## Antiheavy-Antiheavy-Light-Light Four-Quark Bound States

## Martin Pflaumer

pflaumer@itp.uni-frankfurt.de

Goethe-Universität Frankfurt am Main in collaboration with Constantia Alexandrou, Jacob Finkenrath, Theodoros Leontiou, Stefan Meinel, Marc Wagner

# The 39th International Symposium on Lattice Field Theory August 09, 2022 

Helmholtz International Center


Deutsche
Forschungsgemeinschaft

## Motivation (1)

## Why study heavy-light tetraquarks?

- Large number of four-quark states has been found in the last years
- Start of this year: LHCb found a bound tetraquark $T_{c c}^{+}(c c \bar{u} \bar{b})$
R. Aaij et al. [LHCb], Nature Commun. 13, 3351 (2022)
- Lattice study predict virtual bound state for $c c \bar{u} \bar{b}$
M. Padmanath and S. Prelovsek, Phys. Rev. Lett. 129, 032002 (2022)


## Motivation (1)

## Why study heavy-light tetraquarks?

- Large number of four-quark states has been found in the last years
- Start of this year: LHCb found a bound tetraquark $T_{c c}^{+}(c c \bar{u} \bar{b})$
R. Aaij et al. [LHCb], Nature Commun. 13, 3351 (2022)
- Lattice study predict virtual bound state for $c c \bar{u} \bar{b}$
M. Padmanath and S. Prelovsek, Phys. Rev. Lett. 129, 032002 (2022)
- We study similar $\bar{Q} \bar{Q}^{\prime} q q^{\prime}$ systems in the bottom sector $(\bar{Q}=\bar{b})$
- For $\bar{b} \bar{b} u d$ bound state has been predicted:
- Born-Oppenheimer approximation at $E_{\text {bind }} \approx-90 \mathrm{MeV}$
Z. S. Brown and K. Orginos, Phys. Rev. D 86, 114506 (2012)
P. Bicudo et al. [ETMC], Phys. Rev. D 87, 114511 (2013)
P. Bicudo et al., Phys. Rev. D 92, 014507 (2015)
P. Bicudo et al., Phys. Rev. D 95, 034502 (2017)
P. Bicudo et al., Phys. Rev. D 96, 054510 (2017)
- Full Lattice $Q C D$ using Non-Relativistic $Q C D$ at $E_{\text {bind }} \approx-130 \mathrm{MeV}$
A. Francis, R. J. Hudspith, R. Lewis and K. Maltman, Phys. Rev. Lett. 118, 142001 (2017)
P. Junnarkar, N. Mathur and M. Padmanath, Phys. Rev. D 99, 034507 (2019)
L. Leskovec, S. Meinel, M.P. and M. Wagner, Phys. Rev. D 100, 014503 (2019)


## Motivation (2)

## Further Lattice calculations for tetraquarks in the bottom sector:

- For $\bar{b} \bar{b} u s$ bound state has been predicted at $E_{\text {bind }} \approx-80 \mathrm{MeV}$
- For $\bar{b} \bar{c} u d$ inconsistent results if bound state exists
A. Francis, R. J. Hudspith, R. Lewis and K. Maltman, Phys. Rev. Lett. 118, 142001 (2017)
P. Junnarkar, N. Mathur and M. Padmanath, Phys. Rev. D 99, 034507 (2019)
A. Francis, R. J. Hudspith, R. Lewis and K. Maltman, Phys. Rev. D 99, 054505 (2019)
R. J. Hudspith, B. Colquhoun, A. Francis, R. Lewis and K. Maltman, Phys. Rev. D 102, 114506 (2020)


## In this talk...

... I will present our studies with an improved operator basis using

- Scattering operators at the sink for
- $\bar{b} \bar{b} u s$ with $J^{P}=1^{+}$
- $\bar{b} \bar{c} u d$ with $I\left(J^{P}\right)=0\left(0^{+}\right)$and $0\left(1^{+}\right)$
$\Rightarrow$ Results published in S. Meinel, M. P., M. Wagner, 2205.13982 [hep-lat]
- Scattering operators at the sink and the source for
- $\bar{b} \bar{b} u d I\left(J^{P}\right)=0\left(1^{+}\right)$with preliminary results


## Scattering Operators at the Sink

## Lattice Setup for $\bar{b} \bar{b} u s$ and $\bar{b} \bar{c} u d$

- Gauge link configuration generated by RBC and UKQCD collaboration
Y. Aoki et al. [RBC and UKQCD Collaborations], Phys. Rev. D 83, 074508 (2011)
T. Blum et al. [RBC and UKQCD Collaborations], Phys. Rev. D 93, 074505 (2016)
- $2+1$ flavours domain-wall fermions and Iwasaki gauge action
- Five different ensembles which differ in
lattice spacing $a \approx 0.083 \mathrm{fm} \ldots 0.114 \mathrm{fm}$,
lattice size $\quad L \approx 2.65 \mathrm{fm} \ldots 5.48 \mathrm{fm}$,
pion mass $\quad m_{\pi} \quad \approx 139 \mathrm{MeV} \ldots 431 \mathrm{MeV}$
- Explore dependence on $m_{\pi}$ for bound states
- Smeared point-to-all propagators for light quarks
- Anisotropic clover action for charm quarks
A. X. El-Khadra, A. S. Kronfeld, and P. B. Mackenzie, Phys. Rev. D 55, 3933 (1997)
P. Chen, Phys. Rev. D 64034509 (2001)

RBC and UKQCD Collaboration, Y. Aoki et al., Phys. Rev. D 86, 116003 (2012)

- NRQCD action for bottom quarks
B. Thacker and G. Lepage, Phys. Rev. D 43, 196 (1991)
G. P. Lepage, L. Magnea, C. Nakhleh, U. Magnea, K. Hornbostel, Phys. Rev. D 46, 4052 (1992)

Four-Quark Bound States
August 2022

## Interpolating Operators for $\bar{b} \bar{b} u s$ and $\bar{b} \bar{c} u d$

- Up to now, only local operators have been used in studies $\Rightarrow$ All quarks at the same space-time position
- We use additionally scattering operators $\Rightarrow$ Two mesons separated in space-time position
- Due to the usage of point-to-all propagators, no scattering operators at the source


## Interpolating Operators for $\bar{b} \bar{b} u s$ and $\bar{b} \bar{c} u d$

- Up to now, only local operators have been used in studies $\Rightarrow$ All quarks at the same space-time position
- We use additionally scattering operators $\Rightarrow$ Two mesons separated in space-time position
- Due to the usage of point-to-all propagators, no scattering operators at the source
- Local operators: good overlap to bound four-quark states
- Scattering operators: good overlap to higher excitations at or above threshold (2 meson states)


## Interpolating Operators for $\bar{b} \bar{b} u s$ and $\bar{b} \bar{c} u d$

- Up to now, only local operators have been used in studies $\Rightarrow$ All quarks at the same space-time position
- We use additionally scattering operators $\Rightarrow$ Two mesons separated in space-time position
- Due to the usage of point-to-all propagators, no scattering operators at the source
- Local operators: good overlap to bound four-quark states
- Scattering operators: good overlap to higher excitations at or above threshold (2 meson states)
$\Rightarrow$ We found for all systems that including scattering operators decreases the lowest energy level significantly!


## Results for $\bar{b} \bar{b} u s, J^{P}=1^{+}$

## Local Operators

Ground state energy


$$
\Delta E_{0}=(-86 \pm 22 \pm 10) \mathrm{MeV}
$$

$\Rightarrow$ Bound State!


Scattering Operators




Normalized overlap factors $\tilde{Z}_{j}^{n}$

## Results $\bar{b} \bar{c} u d, I\left(J^{P}\right)=0\left(0^{+}\right)$

Local Operators
Ground state energy

$\Rightarrow$ No indication that stable tetraquark exists!


Scattering Operators


Normalized overlap factors $\tilde{Z}_{j}^{n}$

## Results $\bar{b} \bar{c} u d, I\left(J^{P}\right)=0\left(1^{+}\right)$

Ground state energy



Normalized overlap factors $\tilde{Z}_{j}^{n}$

## Scattering Operators at the Sink and Source

## New Operator Basis

- Up to now: Scattering operators only at the sink
- Now: Computing scattering operators also at the source
- Realized via stochastic timeslice-to-all propagators


## New Operator Basis

- Up to now: Scattering operators only at the sink
- Now: Computing scattering operators also at the source
- Realized via stochastic timeslice-to-all propagators


## Why is this necessary?

- Most tetraquarks are close to the relevant threshold or even resonances
$\Rightarrow$ Finite volume effects might be significant
$\Rightarrow$ Scattering analysis must be done
$\Rightarrow$ Requires full information from scattering operators
- We study finite volume effects in $\bar{b} \bar{b} u d$ with $I\left(J^{P}\right)=0\left(1^{+}\right)$


## See also poster by Marc Wagner in Poster Session!

## Lattice Setup

- Gauge link configurations from the MILC collaboration A. Bazavov et al. [MILC], Phys. Rev. D 87, 054505 (2013)
- Highly improved staggered quark (HISQ) action for sea quarks
- Wilson-Clover action for the valence quarks
T. Bhattacharya et al. [PNDME], Phys. Rev. D 92, 094511 (2015)
R. Gupta et al. [PNDME], Phys. Rev. D 98, 034503 (2018)
- Six ensembles with
lattice size $\quad L \approx 2.84 \mathrm{fm} \ldots 4.76 \mathrm{fm}$,
pion mass $\quad m_{\pi} \approx 220 \mathrm{MeV}, 310 \mathrm{MeV}$,
lattice spacing $a \approx 0.09 \mathrm{fm}, 0.12 \mathrm{fm}$
- We will perform ...
- Scattering analysis to obtain the infinite volume energy
- Chiral extrapolation to the physical pion mass


## Results $\bar{b} \bar{b} u d, I\left(J^{P}\right)=0\left(1^{+}\right)(1)$

- Determine the finite volume energy via a GEP
- Perform a scattering analysis
- Compute $\cot (\delta)$ via Lüscher's formula
- Use an effective range expansion (ERE) to parametrize $\cot (\delta)$
- Determine infinite volume energy from T-Matrix

$\Rightarrow$
Ground state energy essentially unaffected
M. Lüscher, Nucl. Phys. B354, 531 (1991)
R. A. Briceño, J. J. Dudek, and R. D. Young, Rev.

Mod. Phys. 90, 025001 (2018)

$$
a \approx 0.12 \mathrm{fm}, m_{\pi} \approx 220 \mathrm{MeV}
$$


\$ Finite volume energy levels Energy levels from ERE

- Infinite volume groundstate


## Results $\bar{b} \bar{b} u d, I\left(J^{P}\right)=0\left(1^{+}\right)(2)$



- We recognize $m_{\pi}$ dependence of ground state energy
- Perform a chiral extrapolation to the physical point
- Final binding energy for $\bar{b} \bar{b} u d$ in $I\left(J^{P}\right)=0\left(1^{+}\right)$channel:

$$
E_{\text {binding }}=(-103 \pm 8) \mathrm{MeV}
$$

$\Rightarrow$ For more details visit the poster by Marc Wagner!

## Summary

- Study bound states in doubly heavy tetraquarks
- Consider local and additionally scattering interpolating operators at the sink
- Predict a bound state in the $\bar{b} \bar{b} u s, I\left(J^{P}\right)=\frac{1}{2}\left(1^{+}\right)$channel with $E_{\text {binding }}=(-86 \pm 22 \pm 10) \mathrm{MeV}$
- No evidence for bound tetraquark in $\bar{b} \bar{c} u d$, both $0\left(1^{+}\right)$and $0\left(0^{+}\right)$


## Summary

- Study bound states in doubly heavy tetraquarks
- Consider local and additionally scattering interpolating operators at the sink
- Predict a bound state in the $\bar{b} \bar{b} u s, I\left(J^{P}\right)=\frac{1}{2}\left(1^{+}\right)$channel with $E_{\text {binding }}=(-86 \pm 22 \pm 10) \mathrm{MeV}$
- No evidence for bound tetraquark in $\bar{b} \bar{c} u d$, both $0\left(1^{+}\right)$and $0\left(0^{+}\right)$
- Consider local and additionally scattering interpolating operators at the sink and at the source
- Study finite volume effects for $\bar{b} \bar{b} u d$ more rigorously
- Found bound state at $E_{\text {binding }}=(-103 \pm 8) \mathrm{MeV}$


## Summary

- Study bound states in doubly heavy tetraquarks
- Consider local and additionally scattering interpolating operators at the sink
- Predict a bound state in the $\bar{b} \bar{b} u s, I\left(J^{P}\right)=\frac{1}{2}\left(1^{+}\right)$channel with $E_{\text {binding }}=(-86 \pm 22 \pm 10) \mathrm{MeV}$
- No evidence for bound tetraquark in $\bar{b} \bar{c} u d$, both $0\left(1^{+}\right)$and $0\left(0^{+}\right)$
- Consider local and additionally scattering interpolating operators at the sink and at the source
- Study finite volume effects for $\bar{b} \bar{b} u d$ more rigorously
- Found bound state at $E_{\text {binding }}=(-103 \pm 8) \mathrm{MeV}$


## Outlook

- Study also finite volume effects for $\bar{b} \bar{b} u s$ and $\bar{b} \bar{c} u d$


## Eigenvector Components for $\bar{b} \bar{b} u s$




Normalized eigenvector components for the $4 \times 4$ matrix using only local operators. left: Ground state. right: First excited state.

- Determine the eigenvectors for $4 \times 4$ correlation matrix with local operators $\mathcal{O}_{k}$
- New optimized operators $\mathcal{O}_{j}^{\prime}$ are given by

$$
\mathcal{O}_{j}^{\prime}=\sum_{k=1}^{4} \bar{v}_{k}^{j-1} \mathcal{O}_{k}
$$

## Fit results for $\bar{b} \bar{b} u s$ with $J^{P}=1^{+}$






## Fit results for $\bar{b} \bar{c} u d$ with $I\left(J^{P}\right)=0\left(0^{+}\right)$



## Fit results for $\bar{b} \bar{c} u d$ with $I\left(J^{P}\right)=0\left(1^{+}\right)$



## Comparison of $\bar{b} \bar{b} u s$ results



Comparison of $\bar{b} \bar{b} u s$ tetraquark binding energies with $J^{P}=1^{+}$(black: this work; blue: lattice NRQCD; green: effective field theories and potential models).

## Scattering Analysis

- Relate finite volume energy spectrum $E_{n}$ to infinite volume scattering amplitude for 2 energy levels per ensemble in $T_{1}^{+}$irrep
- Use Lüscher's formula and scattering momenta $k_{n}^{2}$ to determine phase shift $\left(\right.$ or $\left.\cot \delta_{0}\left(k_{n}\right)\right)$
- Apply effective-range-expansion (ERE)

$$
k \cot \delta_{0}(k)=\frac{1}{a_{0}}+\frac{1}{2} r_{0} k^{2}+\mathcal{O}\left(k^{4}\right)
$$

- and determine $a_{0}$ and $r_{0}$ by fitting the result for the $k_{n}$ 's
- Search bound state pole of scattering amplitude below threshold at

$$
\cot \delta_{0}\left(k_{\mathrm{BS}}\right)=i, \quad \text { so: } \quad-\left|k_{\mathrm{BS}}\right|=\frac{1}{a_{0}}-\frac{1}{2} r_{0}\left|k_{\mathrm{BS}}\right|^{2}
$$

- Compute binding energy $E_{\text {bind }}$ from binding momenta $k_{\mathrm{BS}}$

