

Tuning of QCD+QED simulations with C* boundary conditions

MD T-UNIL MND T. K RERLIN K

Komijani, M. K. Marinkovic, S. Martins, J. C. Pinto Barros, A. Patella, N. Tantalo, P. Tavella alessandro.cotellucci@physik.hu-berlin.de, Institut für Physik, Humboldt Universität zu Berlin

Alessandro Cotellucci, J. Lücke, A. Altherr, L. Bushnaq, I. Campos, M. Catillo, M. Dale, P. Fritzsch, R. Gruber, J.

Introduction

We give an update on the ongoing effort of the RC* collaboration to generate fully dynamical QCD+QED ensembles with C* boundary conditions and with O(a) improved Wilson fermions using the openQ*D code.

ensemble	lattice	<i>a</i> [fm]	$lpha_{\it R}$	Quark Content
A400a00b324	$64 imes 32^3$	0.05393(24)	0	$m_u = m_d = m_s \neq m_c$
B400a00b324	$80 imes 48^3$	0.05400(14)	0	$m_u = m_d = m_s \neq m_c$
A450a07b324	$64 imes 32^3$	0.05469(32)	0.007076(24)	$m_u \neq m_d = m_s \neq m_c$
A380a07b324	$64 imes32^3$	0.05323(28)	0.007081(19)	$m_u eq m_d = m_s eq m_c$
A500a50b324	$64 imes 32^3$	0.05257(14)	0.040772(85)	$m_u \neq m_d = m_s \neq m_c$
A360a50b324	$64 imes 32^3$	0.05054(27)	0.040633(80)	$m_u eq m_d = m_s eq m_c$
C380a50b324	$96 imes 48^3$	0.050625(79)	0.04073(11)	$m_u \neq m_d = m_s \neq m_c$

 Table 1: List of our ensembles.

Sign of the Pfaffian

The fermionic Pfaffian is a consequence of C* boundary conditions and its sign flip is a lattice artefact. It can be written:

$$pf(CKD) = \sqrt{\det(Q)} = \prod_{n=1}^{12V} \lambda_n$$

the sign of the Pfaffian is estimated following the λ_n s (eigenvalues of $Q = \gamma_5 D$) flow from the target mass *m* to larger mass *M*.

 λ_n crossing zero even \rightarrow positive sign λ_n crossing zero odd \rightarrow negative sign

Fig. 2: Smallest eigenvalue of up Q as a function of the valence mass, calculated on the 96 \times 48³ volume. The eigenvalue can not flow in the grey region.

Lines of Constant Physics

For our QCD+QED ensembles we defined the following *surfaces of constant physics*:

$$\begin{split} \phi_0 = & 8t_0 \left(M_{K^{\pm}}^2 - M_{\pi^{\pm}}^2 \right) = 0, \\ \phi_1 = & 8t_0 \left(M_{\pi^{\pm}}^2 + M_{K^{\pm}}^2 + M_{K^0}^2 \right) = 2.13, \\ \phi_2 = & 8t_0 \left(M_{K^0}^2 - M_{K^{\pm}}^2 \right) \alpha_R^{-1} = 2.37, \\ \phi_3 = & \sqrt{8t_0} \left(M_{D_s} - M_{D^0} + M_{D^{\pm}} \right) = 12.1. \end{split}$$

The code first reduces the interval $I \in [m, M]$ in which the flip can occur by looking if the smallest λ increase from *m* to *M* (Fig. 2). Only if $I \neq \{0\}$ we track the eigenvalues and eigenvectors flow.

Fig. 3: We systematically increased the value of the lower bound of the rational approximation (left) to decrease the tunnelling barrier for the up quark (right).

Finite Volume Effects

QCD finite volume corrections can be estimated by LO $\chi\text{-}\mathrm{PT}\text{:}$

430 $-- C^* BC$ -- Periodic BC 420 $-- Data OCD C^*$

We investigated the source of the absence of sign flip by lowering the tunnelling barrier for the smallest eigenvalue as proposed in [1] (Fig. 3). The result was no sign flip which could be due to:

- ergodicity problem,
- Iattice spacing enough small to remove the artifact,
- the up quark too massive.

Tuning Strategy

For fixed values of α and β , the bare quark masses need to be tuned to obtain the desired values of the ϕ variables. Since we have chosen to work with $m_d = m_s \equiv m_{ds}$, this is a threeparameter tuning problem. In practice, we have followed the steps in the flowchart.

where $\xi = M^2/(4\pi F)^2$, K_1 is a modified Bessel function of the second kind, for periodic and C^{*} boundary conditions. On the larger volume, the QCD finite volume effects on pion mass are smaller than 1%.

In the case of QED with C* boundary conditions the power-law finite-volume effects have been derived in [3]:

$$M_{\rm C}(L)=M-\alpha\left\{\frac{q^2\zeta(1)}{2L}+\frac{q^2\zeta(2)}{\pi ML^2}+o\left(\frac{1}{L^4}\right)\right\},$$

the higher order terms in 1/L depend on the derivative of the Compton tensor. The first two terms of the 1/L expansion are structure-independent.

Fig. 4: Pion masses for our QCD ensembles, and AL-PHA ensembles from [2].

Fig. 5: QED finite volume effects on the mesons masses for $\alpha_R \approx 0.04$.

References

- [1] Daniel Mohler, Stefan Schaefer, *Remarks on strange-quark simulations with Wilson fermions*, (2020).
- [2] Roman Höllwieser, Francesco Knechtli, Tomasz Korzec, *Scale setting for* $N_f = 3 + 1 \ QCD$, (2020).
- [3] Lucini, B., Patella, A., Ramos, A. et al., *Charged hadrons in local finite-volume QED+QCD with C* boundary conditions. J. High Energ. Phys.*, **76** (2016).

Conclusion and outlook

- The three-parameter tuning can not rely on a strategy like the Partially Quenching due to the significant Sea-Quarks contribution, which forbids us to tune the masses one per time.
 The errors on our 64x32³ volume are probably dominated by FVE. An accurate tuning thus requires much larger statistics.
- From the hierarchy of the FVE as seen in Fig. 5 we suppose that the contributions of the nonuniversal terms in the 1/L expansion are in the sub-0.1% range.

Other contributions of the collaboration

- Tue. 8:00 pm, P. Tavella, Strange and charm contribution to the HVP from C* boundary conditions.
- Thur. 9:00 am, R. Gruber, A first look at the HVP from QCD and QCD+QED with C* boundary conditions.
- Thur. 9:20 am, A. Altherr, A first look at the HVP from QCD and QCD+QED with C* boundary conditions II.
- Thur. 9:40 am, S. Martins, Finite-Size Effects of the HVP Contribution to the Muon (g 2) with C* Boundary Conditions.
- Fri. 4:40 pm, J. Lücke, An update on QCD+QED simulations with C* boundary conditions.