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Motivation

I Crucial problem in lattice field theory is extracting masses En and matrix elements 〈n|Ô|0〉 from correlation functions

C (t) = 〈O(t)O∗(0)〉 =
∞∑
n=1

Ane
−Ent

with An =
∣∣∣〈n|Ô|0〉∣∣∣2.

I Multiexponential fits tend to be unstable, while variational methods work well, but require range of operators Oi at source and sink

I Desirable to have methods that can solve this problem with just one operator at source and sink

I Useful to consider methods used for similar purposes in other fields, such as laser fluorescence spectroscopy [1].

Padé Method [2]

I The Z transform of the correlator C = {C (ka) | k ∈ N} is given by

Z[C ](z) =
∞∑
k=0

C (ka)z−k =
∞∑
n=1

Anz

z − λn
(1)

with λn = e−Ena.

I Poles and residues give masses and matrix elements!

I In practice, only finitely many C (ka) are known.

I Consider Padé approximants to Z[C ](z) and use their poles and residues as estimates
of λn, An.

I Naive implementation is equivalent to Prony’s method in exact arithmetic [2].

I Results tend to be unstable (complex poles, Froissart doublets, . . . )

I Solution: robust Padé approximants [3], which give an estimate of how many states can
be identified from the data.

I Even with robust methods, results quickly deteriorate in the presence of noise [4].
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Figure 1: Results from the Padé Method with robust approximants applied to synthetic
data. Dashed horizontal lines denote the exact values of the masses, points the extracted

results as a function of the number N of poles tried.
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Figure 2: Same as Figure 1, but with a 1% noise applied to the synthetic data.

Padé-Laplace Method [1]

I Laplace transform of correlation function C (t) given by

L[C ](p) =

∫ ∞
0

dt C (t)e−pt = −
∞∑
n=1

An

p + En
(2)

I Compute Padé approximants to L[C ](p) from moments

dk

dpk
L[C ](p)

∣∣∣∣∣
p=p0

=

∫ ∞
0

dt (−t)kC (t)e−p0t (3)

and use their poles and residues as estimates for En, An.

I Robust methods even more important due to errors from numerical integration.

I Due to the averaging inherent in the Laplace transform, the results are more resistant to
noise than for the Padé method.
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Figure 3: Results from the Padé-Laplace Method with robust approximants applied to
synthetic data. Dashed horizontal lines denote the exact values of the masses, points the

extracted results as a function of the number N of poles tried. Empty points use
Simpson’s rule for the numerical integration, filled points a novel non-linear quadrature

formula specialized to exponentially-decaying integrands.
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Figure 4: Same as Figure 3, but with a 1% noise applied to the synthetic data.

Non-Linear Quadrature Formulae

I When computing moments (3) numerically, e.g. using trapezoidal rule, numerical error introduces additional instability to the Padé approximants.

I Consider non-linear approximations ∫ b

a

dx f (x) ≈ (b − a) q(f (a), f (b)) (4)

As long as (4) is exact on all multiples of at least one function, integration error is no worse than trapezoidal rule (and better for functions close to such multiples).

I Specifically, a non-linear quadrature formula exact on functions of the form Ae−mx is given by

q(f (a), f (b)) =
f (a)− f (b)

log f (a)
f (b)

(5)

I Can develop higher-order non-linear quadrature rules using multiple nodes.
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