 P_{a v g, a}^{3}}\right)} \frac{\left(\Delta_{a}^{0}\right)^{3} \Delta_{a}^{3} z^{3}}{4 M^{2} P_{a v g, a}^{0}\left(P_{\text {avg }, a}^{3}\right)^{2}}-\frac{1}{\left(1+\frac{\Delta_{a}^{3}}{2 P_{a v g, a}^{3}}\right)} \frac{\left(\Delta_{a}^{0}\right)^{2} \Delta_{a}^{3} z^{3}}{2 M^{2}\left(P_{a v g, a}^{3}\right)^{2}}-\frac{z^{3} \Delta_{\perp}^{2} \Delta_{a}^{0}}{2 M^{2} P_{a v g, a}^{0} P_{a v a}^{3}}\right.
\end{aligned}
$$

Main results

Interlude:

Quasi-Grus a rorm ractors: (Sample results)

Relation between light-cone GPD H \& Form Factors:

Let's go back to PDFs
 Let's go back to PDe:

Lorentz covariant formalism

Contamination from frame-dependent power corrections
Asymmetric frame:
In the large-momentum limit, these expressions reduce to light-cone results

Main results

Relation between light-cone GPD H \& Form Factors:

Interlude:

Quasi-Grus a rorm ractors: (Sample results)

Let's go back to PDFs

arXiv: 1705.01488

Quasi-PDFs, momentum distributions and pseudo-PDFs
A. V. Radyushkin

Old Dominion University, Norfolk, VA 23529, USA and
Thomas Jefferson National Accelerator Facility, Newport News, VA 23606, USA

$$
\begin{equation*}
\mathcal{M}^{\alpha}(z, p) \equiv\langle p| \bar{\psi}(0) \gamma^{\alpha} \hat{E}(0, z ; A) \psi(z)|p\rangle \tag{12}
\end{equation*}
$$

type, where $\hat{E}(0, z ; A)$ is the standard $0 \rightarrow z$ straightline gauge link in the quark (fundamental) representation. These matrix elements may be decomposed into p^{α} and z^{α} parts:

$$
\begin{aligned}
& \text { arts: } \\
& \begin{aligned}
\mathcal{M}^{\alpha}(z, p)= & 2 p^{\alpha} \mathcal{M}_{p}\left(-(z p),-z^{2}\right) \\
& +z^{\alpha} \mathcal{M}_{z}\left(-(z p),-z^{2}\right)
\end{aligned}
\end{aligned}
$$

2 Form factors

(13)

The $\mathcal{M}_{p}\left(-(z p),-z^{2}\right)$ part gives the twist-2 distribution when $z^{2} \rightarrow 0$, while $\mathcal{M}_{z}\left((z p),-z^{2}\right)$ is a purely highertwist contamination, and it is better to get rid of it.

Main results

Relation between light-cone GPD H \& Form Factors:

Interlude:

Quasi-Gros a rorm ractors: (Sample results)

Let's go back to PDFs

arXiv: 1705.01488

Quasi-PDFs, momentum distributions and pseudo-PDFs

Old Dominion University, Norfolk, NA 2352, Nas

$$
\begin{equation*}
\mathcal{M}^{\alpha}(z, p) \equiv\langle p| \bar{\psi}(0) \gamma^{\alpha} \hat{E}(0, z ; A) \psi(z)|p\rangle \tag{12}
\end{equation*}
$$

type, where $\hat{E}(0, z ; A)$ is the standard $0 \rightarrow z$ straightline gauge link in the quark (fundamental) representation. These matrix elements may be decomposed into p^{α} and z^{α} parts:

$$
\begin{aligned}
& \text { arts: } \\
& \begin{aligned}
\mathcal{M}^{\alpha}(z, p)= & 2 p^{\alpha} \mathcal{M}_{p}\left(-(z p),-z^{2}\right) \\
& +z^{\alpha} \mathcal{M}_{z}\left(-(z p),-z^{2}\right)
\end{aligned}
\end{aligned}
$$

2 Form factors

(13)

The $\mathcal{M}_{p}\left(-(z p),-z^{2}\right)$ part gives the twist-2 distribution when $z^{2} \rightarrow 0$, while $\mathcal{M}_{z}\left((z p),-z^{2}\right)$ is a purely highertwist contamination, and it is better to get rid of it.

If one takes $z=\left(z_{-}, z_{\perp}\right)$ in the $\alpha=+$ component of \mathcal{M}^{α}, the z^{α}-part drops out, and one can introduce a
imim, meseexpressiuns reutuce to irgint-cone results

Main results

Relation between light-cone GPD H \& Form Factors:

Interlude:

Quasi-Gros a rorm ractors: (Sample results)

Let's go back to PDFs

arXiv: 1705.01488

Quasi-PDFs, momentum distributions and pseudo-PDFs

$$
\begin{equation*}
\mathcal{M}^{\alpha}(z, p) \equiv\langle p| \bar{\psi}(0) \gamma^{\alpha} \hat{E}(0, z ; A) \psi(z)|p\rangle \tag{12}
\end{equation*}
$$

type, where $\hat{E}(0, z ; A)$ is the standard $0 \rightarrow z$ straightline gauge link in the quark (fundamental) representation. These matrix elements may be decomposed into p^{α}

2 Form factors

If one takes $z=\left(z_{-}, z_{\perp}\right)$ in the $\alpha=+$ component of \mathcal{M}^{α}, the z^{α}-part drops out, and one can introduce a
h 1 init, nieseexpressions reutuce 10 ngnt-cone results formula (6). For quasi-distributions, the easiest way to remove the z^{α} contamination is to take the time component of $\mathcal{M}^{\alpha}\left(z=z_{3}, p\right)$ and define

$$
\begin{equation*}
\mathcal{M}^{0}\left(z_{3}, p\right)=2 p^{0} \int_{-1}^{1} d y Q(y, P) e^{i y P z_{3}} \tag{14}
\end{equation*}
$$

A. V. Radyushkin

Old Dominion University, Norfolk, VA 23529, USA and
Thomas Jefferson National Accelerator Facility, Newport News, VA 23606, USA

Lorentz covariant formalism

$$
\begin{aligned}
& \text { (1rts: } \\
& \begin{aligned}
\mathcal{M}^{\alpha}(z, p)= & 2 p^{\alpha} \mathcal{M}_{p}\left(-(z p),-z^{2}\right) \\
& +z^{\alpha} \mathcal{M}_{z}\left(-(z p),-z^{2}\right)
\end{aligned}
\end{aligned}
$$

The $\mathcal{M}_{p}\left(-(z p),-z^{2}\right)$ part gives the twist-2 distribution when $z^{2} \rightarrow 0$, while $\mathcal{M}_{z}\left((z p),-z^{2}\right)$ is a purely highertwist contamination, and it is better to get rid of it.

and z^{α} parts:

Main results

Relation between light-cone GPD H \& Form Factors:
Interlude:
Quasi-Gros a rorm ractors: (Sample results)

Let's go back to PDFs

arXiv: 1705.01488

Quasi-PDFs, momentum distributions and pseudo-PDFs

Old Domini Statement needs a qualifier: Situation more complicated for quasi-GPDs

Thomas Jefferson Natio

$$
\begin{equation*}
\mathcal{M}^{\alpha}(z, p) \equiv\langle p| \bar{\psi}(0) \gamma^{\alpha} \hat{E}(0, z ; A) \psi(z)|p\rangle \tag{12}
\end{equation*}
$$

type, where $\hat{E}(0, z ; A)$ is the standard $0 \rightarrow z$ straightline gauge link in the quark (fundamental) representation. These matrix elements may be decomposed into p^{α} and z^{α} parts:

$$
\begin{aligned}
& \text { rts: } \\
& \begin{aligned}
\mathcal{M}^{\alpha}(z, p)= & 2 p^{\alpha} \mathcal{M}_{p}\left(-(z p),-z^{2}\right) \\
& +z^{\alpha} \mathcal{M}_{z}\left(-(z p),-z^{2}\right)
\end{aligned}
\end{aligned}
$$

2 Form factors

(13)

The $\mathcal{M}_{p}\left(-(z p),-z^{2}\right)$ part gives the twist-2 distribution when $z^{2} \rightarrow 0$, while $\mathcal{M}_{z}\left((z p),-z^{2}\right)$ is a purely highertwist contamination, and it is better to get rid of it.

Lorentz covariant formalism

Main results

Relation between light-cone GPD H \& Form Factors:

$$
\text { Lorentz covariant formalism } H\left(z \cdot P, z \cdot \Delta, t=\Delta^{2}, z^{2}\right)=A_{1}+\frac{\Delta_{s / a} \cdot z}{P_{\text {avg }, s / a} \cdot z} A_{3}
$$

Contrary to quasi-PDFs, γ^{0} operator for quasi-GPDs is plagued with (frame-dependent) power corrections

$$
\begin{array}{r}
\left.H_{\mathrm{Q}(0)}\left(z, P_{s}, \Delta_{s}\right)\right|_{s}=A_{1}+\frac{\Delta_{s}^{0}}{P_{s}^{0}} A_{3} \frac{\frac{\Delta_{s}^{0} z^{3}}{2 P_{s}^{0} P^{3}} A_{4}+\left(\frac{\left(\Delta_{s}^{0}\right)^{2} z^{3}}{2 M^{2} P_{s}^{3}}-\frac{\Delta_{s}^{0} \Delta_{s}^{3} z^{3} P_{s}^{0}}{2 M^{2}\left(P_{s}^{3}\right)^{2}}-\frac{z^{3} \Delta_{\perp}^{2}}{2 M^{2} P_{s}^{3}}\right) A_{6}}{+\left(\frac{\left(\Delta_{s}^{0}\right)^{3} z^{3}}{2 M^{2} P_{s}^{0} P_{s}^{3}}-\frac{\left(\Delta_{s}^{0}\right)^{2} \Delta_{s}^{3} z^{3}}{2 M^{2}\left(P_{s}^{3}\right)^{2}}-\frac{\Delta_{s}^{0} z^{3} \Delta_{\perp}^{2}}{2 M^{2} P_{s}^{0} P_{s}^{3}}\right) A_{8}}
\end{array}
$$

Asymmetric frame:

Main results

Main results

Quasi-GPDs: (Sample results)

Lorentz covariant definition of quasi-GPDs:

$$
H_{\mathrm{Q}}\left(z \cdot P, z \cdot \Delta, t=\Delta^{2}, z^{2}\right)=A_{1}+\frac{\Delta_{s / a} \cdot z}{P_{a v g, s / a} \cdot z} A_{3}
$$

Main results

Relation between light-cone GPD H \& Form Factors:

Lorentz covariant formalism

$$
H\left(z \cdot P, z \cdot \Delta, t=\Delta^{2}, z^{2}\right)=A_{1}+\frac{\Delta_{s / a} \cdot z}{P_{a v g, s / a} \cdot z} A_{3}
$$

Quasi-GPDs: (Sample results)

Lorentz covariant definition of quasi-GPDs:

$$
H_{\mathrm{Q}}\left(z \cdot P, z \cdot \Delta, t=\Delta^{2}, z^{2}\right)=A_{1}+\frac{\Delta_{s / a} \cdot z}{P_{a v g, s / a} \cdot z} A_{3}
$$

Key point:

Think in terms of the matching coefficient at LO:

$$
H(x, \ldots)=\int_{-\infty}^{\infty} \frac{d \xi}{|\xi|} C\left(\xi, \frac{\mu^{2}}{P_{3}^{2}}, \ldots\right) H_{\mathrm{Q}}\left(\frac{x}{\xi}, \ldots\right)
$$

(Xiong, Ji, Zhang, Zhao, 2013/
Stewart, Zhao, 2017
Izubuchi, Ji, Jin, Stewart, Zhao, 2018/ ...)
(Schematic structure)

$$
C^{(0)}=\delta(1-\xi)
$$

$$
=A_{1}+\frac{\Delta_{s / a} \cdot z}{P_{a v g, s / a} \cdot z} A_{3}
$$

Main results

Relation between light-cone GPD H \& Form Factors:

$$
H\left(z \cdot P, z \cdot \Delta, t=\Delta^{2}, z^{2}\right)=A_{1}+\frac{\Delta_{s / a} \cdot z}{P_{a v g, s / a} \cdot z} \boldsymbol{A}_{3}
$$

Quasi-GPDs: (Sample results)

Lorentz covariant definition of quasi-GPDs:

Martha's talk: Numerical comparison between Lorentz covariant \& non-covariant definitions of quasi-GPDs

(Schematic structure)

Summary

Summary

Summary

Transverse boost: This Lorentz transformation allows for an exact calculation of quasi-GPDs in symmetric frame through matrix elements of asymmetric frame

Summary

Summary

Summary

Backup slides

Main results

Renormalization: Sketch

Few words on operators:

- Schematic structure of Lorentz non-covariant quasi-GPD:

- Schematic structure of Lorentz covariant quasi-GPD: $H_{\mathrm{Q}} \rightarrow c_{0}\left(\left\langle\bar{\psi} \gamma^{0} \psi\right\rangle\right)+c_{1}\left(\left\langle\bar{\psi} \gamma^{1} \psi\right\rangle\right)+c_{2}\left(\left\langle\bar{\psi} \gamma^{2} \psi\right\rangle\right)$

See Martha's talk for rigorous expressions

How to renormalize?

Main results

Renormalization: Sketch

Few words on operators:

- Schematic structure of Lorentz non-covariant quasi-GPD:

- Schematic structure of Lorentz covariant quasi-GPD:

Few words on renormalization:
Renormalization factors are different for $\left\langle\bar{\psi} \gamma^{0} \psi\right\rangle,\left\langle\bar{\psi} \gamma^{1} \psi\right\rangle,\left\langle\bar{\psi} \gamma^{2} \psi\right\rangle$
--- UV-divergent terms same --- Finite terms different
--- Frame-independent

- Matching: --- Available for only γ^{0}
--- Takes care of finite terms for γ^{0}
- Strategy to renormalize: Use Renormalization factor for operator whose matching is known

