Nucleon transverse quark spin densities

Constantia Alexandrou

with

S. Bacchio, M. Constantinou, P. Dimopoulos, J. Finkenrath, R. Frezzotti, <u>K. Hadjiyiannakou</u>, K. Jansen, B. Kostrzewa, G. Koutsou, G. Spanoudes, and C. Urbach

The 39th International Symposium on Lattice Field Theory

Motivation

***** Understand the 3D-structure of the nucleon from its fundamental constituents, the quarks and the gluons - major goal of nuclear physics and a key aim of EIC

*Significant progress in revealing the longitudinal spin structure

*But transverse spin structure is much less known - focus of this talk

*Very relevant for JLab and EIC physics

EIC white paper, arXiv:1212.1701

Motivation

***** Understand the 3D-structure of the nucleon from its fundamental constituents, the quarks and the gluons - major goal of nuclear physics and a key aim of EIC

*Significant progress in revealing the longitudinal spin structure

*But transverse spin structure is much less known - focus of this talk

***** Compute moments of the transverse density

Studies in lattice QCD since the 1980s

$$\rho(x, \mathbf{b}_{\perp}, \mathbf{s}_{\perp}, \mathbf{S}_{\perp}) = \frac{1}{2} \begin{bmatrix} H(x, b_{\perp}^{2}) + \frac{\mathbf{b}_{\perp}^{j} \epsilon^{ji}}{m_{N}} \left(\mathbf{S}_{\perp}^{i} E'(x, b_{\perp}^{2}) + \mathbf{s}_{\perp}^{i} \bar{E}_{T}'(x, b_{\perp}^{2}) \right) + \mathbf{s}_{\perp}^{i} \mathbf{S}_{\perp}^{i} \left(H_{T}(x, b_{\perp}^{2}) - \frac{\Delta_{b_{\perp}} \tilde{H}_{T}(x, b_{\perp}^{2})}{4m_{N}^{2}} \right) + \mathbf{s}_{\perp}^{i} (2\mathbf{b}_{\perp}^{i} \mathbf{b}_{\perp}^{j} - \delta^{ij} b_{\perp}^{2}) \mathbf{S}_{\perp}^{j} \frac{\tilde{H}_{T}''(x, b_{\perp}^{2})}{m_{N}^{2}} \end{bmatrix}$$

Moments of ρ can be determined from generalised form factors (GFFs)

Status of current simulations

Status of current simulations

*****Ensembles generated by ETMC:

We use 3 ensembles generated with physical values of the u, d, s, and c quark masses

ensemble	$(L/a)^3.T/a$	$a \ (fm)$	$m_{\pi} ({\rm MeV})$	$L \ (fm)$	$m_{\pi}L$
cB211.072.64	$64^3 \cdot 128$	0.07961(13)	140.2(2)	5.09	3.62
cC211.060.80	$80^{3} \cdot 160$	0.06821(12)	136.7(2)	5.46	3.78
cD211.054.96	$96^3 \cdot 192$	0.05692(10)	140.8(2)	5.46	3.90

C. A. et al. (ETMC), Phys. Rev. D98 (2018) 054518

Talk, Tues. by B. Kostrzewa

Mellin moments

Moments for small n are readily accessible on the lattice from matrix elements of local operators

- Computation of the low Mellin moments has a long history, G. Martinelli and Ch. Sachrajda Phys. Lett. B217 (1989) 319
- Only recently we have results directly at the physical point (i.e. simulations with $m_{\pi} \sim 135 + /-10 \text{ MeV}$)
- To access the transverse spin densities one needs to compute the twist-two matrix elements of the chiral-even unpolarized and chiral-odd transversity GPDs

$$\rho(x, \mathbf{b}_{\perp}, \mathbf{s}_{\perp}, \mathbf{S}_{\perp}) = \frac{1}{2} \left[\mathbf{H}(x, b_{\perp}^2) + \frac{\mathbf{b}_{\perp}^j \epsilon^{ji}}{m_N} \left(\mathbf{S}_{\perp}^i \mathbf{E}'(x, b_{\perp}^2) + \mathbf{s}_{\perp}^i \bar{\mathbf{E}}'_T(x, b_{\perp}^2) \right) + \mathbf{s}_{\perp}^i \mathbf{S}_{\perp}^i \left(\mathbf{H}_T(x, b_{\perp}^2) - \frac{\Delta_{b_{\perp}} \widetilde{H}_T(x, b_{\perp}^2)}{4m_N^2} \right) + \mathbf{s}_{\perp}^i (2\mathbf{b}_{\perp}^i \mathbf{b}_{\perp}^j - \delta^{ij} b_{\perp}^2) \mathbf{S}_{\perp}^j \frac{\widetilde{H}''_T(x, b_{\perp}^2)}{m_N^2} \right]$$

$$F' \equiv \frac{\partial F}{\partial b_{\perp}^2} \qquad \qquad \bar{E}_T \equiv E_T + 2\tilde{H}_T$$

M. Diehl and P. Haegler, Eur.Phys.J.C44:87-101,2005, arXiv:hep-ph/0504175

Consider moments of GPDs at zero skewness, e.g.

$$A_{Tn0} = \int_{-1}^{1} dx \, x^{n-1} H_T, \ B_{Tn0} = \int_{-1}^{1} dx \, x^{n-1} E_T, \ \widetilde{A}_{Tn0} = \int_{-1}^{1} dx \, x^{n-1} \widetilde{H}_T$$

Mellin moments

• Moments for small n are readily accessible on the lattice from matrix elements of local operators

- Computation of the low Mellin moments has a long history, G. Martinelli and Ch. Sachradja Phys. Lett. B217 (1989) 319
- Only recently we have results directly at the physical point (i.e. simulations with $m_{\pi} \sim 135 + /-10 \text{ MeV}$)
- To access the transverse spin densities one needs to compute the twist-two matrix elements of the chiral-even unpolarized and chiral-odd transversity GPDs.

Nucleon isovector charges (first Mellin moments)

$$g_V = \langle 1 \rangle_{u-d}$$
$$g_A = \langle 1 \rangle_{\Delta u - \Delta d}$$
$$g_T = \langle 1 \rangle_{\delta u - \delta d}$$

g_V= 1
g_A= 1.2723 ± 0.0023 → reproduce
g_T= 0.53 ± 0.25 M. Radici and A. Bacchetta. PRL 120 (2018) 192001

• Nucleon matrix elements of the vector operator $\bar{q}\gamma_{\mu}q$ yield $A_{10}(Q^2) = F_1(Q^2)$, $B_{10}(Q^2) = F_2(Q^2)$

$$\int_{-1}^{1} dx \, H(x, 0, Q^2) = F_1(Q^2)$$

$$\int_{-1}^{1} dx \, E(x, 0, Q^2) = F_2(Q^2)$$
 Dirac and Pauli FFs

Tensor form factors

• Nucleon matrix elements of the tensor operator

$$\langle N(p',s') | \bar{q} \sigma^{\mu\nu} q | N(p,s) \rangle = \bar{u}_N(p',s') \begin{bmatrix} \sigma^{\mu\nu} A_{T10}^q(Q^2) + i \frac{\gamma^{[\mu} \Delta^{\nu]}}{2m_N} B_{T10}^q(Q^2) + \frac{\overline{P}^{[\mu} \Delta^{\nu]}}{m_N^2} \widetilde{A}_{T10}^q(Q^2) \end{bmatrix} u_N(p,s)$$

$$A_{T10}(0) = g_T \qquad \bar{B}_{T10}^q(0) \equiv B_{T10}^q(0) + 2\widetilde{A}_{T10}^q(0)$$

$$\Delta^{\mu} = p'^{\mu} - p^{\mu}, \ \bar{P}^{\mu} = \frac{p'^{\mu} + p^{\mu}}{2}, \ Q^2 = -(p'-p)^2 \qquad \qquad \overline{B}_{T10}^q(0) = \kappa_T \sim -h^{\perp}$$

$$Boer- Mulders function$$

anomalous tensor magnetic moment

Isovector tensor charge

n_{srcs} t [fm] t_s/a 0.549 8 1 10 0.686 2 12 0.823 5 11 14 0.961 24 16 1.098 18 1.235 45 20 1.372 116 22 1.509 246 650 2-point x 401 configurations = 23.6 M inversions!

on-going

n_{srcs}

2

4

6

16

48

64

264

0.64

0.96

1.12

1.28

1.44

1.60

t_s [fm]

0.456

0.570

0.684

0.798

0.912

1.026

1.140

1.254

1.368

1.482

x 500 configurations =

15.9 M inversions!

n

1

2

4

8

16

32

64

16

32

64

368

***** Important to probe large t_s values keeping error approximately the same to reliably eliminate contributions from excited states

Isovector tensor charge

• We find $g_T=0.924(54)$ more accurate than what extracted from phenomenology.

—> precision era of lattice QCD

Tensor charge for each quark

 $N_{\rm srcs}$

1

 $\mathbf{2}$

 $N_f=2+1+1$ twisted mass fermions with a clover term

- Lattice size $64^3 \times 128$
- a=0.08 fm determined from the nucleon mass

 t_s/a

8

10

0.64 fm

• m_π=139 MeV

 $N_{\rm cnfs}$

750

750

		+ deflation of 200 modes			modes	no. of	no. of stochastic vectors			
6000	000	750×512				$750\times$	<512 ¥	9000×32		
2p	ot	(u+d)-quark loop			s-quarl	k loop/	c-quark loop			
Statistics for disconnected contribution no. of Hadamard vectors										
						_	Use hiera	archical probing		
		2-pt	750	264	198000	-				
	1.6 fm	20	750	64	48000	consta	constant error			
	↓	18	750	48	36000	Increa	ase statistics t	keep approx.		
		16	750	16	12000					
excited states	g	14	750	6	4500					
Needed for studyin	~	12	750	4	3000					

 $N_{\rm meas}$

750

1500

Isoscalar and flavour diagonal tensor charge

B-ensemble: $64^3 \times 128$, a~0.08 fm

*Disconnected small but non-zero

	u-d	u	d	8	С
g_T	0.936(25)	0.737(23)	-0.217(23)	-0.0041(12)	-0.0060(37)

C. A., S. Bacchio, M. Constantinou, J. Finkenrath, K. Hadjiyiannakou, K. Jansen, G. Koutsou and A. Vaquero Aviles-Casco, *Phys.Rev.D* 102 (2020) 5, 054517, arXiv:1909.00485

Second Mellin generalized unpolarised and tensor form factors

• Unpolarized: $\mathcal{O}_{V}^{\mu\nu} = \bar{q}\gamma^{\{\mu}iD^{\nu\}}q$

$$\langle N(p',s')|\mathcal{O}_{\mathcal{V}}^{\mu\nu}|N(p,s)\rangle = \bar{u}_{N}(p',s') \Big[A_{20}(Q^{2})\gamma^{\{\mu P^{\nu}\}} + B_{20}(Q^{2})\frac{i\sigma^{\{\mu\alpha}q_{\alpha}P^{\nu\}}}{2m} + C_{20}(Q^{2})\frac{q^{\{\mu}q^{\nu\}}}{m} \Big] u_{N}(p,s)$$

$$\langle x\rangle_{q} = A_{20}^{q}(0) \qquad J_{q} = \frac{1}{2} \left[A_{20}^{q}(0) + B_{20}^{q}(0) \right]$$

• Tensor:
$$\mathcal{O}_T^{\mu\nu\rho} = i \, \bar{q} \sigma^{[\mu\{\nu]} \, i \, D^{\rho\}} \, q$$

$$\langle N(p',s')|\mathcal{O}_{T}^{\mu\nu\rho}|N(p,s)\rangle = u_{N}(p',s') \left[i\sigma^{\mu\nu}\overline{P}^{\rho} A_{T20}(Q^{2}) + \frac{\gamma^{[\mu}\Delta^{\nu]}}{2m_{N}}\overline{P}^{\rho} B_{T20}(Q^{2}) + i\frac{\overline{P}^{[\mu}\Delta^{\nu]}}{m_{N}^{2}}\overline{P}^{\rho} \widetilde{A}_{T20}(Q^{2}) + \frac{\gamma^{[\mu}\overline{P}^{\nu]}}{m_{N}}\Delta^{\rho} \widetilde{B}_{T21}(Q^{2}) \right] u_{N}(p,s)$$

$$\langle x \rangle_{\delta q} = A_{T20}^{q}(0)$$

Unpolarized Mellin moment

Momentum fraction - best measured

 $\mathcal{O}_{\rm V}^{\mu\nu} = \bar{q}\gamma^{\{\mu}iD^{\nu\}}q$

$$\langle N(p',s') | \mathcal{O}_{V}^{\mu\nu} | N(p,s) \rangle = \bar{u}_{N}(p',s') \Big[A_{20}^{q}(q^{2}) \gamma^{\{\mu P^{\nu}\}} + B_{20}^{q}(q^{2}) \frac{i\sigma^{\{\mu\alpha}q_{\alpha}P^{\nu\}}}{2m} + C_{20}^{q}(q^{2}) \frac{q^{\{\mu}q^{\nu\}}}{m} \Big] u_{N}(p,s)$$

$$\langle x \rangle_{q} = A_{20}^{q}(0) \qquad J_{q} = \frac{1}{2} \left[A_{20}^{q}(0) + B_{20}^{q}(0) \right]$$

Unpolarized Mellin moment

Momentum fraction - best measured

 $\mathcal{O}_{\rm V}^{\mu\nu} = \bar{q}\gamma^{\{\mu}iD^{\nu\}}q$

Second Mellin of generalized tensor form factors

• Tensor: $\mathcal{O}_T^{\mu\nu\rho} = i \, \bar{q} \sigma^{[\mu\{\nu]} \, i \, D^{\rho\}} \, q$

$$\langle N(p',s')|\mathcal{O}_{T}^{\mu\nu\rho}|N(p,s)\rangle = u_{N}(p',s') \left[i\sigma^{\mu\nu}\mathcal{P}^{\rho}A_{T20}(Q^{2}) + \frac{\gamma^{|\mu}\Delta^{\nu|}}{2m_{N}}\overline{\mathcal{P}}^{\rho}B_{T20}(Q^{2}) + i\frac{\overline{\mathcal{P}}^{|\mu}\Delta^{\nu|}}{m_{N}^{2}}\overline{\mathcal{P}}^{\rho}\tilde{A}_{T20}(Q^{2}) + \frac{\gamma^{|\nu}\overline{\mathcal{P}}^{\nu'}}{m_{N}}\Delta^{\nu}\tilde{B}_{T21}(Q^{2}) \right] u_{N}(p,s)$$

$$\langle x \rangle_{\delta u - \delta d} = A_{T20}^{u-d}(0)$$
C-ensemble: 80³ x 160, a~0.07 fm
Isovector
$$\int_{0}^{4} \int_{0}^{4} \int_{0}^{4} \int_{0}^{2} \int_{0$$

Continuum extrapolation of Q²=0 generalised form factors

For the first we extrapolate to the continuum limit using 3 gauge ensembles directly at the physical pion mass#All quantities shown from now on are for the isovector combination

• We find for the anomalous tensor magnetic moment κ_T =1.05(9) —> Boer-Mulders functions negative and sizeable C. A., S. Bacchio, M. Constantinou, P. Dimopoulos, J. Finkenrath, R. Frezzotti, K. Hadjiyiannakou, K. Jansen, B. Kostrzewa, G. Koutsou, G. Spanoudes, and C. Urbach, arXiv:2202.09871

Continuum extrapolation of generalised form factors

***** For the first time, we extrapolate to the continuum limit using 3 gauge ensembles directly at the physical pion mass ***** For a fixed value of Q^2 we extrapolated to a=0 and then fit to $F(Q^2) = \frac{F(0)}{(1+Q^2/m^2)^p}$

*****Fourier transform to impact parameter space $\Delta_{\perp} \leftrightarrow \mathbf{b}_{\perp}$

C. A., S. Bacchio, M. Constantinou, P. Dimopoulos, J. Finkenrath, R. Frezzotti, K. Hadjiyiannakou, K. Jansen, B. Kostrzewa, G. Koutsou, G. Spanoudes, and C. Urbach, arXiv:2202.09871

Transverse density distributions (isovector)

 $\langle x^{n-1} \rangle_{\rho}(\mathbf{b}_{\perp}, \mathbf{s}_{\perp}, \mathbf{S}_{\perp}) \equiv \int_{-1}^{1} dx \ x^{n-1} \rho(x, \mathbf{b}_{\perp}, \mathbf{s}_{\perp}, \mathbf{S}_{\perp}),$

Contours of the first moment (n=1) of the probability density, as a function of b_x and b_y

$$\rho(x, \mathbf{b}_{\perp}, \mathbf{s}_{\perp}, \mathbf{S}_{\perp}) = \frac{1}{2} \left[H(x, b_{\perp}^2) + \frac{\mathbf{b}_{\perp}^j \epsilon^{ji}}{m_N} \left(\mathbf{S}_{\perp}^i E'(x, b_{\perp}^2) + \mathbf{s}_{\perp}^i \bar{E}_T'(x, b_{\perp}^2) \right) + \mathbf{s}_{\perp}^i \mathbf{S}_{\perp}^i \left(H_T(x, b_{\perp}^2) - \frac{\Delta_{b_{\perp}} \tilde{H}_T(x, b_{\perp}^2)}{4m_N^2} \right) + \mathbf{s}_{\perp}^i (2\mathbf{b}_{\perp}^i \mathbf{b}_{\perp}^j - \delta^{ij} b_{\perp}^2) \mathbf{S}_{\perp}^j \frac{\tilde{H}_T''(x, b_{\perp}^2)}{m_N^2} \right]$$

M. Diehl and Ph. Hägler, Eur. Phys. J. C44 (2005) 87, hep-ph/0504175

Transverse density distributions (isovector)

 $\langle x^{n-1} \rangle_{\rho}(\mathbf{b}_{\perp}, \mathbf{s}_{\perp}, \mathbf{S}_{\perp}) \equiv \int_{-1}^{1} dx \ x^{n-1} \rho(x, \mathbf{b}_{\perp}, \mathbf{s}_{\perp}, \mathbf{S}_{\perp}),$

Contours of the second moment (n=2) of the probability density, as a function of b_x and b_y

Distortion is milder than for n=1 due to the milder dependence of $A_{20}(Q^2)$ compared to $A_{10}(Q^2)$

Conclusions

*** Precision era of lattice QCD**: Moments of PFDs can be extracted precisely and directly at the physical pion mass including the continuum limit

*The calculation of sea quark contributions is feasible providing valuable input demonstrated here with the tensor charge

*Large deformation is predicted especially for the first moment of the transverse quark spin density

Conclusions

- *** Precision era of lattice QCD**: Moments of PFDs can be extracted precisely and directly at the physical pion mass including the continuum limit
- *The calculation of sea quark contributions is feasible providing valuable input demonstrated here with the tensor charge
- *Large deformation is predicted especially for the first moment of the transverse quark spin density

