

Implementing the finite-volume scattering and decay formalism across all three-pion isospin channels

Maxwell T. Hansen

August 8th, 2022

based on work and discussion with...
Athari Alotaibi, Raul Briceño, Fabian Joswig, Felix Ziegler
(+ previous publications as cited)

From the finite volume to amplitudes

This talk focuses on the first step... For integral equations see:

Jackura et al., PRD (2020) MTH, Briceño, Edwards, Thomas, Wilson, PRL 2020

From the finite volume to amplitudes

This talk focuses on the first step... For integral equations see:

Jackura et al., PRD (2020) MTH, Briceño, Edwards, Thomas, Wilson, PRL 2020

☐ Motivated by a Python package under development (available on GitHub... some time this week)

RFT quantization condition

$$\det[\mathbf{K}_{df,3}^{-1}(E_{cm}) + \mathbf{F}_3(E, \mathbf{P}, L)] = 0$$

 $\mathbf{F}_3(E, m{P}, L) = Matrix$ of functions depending on kinematics + two-particle dynamics

$$\mathbf{F}_3 = \frac{\mathbf{F}}{3} + \mathbf{F}\mathbf{K}_2 \left[1 - (\mathbf{F} + \mathbf{G})\mathbf{K}_2\right]^{-1}\mathbf{F}$$

RFT quantization condition

$$\det\left[\mathbf{K}_{\mathsf{df},3}^{-1}(E_{\mathsf{cm}}) + \mathbf{F}_{3}(E, \boldsymbol{P}, L)\right] = 0$$

 $\mathbf{F}_3(E, \boldsymbol{P}, L) = Matrix$ of functions depending on kinematics + two-particle dynamics

$$\mathbf{F}_3 = \frac{\mathbf{F}}{3} + \mathbf{F}\mathbf{K}_2 \left[1 - (\mathbf{F} + \mathbf{G})\mathbf{K}_2\right]^{-1}\mathbf{F}$$

Matrices on tensor-product space: (spectator flavor space) \otimes (spectator $k \in \frac{2\pi}{L}\mathbb{Z}^3$ space) \otimes (two-particle ℓm)

Holds only for three-particle energies

Neglects e^{-mL}

Requires sub-threshold continuation of \mathbf{K}_2

Scheme-dependent $\mathbf{K}_{df,3}$ related to physical amplitude via known on-shell integral equations

MTH, Sharpe (2014-2016) See also Döring, Mai, Hammer, Pang, Rusetsky

Fitting the energies

$$\det\left[\mathbf{K}_{\mathsf{df},3}^{-1}(E_{\mathsf{cm}}) + \mathbf{F}_{3}(E, \boldsymbol{P}, L)\right]$$

☐ Build the quantization condition function

flavor-channel space
$$N_{\rm f}$$
, e.g. $(\pi\pi\pi)_{I=0}$ or $\pi K, \pi\pi K$... \rightarrow spectator-channel space $N_{\rm s} \geq N_{\rm f}$, e.g. $((\pi\pi)_{I=1}\pi)_1$ or $(\pi\pi)K, (\pi K)\pi$ ℓ truncations and $(2 \rightarrow 2)_{\ell}$ + parametrizations (a, r, \cdots) $N_{\rm f}$ lists finite-volume set-up (geometry, total $P \rightarrow$ symmetry group, irreps) three-body interaction scheme (definition of $K_{{\rm df},3}$) + parametrization (α, β, \cdots)

Fitting the energies

$$\det\left[\mathbf{K}_{\mathsf{df},3}^{-1}(E_{\mathsf{cm}}) + \mathbf{F}_{3}(E,\boldsymbol{P},L)\right]$$

Build the quantization condition function

flavor-channel space
$$N_{\rm f}$$
 , e.g. $(\pi\pi\pi)_{I=0}$ or $\pi K,\pi\pi K\dots$

$$\rightarrow$$
 spectator-channel space $N_s \ge N_f$, e.g. $((\pi\pi)_{I=1}\pi)_1$ or $(\pi\pi)K, (\pi K)\pi$

finite-volume set-up (geometry, total $P \rightarrow$ symmetry group, irreps)

three-body interaction scheme (definition of $K_{\rm df,3}$) + parametrization (α,β,\cdots)

Reduces to known function of $E, L, (a, r, \cdots)_{2 \to 2}, (\alpha, \beta, \cdots)_{3 \to 3}$

Fitting the energies

$$\det\left[\mathbf{K}_{\mathsf{df},3}^{-1}(E_{\mathsf{cm}}) + \mathbf{F}_{3}(E, \boldsymbol{P}, L)\right]$$

☐ Build the quantization condition function

flavor-channel space
$$N_{\rm f}$$
 , e.g. $(\pi\pi\pi)_{I=0}$ or $\pi K,\pi\pi K$...

$$\rightarrow$$
 spectator-channel space $N_{\rm s} \geq N_{\rm f}$, e.g. $((\pi\pi)_{I=1}\pi)_1$ or $(\pi\pi)K, (\pi K)\pi$

finite-volume set-up (geometry, total $P \rightarrow$ symmetry group, irreps)

three-body interaction scheme (definition of $K_{df,3}$) + parametrization (α, β, \cdots)

Reduces to known function of $E, L, (a, r, \cdots)_{2\to 2}, (\alpha, \beta, \cdots)_{3\to 3}$

- \square Root-find to predict energies: $E_n(\mathbf{n}_P, L \mid a, r, \dots \mid \alpha, \beta, \dots)$
- \square Minimize χ^2 with lattice-determined energies \rightarrow determination of parameters

Three pions with isospin

Four possible iso-spin channels for three pions

$$1\otimes 1\otimes 1=(0\oplus 1\oplus 2)\otimes 1=$$

$$1\oplus (0\oplus 1\oplus 2)\oplus (1\oplus 2\oplus 3)$$

$$I_{\pi\pi}=0 \qquad I_{\pi\pi}=1 \qquad I_{\pi\pi}=2$$

☐ Four quantization conditions

$$I_{\pi\pi\pi} = 0 \qquad I_{\pi\pi\pi} = 1$$

$$(\sigma) \quad (\rho) \quad (\pi\pi)_{2}$$

$$(\Box) \quad (\rho) \qquad (\Box) \quad (\sigma)$$

$$(\Box) \quad (\rho) \quad (\rho)$$

$$(\Box) \quad (\Box) \quad (\rho)$$

$$(\Box) \quad (\pi\pi)_{2}$$

$$I_{\pi\pi\pi} = 2 \qquad I_{\pi\pi\pi} = 3$$

$$\begin{pmatrix} \rho \rangle & (\pi\pi)_2 \\ \begin{pmatrix} \Box & \Box \\ \Box & \Box \end{pmatrix} & (\rho) \\ \begin{pmatrix} \Box & \Box \\ \Box & \Box \end{pmatrix} & (\pi\pi)_2 \end{pmatrix}$$

$$\begin{pmatrix} \Box & \Box \\ \Box & \Box \end{pmatrix} & (\pi\pi)_2$$

MTH, Romero-López, Sharpe, JHEP (2020)

see also J. Baeza-Ballesteros' talk (previous session)

(spectator flavor space)
$$\otimes$$
 (spectator $k \in \frac{2\pi}{L} \mathbb{Z}^3$ space) \otimes (two-particle ℓm)

- ☐ Flavor content → size of the first space
- e.g. 2 spectator channels for $I_{\pi\pi\pi}=2$ pions

$$(\rho) \quad (\pi\pi)_2$$

$$(\Box \quad \Box) \quad (\rho)$$

$$(\Box \quad \Box) \quad (\pi\pi)_2$$

(spectator flavor space)
$$\otimes$$
 (spectator $k \in \frac{2\pi}{L} \mathbb{Z}^3$ space) \otimes (two-particle ℓm)

- \square Flavor content \rightarrow size of the first space e.g. 2 spectator channels for $I_{\pi\pi\pi}=2$ pions
- Three-particle energy (E), momentum (P) and volume (L) + scheme \rightarrow size of the second space

$$(\rho) \quad (\pi\pi)_2$$

$$(\Box \quad \Box) \quad (\rho)$$

$$(\pi\pi)_2$$

(spectator flavor space)
$$\otimes$$
 (spectator $k \in \frac{2\pi}{L} \mathbb{Z}^3$ space) \otimes (two-particle ℓm)

- ☐ Flavor content → size of the first space
- e.g. 2 spectator channels for $I_{\pi\pi\pi}=2$ pions

 $\begin{pmatrix} \rho \rangle & (\pi\pi)_2 \\ \begin{pmatrix} \Box & \Box \\ \Box & \Box \end{pmatrix} & (\rho) \\ \begin{pmatrix} \Box & \Box \\ \end{bmatrix} & (\pi\pi)_2 \end{pmatrix}$

Three-particle energy (E), momentum (P) and volume (L) + scheme \rightarrow size of the second space

$$\left(E-\sqrt{m^2+{\pmb k}^2}\right)^2-({\pmb P}-{\pmb k})^2\geq 0$$
 or more precisely...

$$\left(E - \sqrt{m^2 + (2\pi/L)^2 n_k^2}\right)^2 - (2\pi/L)^2 (n_P - n_k)^2 \ge 0$$

e.g. 27 spectator momenta for
$$E = 5m_{\pi}, \ m_{\pi}L = 5, \ n_P^2 = 0$$
 sorted into shells $[000]_1 + [001]_6 + [011]_{12} + [111]_8$ for which n_P is crucial

(spectator flavor space)
$$\otimes$$
 (spectator $k \in \frac{2\pi}{L} \mathbb{Z}^3$ space) \otimes (two-particle ℓm)

- \square Flavor content \rightarrow size of the first space
- e.g. 2 spectator channels for $I_{\pi\pi\pi}=2$ pions

 $\begin{pmatrix} \Box & \Box \\ \Box & \Box \end{pmatrix} (\rho) \\ (\pi\pi)_2$

Three-particle energy (E), momentum (P) and volume (L) + scheme \rightarrow size of the second space

$$\left(E - \sqrt{m^2 + \boldsymbol{k}^2}\right)^2 - (\boldsymbol{P} - \boldsymbol{k})^2 \ge 0$$

or more precisely...

$$\left(E - \sqrt{m^2 + (2\pi/L)^2 \boldsymbol{n}_k^2}\right)^2 - (2\pi/L)^2 (\boldsymbol{n}_P - \boldsymbol{n}_k)^2 \ge 0$$

e.g. 27 spectator momenta for $E=5m_\pi, \quad m_\pi L=5, \quad n_P^2=0$ sorted into shells $[000]_1+[001]_6+[011]_{12}+[111]_8$ for which n_P is crucial

Angular-momentum truncation \rightarrow size of the third ... minimal choice here is $(\pi\pi)_2$ S-wave and (ρ) P-wave

(spectator flavor space)
$$\otimes$$
 (spectator $k \in \frac{2\pi}{L} \mathbb{Z}^3$ space) \otimes (two-particle ℓm)

- \square Flavor content \rightarrow size of the first space
- e.g. 2 spectator channels for $I_{\pi\pi\pi}=2$ pions

 $\begin{pmatrix} \rho \rangle & (\pi\pi)_2 \\ \begin{pmatrix} \Box & \Box \\ \end{pmatrix} & (\rho) \\ \begin{pmatrix} \Box & \Box \\ \end{pmatrix} & (\pi\pi)_2$

Three-particle energy (E), momentum (P) and volume (L) + scheme \rightarrow size of the second space

$$\left(E-\sqrt{m^2+{\pmb k}^2}\right)^2-({\pmb P}-{\pmb k})^2\geq 0$$
 or more precisely...

$$\left(E - \sqrt{m^2 + (2\pi/L)^2 n_k^2}\right)^2 - (2\pi/L)^2 (n_P - n_k)^2 \ge 0$$

e.g. 27 spectator momenta for $E=5m_\pi, \ m_\pi L=5, \ n_P^2=0$ sorted into shells $[000]_1+[001]_6+[011]_{12}+[111]_8$ for which n_P is crucial

Angular-momentum truncation \rightarrow size of the third ... minimal choice here is $(\pi\pi)_2$ S-wave and (ρ) P-wave

108 x 108 matrices

and often larger for slightly different details

So, not huge matrices, but a given fit requires many evaluations

See also Sharpe (last session) + related publications

Finite-volume group theory

 \square Focusing on a cubic box \rightarrow total momentum determines symmetry group

$oldsymbol{n}_P$	group	dim	$n_{1 ext{d}}$ irreps	n_{2d} irreps	n3d irreps	irrep names(dim)
[000]	O_h	48	4	2	4	$A_1^+(1), A_2^+(1), E^+(2), T_1^+(3), T_2^+(3), (+ \to -)$
[001]	C_4	8	4	1		$A_1(1), A_2(1), B_1(1), B_2(1), E_2(2)$
[011]	C_2	$\mid 4 \mid$	4			$A_1(1), A_2(1), B_1(1), B_2(1)$
[111]	C_3	$\mid 6 \mid$	2	1		$A_1(1), A_2(1), E_2(2)$

Finite-volume group theory

 \square Focusing on a cubic box \rightarrow total momentum determines symmetry group

$oldsymbol{n}_P$	group	$\mid \dim \mid$	$n_{1 ext{d irreps}}$	n2d irreps	n3d irreps	irrep names(dim)
[000]	O_h	48	4	2	4	$A_1^+(1), A_2^+(1), E^+(2), T_1^+(3), T_2^+(3), (+ \to -)$
[001]	C_4	8	4	1		$A_1(1), A_2(1), B_1(1), B_2(1), E_2(2)$
[011]	C_2	$\mid 4 \mid$	4			$A_1(1), A_2(1), B_1(1), B_2(1)$
[111]	C_3	$\mid 6 \mid$	2	1		$A_1(1), A_2(1), E_2(2)$

 \Box For any object one can identify a linear combination of rotations that transforms as given irrep, row (Γ, μ)

Finite-volume group theory

 \square Focusing on a cubic box \rightarrow total momentum determines symmetry group

$oldsymbol{n}_P$	group	$\mid \dim \mid$	$n_{1 ext{d irreps}}$	n2d irreps	n3d irreps	irrep names(dim)
[000]	O_h	48	4	2	4	$A_1^+(1), A_2^+(1), E^+(2), T_1^+(3), T_2^+(3), (+ \to -)$
[001]	C_4	8	4	1		$A_1(1), A_2(1), B_1(1), B_2(1), E_2(2)$
[011]	C_2	$\mid 4 \mid$	4			$A_1(1), A_2(1), B_1(1), B_2(1)$
[111]	C_3	$\mid 6 \mid$	2	1		$A_1(1), A_2(1), E_2(2)$

 \Box For any object one can identify a linear combination of rotations that transforms as given irrep, row (Γ, μ)

Coefficients are known for all irrreps

Credit C. Thomas and A. Rago for my understanding of this

Subducing the index space

 \square Returning to the $I_{\pi\pi\pi}=2$ space

(spectator flavor space) \otimes (spectator $k \in \frac{2\pi}{L}\mathbb{Z}^3$ space) \otimes (two-particle ℓm)

108 x 108 matrices

Subducing the index space

 \square Returning to the $I_{\pi\pi\pi}=2$ space

(spectator flavor space) \otimes (spectator $k \in \frac{2\pi}{L} \mathbb{Z}^3$ space) \otimes (two-particle ℓm)

Extract the induced representation of rotations & sum over irrep coefficients

108 x 108 matrices

"am-pie-ell" **Am**plitudes via **Py**thon from finite volume (**L**)

```
kellm space has size 108
```

A1PLUS covers 7x1 = 7 slots
A2PLUS covers 1x1 = 1 slots
EPLUS covers 6x2 = 12 slots
T1PLUS covers 4x3 = 12 slots
T2PLUS covers 7x3 = 21 slots
A2MINUS covers 3x1 = 3 slots
EMINUS covers 2x2 = 4 slots
T1MINUS covers 11x3 = 33 slots
T2MINUS covers 5x3 = 15 slots

Total is 108
Total matches size of kellm space

The numerical quantization condition

 \square Returning to the $I_{\pi\pi\pi}=2~(\rho\pi)$ space

$$\det\left[\mathbf{K}_{\mathsf{df},3}^{-1}(E_{\mathsf{cm}}) + \mathbf{F}_{3}(E, \boldsymbol{P}, L)\right]$$

Here for $\mathbf{K}_{df,3} = 0$ and single parameters in \mathbf{K}_2 (weakly repulsive)

108x108 matrices for the high-energy side of the plots (does dot imply 108 solutions!)

zero-crossings give solutions

Decay formalism

Generalisation of the Lellouch-Lüscher formalism is available for three-pion states

Decay formalism

Generalisation of the Lellouch-Lüscher formalism is available for three-pion states

$$\langle E_n, L | \mathcal{J} | 0 \rangle \longleftrightarrow \sim \sim \mathbb{Z}_{n}^{\text{pv}}$$

$$\lim_{E \to E_n(L)} (E - E_n(L)) \left[\frac{1}{\mathbf{K}_{\text{df},3}(E) + \mathbf{F}_3^{-1}(E, L)} \right]_{\Gamma,\mu} = \mathcal{E}_n^{\text{pv}} \mathcal{E}_n^{\text{pv}}^{\text{T}}$$

$$\mathcal{E}_n^{\mathrm{pv}} \cdot \langle 3\pi, \mathrm{pv} | \mathcal{J} | 0 \rangle = \langle n, L | \mathcal{J} | 0 \rangle$$

Decay formalism

Generalisation of the Lellouch-Lüscher formalism is available for three-pion states

$$\langle E_n, L | \mathcal{J} | 0 \rangle \qquad \longleftrightarrow \qquad \bigvee_{\mathbf{A}^{\text{PV}}} \qquad \longleftrightarrow \qquad \bigvee_{\mathbf{T}_3} \bigvee_{\mathbf{T}_3} \bigvee_{\mathbf{K}_{\text{df},3}(E) + \mathbf{F}_3^{-1}(E, L)} \Big]_{\Gamma,\mu} = \mathcal{E}_n^{\text{pv}} \mathcal{E}_n^{\text{pv}^{\text{T}}}$$

$$\mathcal{E}_n^{\mathrm{pv}} \cdot \langle 3\pi, \mathrm{pv} | \mathcal{J} | 0 \rangle = \langle n, L | \mathcal{J} | 0 \rangle$$

MTH, Romero-López, Sharpe (2021)

See also previous session + F. Joswig (Thursday)

Summary and outlook

- \square RFT formalism already describes many interesting systems: $(\pi\pi\pi)_{I_{\pi\pi\pi}}$, $(\pi\pi K)$, $(\pi K K)$
- Formalism for general three-particle states is "around the corner"

$$\langle E_n, L|\mathcal{J}|N\rangle$$
 \longleftrightarrow $\bigwedge_{A^{\text{PV}}}$ \longleftrightarrow $\bigwedge_{A^{\text{PV}}}$

- Analysis is getting expensive!
- Strategies to speed things up:

prepare quantization condition space as much as possible!

group theory → prepare projectors (various tricks when projection is planned)

"am-pie-ell" Python package to appear on Github for easy implementation and comparison

supported by a Future Leaders Fellowship

Thanks for listening!