Padé and Padé-Laplace Methods for masses and matrix elements
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» Crucial problem in lattice field theory is extracting masses E, and matrix elements <n\CA)\O> from correlation functions

C(t) = (0(£)0*(0)) = > Ane B

A 2
with A, = <n\0\o>) |

» Multiexponential fits tend to be unstable, while variational methods work well, but require range of operators O; at source and sink

» Desirable to have methods that can solve this problem with just one operator at source and sink
» Useful to consider methods used for similar purposes in other fields, such as laser fluorescence spectroscopy [1].

Padé Method [2] Padé-Laplace Method [1]

» The Z transform of the correlator C = {C(ka) | k € N} is given by » Laplace transform of correlation function C(t) given by
Z[C)(z) = )Y C(ka)z "= . 1 LICl(p) = [ dtC(t)e P =— .
C1(2) = > Clh)z = > 5 (1) Cllp) = [ declen= =3 Lo
k=0 n=1 n=1
with \, = e En2. » Compute Padé approximants to L[C](p) from moments
» Poles and residues give masses and matrix elements! KL 0
- i —L[C — [ dt(—t)*C(t)e P 3
» In practice, only finitely many C(ka) are known. o [C](p) ~ (—t)*C(t)e (3)
» Consider Padé approximants to Z[C](z) and use their poles and residues as estimates P=Po
of \,, A,. and use their poles and residues as estimates for E,, A,.
» Naive implementation is equivalent to Prony’'s method in exact arithmetic [2]. » Robust methods even more important due to errors from numerical integration.
» Results tend to be unstable (complex poles, Froissart doublets, ... ) » Due to the averaging inherent in the Laplace transform, the results are more resistant to
» Solution: robust Padé approximants [3], which give an estimate of how many states can noise than for the Padé method.
be identified from the data.
» Even with robust methods, results quickly deteriorate in the presence of noise [4]. o I — —— . . .
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Je - : - > - ” FIGURE 3: Results from the Padé-Laplace Method with robust approximants applied to
v synthetic data. Dashed horizontal lines denote the exact values of the masses, points the

extracted results as a function of the number N of poles tried. Empty points use
Simpson'’s rule for the numerical integration, filled points a novel non-linear quadrature
formula specialized to exponentially-decaying integrands.

FIGURE 1: Results from the Padé Method with robust approximants applied to synthetic
data. Dashed horizontal lines denote the exact values of the masses, points the extracted
results as a function of the number N of poles tried.
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FIGURE 2: Same as Figure 1, but with a 1% noise applied to the synthetic data. FIGURE 4: Same as Figure 3, but with a 1% noise applied to the synthetic data.
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Non-Linear Quadrature Formulae

» When computing moments (3) numerically, e.g. using trapezoidal rule, numerical error introduces additional instability to the Padé approximants.
» Consider non-linear approximations

b
/ dx f(x) & (b — a) q(f(a), f(b)) (4)

As long as (4) is exact on all multiples of at least one function, integration error is no worse than trapezoidal rule (and better for functions close to such multiples).
» Specifically, a non-linear quadrature formula exact on functions of the form Ae™" is given by

a(r(a).F(8)) = "L 5)
Ogm

» Can develop higher-order non-linear quadrature rules using multiple nodes.
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