Optimized meson operators for charmonium spectroscopy and mixing with glueballs

Francesco Knechtli, Tomasz Korzec, Michael Peardon and Juan Andrés Urrea-Niño

Lattice 22 @ Bonn, 2022

BERGISCHE UNIVERSITÄT WUPPERTAL

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Meson spectroscopy with Distillation

Main focus: Meson operators $\mathcal{O} = \bar{\psi} \Gamma \psi$ ($\Gamma = \gamma_5, \gamma_i, \nabla_i, ...$) at zero spatial momentum.

Main method: **Distillation**. Replace $\psi \to VV^{\dagger}\psi$, where V contains the N_{ν} lowest eigenmodes of the 3D Laplacian operator. [M. Peardon et al. Phys. Rev. D80 (2009) arXiv:0905.2160]

Building blocks

- Laplacian eigenvectors V[t]
- Perambulators $\tau[t_1, t_2] = V^{\dagger}[t_1]D^{-1}V[t_2]$
- Elementals $\Phi[t] = V^{\dagger}[t]\Gamma V[t]$

Advantages

- ✓ Perambulators/elementals have manageable sizes.
- Perambulators are independent from elementals.

Disadvantages

- \times N_v scales with 3D physical lattice volume.
- × Many inversions required.

Developing an improvement

How to choose N_v ? Too small:

• **Neglects** significant low energy modes.

Too large:

- Expensive.
- Can include non-significant modes.
- Is a given N_v equally good for all states?
 - Different Γ correspond to different *J^{PC}* with **different** spatial properties.
 - **Excited states** of a same J^{PC} can also further differ.

Starting point: Distillation profiles

- Use $\psi \to V J V^{\dagger} \psi$ with $J[t]_{ij} = \delta_{ij} g(\lambda_i[t])$.
- Quark distillation profile $g(\lambda)$ modulates contributions from each of the N_{ν} eigenvectors.

Exploiting the quark distillation profiles

Our case: Fix Γ and study ground/excited states via a GEVP formulation.

[C. Michael & I. Teasdale, Nucl. Phys. B215 (1983)]
 [M. Lüscher & U. Wolff, Nucl. Phys. B339 (1990)]
 [B. Blossier et al. JHEP 04 (2009) arXiv:0902.1265]

- Variational basis: Quark distillation profiles $g_a(\lambda)$.
- Correlation matrix $C_{ab}(t) = \left< \mathcal{O}_a(t) \bar{\mathcal{O}}_b(0) \right>$
 - Pruning via SVD recommended for numerical stability.
 [J. Balog et al. Phys.Rev. D60 (1999) arXiv:hep-lat/9903036], [F. Niedermayer et al. Nucl.Phys. B597 (2001) arXiv:hep-lat/0007007]
- Solve GEVP $C(t)u_e(t, t_0) = \rho_e(t, t_0)C(t_0)u_e(t, t_0)$.
 - Eigenvalues ρ_e(t, t₀) give access to masses of the different states.
 - Eigenvectors $u_e(t, t_0)$ allow to build an operator \mathcal{O}_e with the largest overlap with the wanted energy eigenstate from the basis elements.

The optimal meson distillation profiles

For a fixed Γ and energy level e one can build an optimal elemental given by

$$\tilde{\Phi}^{(\Gamma,e)}[t]_{ij}_{\alpha\beta} = \tilde{f}^{(\Gamma,e)}(\lambda_i[t],\lambda_j[t])v_i[t]^{\dagger}\Gamma_{\alpha\beta}v_j[t]$$

which includes the optimal meson distillation profile given as

$$\widetilde{f}^{(\Gamma,e)}(\lambda_i[t],\lambda_j[t]) = \sum_k \eta_k^{(\Gamma,e)} g_k(\lambda_i[t])^* g(\lambda_j[t]).$$

[F. Knechtli, T. Korzec, M. Peardon, J. A. Urrea-Niño, Phys. Rev. D106 (2022) arXiv:2205.11564]

Advantages:

- $\checkmark\,$ Correlation matrix and optimal elementals can be built with very small extra cost.
- ✓ $\tilde{f}^{(\Gamma,e)}(\lambda_i[t],\lambda_j[t])$ tells us if N_v is large enough and how to use the N_v eigenvectors for each Γ and energy state.

Testing the method

- QCD with N_f = 2 at half the physical charm quark mass. No light quarks. Clover-improved Wilson fermions.
- 48×24^3 and 96×48^3 lattices with $a \approx 0.0658, 0.049$ fm. Check effectiveness at smaller resolutions
- Both local and derivative Γ. [J. J. Dudek et al. Phys. Rev. D77 (2008) arXiv:0707.4162]

• $g_i(\lambda) = e^{-\frac{\lambda^2}{2\sigma_i^2}}$ in this work.

Suppression of large λ follows distillation intuition.

• $g_i(\lambda) = \lambda^i$ was tried too. Same result but less numerical stability. Avoided basis bias.

Coarser lattice results: $N_{\nu} = 200$

ameff

Local iso-vector operators

Derivative iso-vector operators

with $\tilde{f}^{(\Gamma, 0)}(\lambda_i, \lambda_i)$

with $\tilde{f}(\lambda_i, \lambda_i) = 1$

 $V_5 \nabla_i$

20

 $|\varepsilon_{iik}|\gamma_i\nabla_k$

- γ_5 : 0.9272(3) ightarrow 0.9858(2)
- γ_i : 0.8743(10) ightarrow 0.9900(5)
- $\epsilon_{ijk}\gamma_j\gamma_k$: 0.77(7) ightarrow 0.93(1)

5

• ∇_i : 0.4758(7) \rightarrow 0.742(2)

 $\frac{t}{a}$

15

- $\gamma_5
 abla_i$: 0.84(1) ightarrow 0.970(5)
- $\mathbb{Q}_{ijk}\gamma_j
 abla_k$: 0.858(8) ightarrow 0.981(3)

- $\tilde{f}^{(\Gamma,0)}(\lambda_i,\lambda_j) \neq 1$ always \rightarrow Improvement over orthogonal projection.
- Suppression of large λ remains \rightarrow Distillation intuition still holds.
- Different profile for different $\Gamma \rightarrow Profiles$ are unique.
- $\tilde{f}^{(\Gamma,0)}(\lambda_i,\lambda_j)$ at large λ_i,λ_j tells us if we have enough eigenvectors \rightarrow More systematic criterion for choosing N_v .
- Spatial profile can be recovered, e.g $\Psi^{(\gamma_5 \nabla_1, e)}(\vec{x}) = \frac{1}{N_t} \sum_t || Tr\left(\gamma_5 V[t] \tilde{\Phi}^{(\gamma_5 \nabla_1, e)}[t] V[t]^{\dagger}\right) \phi_0 ||^2$ with ϕ_0 a 3D point source. Profiles dictate spatial structure.

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ ()

Finer lattice results: $N_{\nu} = 325$

Local iso-vector operators

Derivative iso-vector operators

Fractional overlaps:

- γ_5 : 0.8765(7) ightarrow 0.9555(5)
- γ_i : 0.825(3) ightarrow 0.969(2)

Fractional overlaps:

• $\mathbb{Q}_{ijk}\gamma_j \nabla_k$: 0.82(2) \rightarrow 0.92(1)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

• $\epsilon_{ijk}\gamma_j\mathbb{B}_k$: - \rightarrow 0.91(1)

- $N_v^{fine} = 325 \leftrightarrow N_v^{course} = 100 \rightarrow \text{Volume scaling is a good initial guide.}$
- Scaling of σ_i with lattice spacing \rightarrow Keep same pattern of suppression.
- Same observations as in coarse lattice → Profiles serve their intended purpose.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Charmonium-Glueball mixing

To keep in mind:

- Iso-scalar meson operators require disconnected pieces in correlation function. Feasable thanks to distillation.
- Glueballs are hard to find in un-quenched QCD. Optimal operators must be found via GEVP
 - Different loop shapes and windings. [C. J. Morningstar & M. Peardon, Phys. Rev. D60 (1999) arXiv:9901004] [B. Berg & A. Billoire, Nucl. Phys. B221 (1983)

- Different smearing schemes and levels:
 - 3D-HYP [A. Hasenfratz & F. Knechtli, Phys. Rev. D64 (2001) arXiv:0103029]
 - 3D improved APE [B. Lucini et al. JHEP 06 (2004) arXiv:hep-lat/0404008]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 $\begin{array}{l} \text{Mixing results} \\ 0^{++} \rightarrow \Gamma = \mathbb{I}, \ \tilde{f}(\lambda_i, \lambda_j) = 1 \end{array} \qquad \qquad 0^{-+} \rightarrow \Gamma = \gamma_5, \ \tilde{f}^{(\gamma_5, 0)}(\lambda_i, \lambda_j) \end{array}$

- $C_{MG}(t) = Tr\left(\Phi^{(\Gamma)}[t]\tau[t,t]\right)G^{(R^{PC})}(0).$
- Correlators normalized at fixed time in physical units.
- Noise is dominated by the glueball. Glueballs require more statistics than mesons.

Conclusions

- Meson distillation profiles were introduced and used for a wide variety of operators at two different lattice spacings.
 - ✓ Excited state contamination is significantly reduced at no additional inversion cost.
 - $\checkmark\,$ The meson profile serves as an **additional** degree of freedom for a GEVP formulation.
 - ✓ Profiles for individual energy eigenstates reveal additional spatial information
 - $\checkmark\,$ These profiles can be applied to other hadron operators and to stochastic distillation.
- The improved operators were used for meson-glueball mixing.
 - $\checkmark\,$ Reduction of contamination at early times is convenient for such mixing.
 - GEVP formulation with glueball and meson operators is an ongoing work.

Outlook: Study of an ensemble with physical charm quark and 3 degenerate light quarks with this method.

Fractional overlap

・ロト ・西ト ・ヨト ・ヨー うへぐ

Correlation function: Ground state + Excited state contamination

$$C(t) = 2c_0 e^{-m_0 \frac{T}{2}} \cosh\left(\left(\frac{T}{2} - t\right)m_0\right) + B_1(t)$$

Normalized correlator:

$$C'(t) = \frac{C(t)}{C(t_0)} = \left(\frac{1+B_2(t)}{1+B_2(t_0)}\right) \frac{\cosh\left(\left(\frac{T}{2}-t\right)m_0\right)}{\cosh\left(\left(\frac{T}{2}-t_0\right)m_0\right)}$$
$$B_2(t) = \frac{B_1(t)e^{m_0\frac{T}{2}}}{2c_0\cosh\left(\left(\frac{T}{2}-t\right)m_0\right)}$$

At mass plateau $B_1(t)$ is 0 and the fractional overlap can be fitted:

$$A_G = \frac{1}{1 + B_2(t_0)}$$

Access to excited states

Excited states can be accessed via inclusion of meson distillation profiles.