Two- and three-particle scattering in the $(1+1)$-dimensional $O(3)$ non-linear sigma model

Jorge Baeza-Ballesteros

In collaboration with M. T. Hansen

IFIC, University of Valencia-CSIC
Lattice22-8th August 2022

$$
\begin{aligned}
& \text { VNIVERSITAT } \\
& \text { IEOQVALENCIA }
\end{aligned}
$$

Finite-volume quantization conditions

Finite-volume spectrum:

$$
\uparrow \begin{array}{ll}
- & E_{2}(L) \\
- & E_{1}(L) \\
- & E_{0}(L)
\end{array}
$$

Infinite-volume scattering:

Finite-volume quantization conditions

Finite-volume spectrum:

$$
\uparrow \begin{array}{ll}
- & E_{2}(L) \\
- & E_{1}(L) \\
- & E_{0}(L)
\end{array}
$$

Infinite-volume scattering:

Two-particle QC: Lüscher's formalism [1986]

$$
\operatorname{det}\left[\mathcal{K}_{2}^{-1}+F(P, L)\right]=0
$$

Finite-volume quantization conditions

Finite-volume spectrum:

$$
\uparrow \begin{array}{ll}
- & E_{2}(L) \\
- & E_{1}(L) \\
- & E_{0}(L)
\end{array}
$$

Infinite-volume scattering:

Two-particle QC: Lüscher's formalism [1986]

$$
\left.\rho(s) \cot \delta(s) \stackrel{\operatorname{det}\left[\mathcal{K}_{2}^{-1}\right.}{\longleftrightarrow}+F(P, L)\right]=0
$$

Finite-volume quantization conditions

Finite-volume spectrum:

$$
\uparrow \begin{array}{ll}
- & E_{2}(L) \\
- & E_{1}(L) \\
- & E_{0}(L)
\end{array}
$$

Infinite-volume scattering:

Two-particle QC: Lüscher's formalism [1986]

$$
\rho(s) \cot \delta(s) \longleftrightarrow \overbrace{}^{\operatorname{det}\left[\mathcal{K}_{2}^{-1}\right.}+F(P, L)]=0 \quad \sim \sim \frac{1}{L^{n}}
$$

Finite-volume quantization conditions

Finite-volume spectrum:

$$
\uparrow=E_{2}(L)
$$

Infinite-volume scattering:

Two-particle QC: Lüscher's formalism [1986]

$$
\left.\rho(s) \cot \delta(s) \longleftrightarrow{ }^{\operatorname{det}\left[\mathcal{K}_{2}^{-1}\right.}+F(P, L)\right]=0 \quad \overbrace{}^{\int-\sum} \sim \frac{1}{L^{n}}
$$

Three-particle QC: various approaches

- Relativistic field theory (RFT) [Hansen, Sharpe $(2014,2015)]$
- Non-relativistic effective field theory (NREFT) [Hammer, et al. (2017)]
- Finite-volume unitarity (FVU) [Döring, Mai $(2016,2017)$]

Finite-volume quantization conditions

Finite-volume spectrum:

$$
\uparrow=E_{2}(L)
$$

Infinite-volume scattering:

Two-particle QC: Lüscher's formalism [1986]

$$
\left.\rho(s) \cot \delta(s) \longleftrightarrow{ }^{\operatorname{det}\left[\mathcal{K}_{2}^{-1}\right.}+F(P, L)\right]=0 \quad \overbrace{}^{\int-\sum} \sim \frac{1}{L^{n}}
$$

Three-particle QC: various approaches

- Relativistic field theory (RFT) [Hansen, Sharpe $(2014,2015)] \rightarrow$ This talk
- Non-relativistic effective field theory (NREFT) [Hammer, et al. (2017)]
- Finite-volume unitarity (FVU) [Döring, Mai $(2016,2017)$]

Recap of the RFT formalism

Two-step approach:

Recap of the RFT formalism

Two-step approach:

1. Constrain two- and three-body \mathcal{K} matrices

$$
\begin{gathered}
\operatorname{det}\left[\mathcal{K}_{\mathrm{df}, 3}^{-1}+F_{3}\left(\mathcal{M}_{2} ; P, L\right)\right]=0 \\
\underbrace{\text { Unphysical, }}_{\text {scheme dependent }}
\end{gathered}
$$

Recap of the RFT formalism

Two-step approach:

1. Constrain two- and three-body \mathcal{K} matrices

$$
\begin{aligned}
\operatorname{det}\left[\mathcal{K}_{\mathrm{df}, 3}^{-1}+F_{3}\left(\mathcal{M}_{2} ; P, L\right)\right]=0 \\
\underbrace{\text { Unphysical, }}_{\text {Scheme dependent }}
\end{aligned}
$$

$$
F_{3}=\frac{1}{3} F+F \frac{1}{\tilde{\mathcal{K}}_{2}^{-1}-(F+G)} F
$$

Recap of the RFT formalism

Two-step approach:

1. Constrain two- and three-body \mathcal{K} matrices

\[

\]

$$
F_{3}=\frac{1}{3} F+F \frac{1}{\tilde{\mathcal{K}}_{2}^{-1}-(F+G)} F
$$

Recap of the RFT formalism

Two-step approach:

1. Constrain two- and three-body \mathcal{K} matrices

\[

\]

2. Solve integral equation to extract \mathcal{M}_{3}

$$
F_{3}=\frac{1}{3} F+F \frac{1}{\tilde{\mathcal{K}}_{2}^{-1}-(F+G)} F
$$

Recap of the RFT formalism

Two-step approach:

1. Constrain two- and three-body \mathcal{K} matrices

$$
\begin{aligned}
\operatorname{det}\left[\mathcal{K}_{\mathrm{df}, 3}^{-1}+F_{3}\left(\mathcal{M}_{2} ; P, L\right)\right]=0 \\
\underbrace{\text { Unphysical, }}_{\text {Scheme dependent }}
\end{aligned}
$$

2. Solve integral equation to extract \mathcal{M}_{3}

$$
F_{3}=\frac{1}{3} F+F \frac{1}{\tilde{\mathcal{K}}_{2}^{-1}-(F+G)} F
$$

Generalizations: $3 \rightarrow 2$ vertices, multiple subchannels, non-identical particles...

Recap of the RFT formalism

Two-step approach:

1. Constrain two- and three-body \mathcal{K} matrices

\[

\]

2. Solve integral equation to extract \mathcal{M}_{3}

$$
F_{3}=\frac{1}{3} F+F \frac{1}{\tilde{\mathcal{K}}_{2}^{-1}-(F+G)} F
$$

Generalizations: $3 \rightarrow 2$ vertices, multiple subchannels, non-identical particles...
Used in: $\pi^{+} \pi^{+} \pi^{+}, K^{+} K^{+} K^{+}, K^{+} \pi^{+} \pi^{+}, K^{+} K^{+} \pi^{+}$

Recap of the RFT formalism

Two-step approach:

1. Constrain two- and three-body \mathcal{K} matrices

\[

\]

2. Solve integral equation to extract \mathcal{M}_{3}

$$
F_{3}=\frac{1}{3} F+F \frac{1}{\tilde{\mathcal{K}}_{2}^{-1}-(F+G)} F
$$

Generalizations: $3 \rightarrow 2$ vertices, multiple subchannels, non-identical particles...

Used in: $\pi^{+} \pi^{+} \pi^{+}, K^{+} K^{+} K^{+}, K^{+} \pi^{+} \pi^{+}, K^{+} K^{+} \pi^{+}$

Goal: Test RFT formalism on a solvable toy model

$\mathrm{O}(3)$ non-linear sigma model in $(1+1)$ dimensions

We study the $\mathrm{O}(3)$ non-linear sigma model (NLSM) in $1+1$ dimensions

$$
\begin{array}{ll}
S[\sigma]=\frac{\beta}{2} \int \mathrm{~d}^{2} x \partial_{\mu} \sigma(x) \cdot \partial_{\mu} \sigma(x) & \sigma=\left(\sigma^{1}, \sigma^{2}, \sigma^{3}\right) \\
& \sigma(x) \cdot \sigma(x)=1
\end{array}
$$

$O(3)$ non-linear sigma model in $(1+1)$ dimensions

We study the $\mathrm{O}(3)$ non-linear sigma model (NLSM) in $1+1$ dimensions

$$
\begin{array}{ll}
S[\sigma]=\frac{\beta}{2} \int \mathrm{~d}^{2} x \partial_{\mu} \sigma(x) \cdot \partial_{\mu} \sigma(x) & \sigma=\left(\sigma^{1}, \sigma^{2}, \sigma^{3}\right) \\
& \sigma(x) \cdot \sigma(x)=1
\end{array}
$$

- Asymptotically free
- Dynamical mass gap m
- Global $\mathrm{O}(3)$ isospin symmetry

$\mathrm{O}(3)$ non-linear sigma model in $(1+1)$ dimensions

We study the $\mathrm{O}(3)$ non-linear sigma model (NLSM) in $1+1$ dimensions

$$
S[\sigma]=\frac{\beta}{2} \int \mathrm{~d}^{2} x \partial_{\mu} \sigma(x) \cdot \partial_{\mu} \sigma(x)
$$

$$
\begin{aligned}
& \sigma=\left(\sigma^{1}, \sigma^{2}, \sigma^{3}\right) \\
& \sigma(x) \cdot \sigma(x)=1
\end{aligned}
$$

- Asymptotically free
- Dynamical mass gap m

- Global O(3) isospin symmetry

$\mathrm{O}(3)$ non-linear sigma model in $(1+1)$ dimensions

We study the $\mathrm{O}(3)$ non-linear sigma model (NLSM) in $1+1$ dimensions

$$
\begin{array}{ll}
S[\sigma]=\frac{\beta}{2} \int \mathrm{~d}^{2} x \partial_{\mu} \sigma(x) \cdot \partial_{\mu} \sigma(x) & \sigma=\left(\sigma^{1}, \sigma^{2}, \sigma^{3}\right) \\
& \sigma(x) \cdot \sigma(x)=1
\end{array}
$$

- Asymptotically free
- Dynamical mass gap m

Low-energy spectrum: isospin-1 multiplet

- Global O(3) isospin symmetry

Integrable at low energies [Zamolodchikov, Zamolodchikov (1977)]:

Two- and three-particle scattering

We focus on two- and three-particle scattering channels that include no vacuum contractions

Two- and three-particle scattering

We focus on two- and three-particle scattering channels that include no vacuum contractions

Two particles: 3 isospin channels

$$
\begin{array}{r}
3 \otimes 3=5 \oplus 3 \oplus 1 \\
\\
I=2 I=1 I=0
\end{array}
$$

Two- and three-particle scattering

We focus on two- and three-particle scattering channels that include no vacuum contractions

Two particles: 3 isospin channels

$$
\begin{array}{r}
3 \otimes 3=5 \oplus 3 \oplus 1 \\
\\
I=2 I=1 I=0
\end{array}
$$

Two- and three-particle scattering

We focus on two- and three-particle scattering channels that include no vacuum contractions

Two particles: 3 isospin channels

Two- and three-particle scattering

We focus on two- and three-particle scattering channels that include no vacuum contractions

Three particles: 7 irreps $\rightarrow 4$ isospin channels

$$
\begin{array}{rc}
3 \otimes 3 \otimes 3 & =7 \oplus(5 \oplus 5) \oplus(3 \oplus 3 \oplus 3) \oplus \\
I=3 & I=2
\end{array} c \begin{gathered}
1 \\
l=1
\end{gathered} \quad l=0
$$

Two- and three-particle scattering

We focus on two- and three-particle scattering channels that include no vacuum contractions

Three particles: 7 irreps $\rightarrow 4$ isospin channels

Two- and three-particle scattering

We focus on two- and three-particle scattering channels that include no vacuum contractions

Three particles: 7 irreps $\rightarrow 4$ isospin channels
$3 \otimes 3 \otimes 3=7$
$\oplus(5$

$\oplus 3$ \qquad 3) $\oplus 1$
$I=3 \quad I=2 \quad I=1 \quad I=0$
$C_{l=3}, C_{l=2}$ D

2×2 matrix for
each momenta combination

Quantization conditions in $1+1$ dimensions

QCs in $1+1$ dimensions \rightarrow no angular momentum

Quantization conditions in $1+1$ dimensions

QCs in $1+1$ dimensions \rightarrow no angular momentum
β, γ : boost factors

- Two-particle QC [Briceño, et al (2020)]:
$\omega_{k}=E_{\mathrm{CM}} / 2$:

$$
\cot \delta(k)=-\frac{1}{2}\left[\cot \left(\frac{L \gamma\left(k+\omega_{k} \beta\right)}{2}\right)+\cot \left(\frac{L \gamma\left(k-\omega_{k} \beta\right)}{2}\right)\right]
$$

Quantization conditions in $1+1$ dimensions

QCs in $1+1$ dimensions \rightarrow no angular momentum β, γ : boost factors

- Two-particle QC [Briceño, et al (2020)]:
$\omega_{k}=E_{\text {CM }} / 2$:

$$
\cot \delta(k)=-\frac{1}{2}\left[\cot \left(\frac{L \gamma\left(k+\omega_{k} \beta\right)}{2}\right)+\cot \left(\frac{L \gamma\left(k-\omega_{k} \beta\right)}{2}\right)\right]
$$

Quantization conditions in $1+1$ dimensions

QCs in $1+1$ dimensions \rightarrow no angular momentum
β, γ : boost factors
$\omega_{k}=E_{\text {CM }} / 2$:

- Two-particle QC [Briceño, et al (2020)]:

$$
\cot \delta(k)=-\frac{1}{2}\left[\cot \left(\frac{L \gamma\left(k+\omega_{k} \beta\right)}{2}\right)+\cot \left(\frac{L \gamma\left(k-\omega_{k} \beta\right)}{2}\right)\right]
$$

Quantization conditions in $1+1$ dimensions

QCs in $1+1$ dimensions \rightarrow no angular momentum

- Two-particle QC [Briceño, et al (2020)]:

$$
\omega_{k}=E_{\mathrm{CM}} / 2
$$

$$
\cot \delta(k)=-\frac{1}{2}\left[\cot \left(\frac{L \gamma\left(k+\omega_{k} \beta\right)}{2}\right)+\cot \left(\frac{L \gamma\left(k-\omega_{k} \beta\right)}{2}\right)\right]
$$

- Three-particle QC: analogous to $(3+1)$ [Work in progress]

Lattice simulations

We use the standard lattice action

$$
S[\sigma]=-\beta \sum_{x} \sum_{\mu} \sigma(x) \cdot \sigma(x+a \hat{\mu})
$$

We generate the configurations and evaluate n-point functions using a cluster algorithm:

* Overcomes critical slowing down
* Improves the signal-to-noise ratio

Single-cluster algorithm

Cluster algorithm:

1. Choose a random unit vector $r \in \mathbb{R}^{3}$ and a random "seed" site
2. Grow the cluster, C, by adding neighbors

$$
p_{\text {add }}=1-\exp \left[\min \left\{-2 \beta \sigma_{r}(x) \sigma_{r}(x+a \hat{\mu}), 0\right\}\right] \quad \sigma_{r}(x)=\sigma(x) \cdot r
$$

3. Update the cluster

$$
\sigma(x) \rightarrow \sigma(x)-2 \sigma_{r}(x) r
$$

4. Measure on the cluster

Single-cluster algorithm

Cluster algorithm:

1. Choose a random unit vector $r \in \mathbb{R}^{3}$ and a random "seed" site
2. Grow the cluster, C, by adding neighbors

$$
p_{\text {add }}=1-\exp \left[\min \left\{-2 \beta \sigma_{r}(x) \sigma_{r}(x+a \hat{\mu}), 0\right\}\right] \quad \sigma_{r}(x)=\sigma(x) \cdot r
$$

3. Update the cluster

$$
\sigma(x) \rightarrow \sigma(x)-2 \sigma_{r}(x) r
$$

4. Measure on the cluster

Example: Two-point function

$$
\sigma_{r}(\tau, p)=\sum_{x \in C} \mathrm{e}^{i p x} \sigma_{r}(\tau, x) \longrightarrow C_{2 \mathrm{pt}}(\tau, p)=3\left\langle\sigma_{r}(\tau, p) \sigma_{r}^{*}(0, p)\right\rangle
$$

Single-cluster algorithm

Cluster algorithm:

1. Choose a random unit vector $r \in \mathbb{R}^{3}$ and a random "seed" site
2. Grow the cluster, C, by adding neighbors

$$
p_{\text {add }}=1-\exp \left[\min \left\{-2 \beta \sigma_{r}(x) \sigma_{r}(x+a \hat{\mu}), 0\right\}\right] \quad \sigma_{r}(x)=\sigma(x) \cdot r
$$

3. Update the cluster

$$
\sigma(x) \rightarrow \sigma(x)-2 \sigma_{r}(x) r
$$

4. Measure on the cluster

Example: Two-point function

$$
\sigma_{r}(\tau, p)=\sum_{x \in C} \mathrm{e}^{i p x} \sigma_{r}(\tau, x) \longrightarrow C_{2 \mathrm{pt}}(\tau, p)=3\left\langle\sigma_{r}(\tau, p) \sigma_{r}^{*}(0, p)\right\rangle
$$

Need to average over many updates!

Three-cluster algorithm

To measure six-point functions we need a three-cluster algorithm:

1. Choose three random orthogonal unit vector $r, u, v \in \mathbb{R}^{3}$ and three random "seed" site
2. Grow each cluster, C_{r}, C_{u} and C_{v}, separately
3. Update each cluster
4. Measure using various clusters

Three-cluster algorithm

To measure six-point functions we need a three-cluster algorithm:

1. Choose three random orthogonal unit vector $r, u, v \in \mathbb{R}^{3}$ and three random "seed" site
2. Grow each cluster, C_{r}, C_{u} and C_{v}, separately
3. Update each cluster
4. Measure using various clusters

Example: Four- and six-point function

	$\propto\left\langle\sigma_{r}\left(\tau, q_{2}\right) \sigma_{u}\left(\tau, q_{1}\right) \sigma_{u}^{*}\left(0, p_{2}\right) \sigma_{r}^{*}\left(0, p_{1}\right)\right\rangle$
$\begin{aligned} & p_{1} \\ & p_{2} \\ & p_{3} \end{aligned} \bullet \bullet q_{1}$	$\propto\left\langle\sigma_{r}\left(\tau, q_{3}\right) \sigma_{u}\left(\tau, q_{2}\right) \sigma_{v}\left(\tau, q_{1}\right) \sigma_{r}^{*}\left(0, p_{3}\right) \sigma_{v}^{*}\left(0, p_{2}\right) \sigma_{u}^{*}\left(0, p_{1}\right)\right\rangle$

Our ensembles

We have used the "o3_cluster" code [Bulava, 2021]

Our ensembles

We have used the "o3_cluster" code [Bulava, 2021]
Ensembles: $[m L \sim 6,9,12,15] \times[\beta=1.63,1.72,1.78]=12$ ensembles

* Tuned $m L$ and $m T \sim 20.5$

Our ensembles

We have used the "o3_cluster" code [Bulava, 2021]
Ensembles: $[m L \sim 6,9,12,15] \times[\beta=1.63,1.72,1.78]=12$ ensembles

* Tuned $m L$ and $m T \sim 20.5$
* 256/512/1024 replicas
$\star \sim 10$ million thermalization updates
\star Averaged over ~ 1 million measurement updates

Energy spectrum from lattice simulations

Solve GEVP and extract energy spectrum

$$
C^{-1 / 2}\left(t_{0}\right) C(t) C^{-1 / 2}\left(t_{0}\right) v_{n}=\lambda_{n}(t) v_{n} \longrightarrow \lambda_{n}(t) \xrightarrow{T \gg t \gg t_{0}} A_{n} \mathrm{e}^{-E_{n} t}
$$

Energy spectrum from lattice simulations

Solve GEVP and extract energy spectrum

$$
C^{-1 / 2}\left(t_{0}\right) C(t) C^{-1 / 2}\left(t_{0}\right) v_{n}=\lambda_{n}(t) v_{n} \longrightarrow \lambda_{n}(t) \xrightarrow{T \gg t>t_{0}} A_{n} \mathrm{e}^{-E_{n} t}
$$

2 particles, $I=2$ channel

3 particles, $I=3$ channel

Continuum limit

The O(3) NLSM has large discretization effects [Balog, et al (2009, 2010)]:

$$
Q(m a)=Q(0)+C(m a)^{2} \beta^{3}\left[1+\sum_{k=1}^{\infty} c_{k} \beta^{-k}\right]+\mathcal{O}\left(a^{4}\right)
$$

with c_{1} and c_{2} known

Continuum limit

The O(3) NLSM has large discretization effects [Balog, et al (2009, 2010)]:

$$
Q(m a)=Q(0)+C(m a)^{2} \beta^{3}\left[1+\sum_{k=1}^{\infty} c_{k} \beta^{-k}\right]+\mathcal{O}\left(a^{4}\right)
$$

with c_{1} and c_{2} known

2 particles, $I=2$ channel

2 particles, $I=1$ channel

Two-particle scattering

We compare 2-particle energies against analytical predictions

Two-particle scattering

We compare 2-particle energies against analytical predictions

Two-particle scattering

We compare 2-particle energies against analytical predictions

Two-particle scattering

We compare 2-particle energies against analytical predictions

Three-particle scattering

We have determined 3-particle finite-volume energies at maximal isospin

$$
P=\frac{2 \pi}{L} n \quad I=3 \text { channel (Preliminary) }
$$

Summary and outlook

Goal: Test 3-particle RFT formalism on the $(1+1)$-dimensional $\mathrm{O}(3)$ non-linear sigma model

Summary and outlook

Goal: Test 3-particle RFT formalism on the (1+1)-dimensional $O(3)$ non-linear sigma model

We have implemented a three-cluster algorithm and computed twoand three-particle energies

We have extrapolated the finite-volume energies to the continuum
We have found very good agreement (sub-percent precision) between lattice and analytical results in the two-particle sector

Summary and outlook

Goal: Test 3-particle RFT formalism on the $(1+1)$-dimensional $O(3)$ non-linear sigma model

We have implemented a three-cluster algorithm and computed twoand three-particle energies

We have extrapolated the finite-volume energies to the continuum
\checkmark We have found very good agreement (sub-percent precision) between lattice and analytical results in the two-particle sector

Next steps: 3-particle energy predictions, 3-particle $I=2$ channel

Summary and outlook

Goal: Test 3-particle RFT formalism on the $(1+1)$-dimensional $O(3)$ non-linear sigma model

We have implemented a three-cluster algorithm and computed twoand three-particle energies

We have extrapolated the finite-volume energies to the continuum
\checkmark We have found very good agreement (sub-percent precision) between lattice and analytical results in the two-particle sector

Next steps: 3-particle energy predictions, 3-particle $I=2$ channel
More O(3) model: J. Bulava's plenary talk on Tuesday

Summary and outlook

Goal: Test 3-particle RFT formalism on the $(1+1)$-dimensional $\mathrm{O}(3)$ non-linear sigma model

We have implemented a three-cluster algorithm and computed twoand three-particle energies
\checkmark We have extrapolated the finite-volume energies to the continuum
\checkmark We have found very good agreement (sub-percent precision) between lattice and analytical results in the two-particle sector

Next steps: 3-particle energy predictions, 3-particle $I=2$ channel
More O(3) model: J. Bulava's plenary talk on Tuesday

Thank you for your attention!

Exact two-particle S-matrix

Integrable at low energies [Zamolodchikov, Zamolodchikov (1977)]:

Unitarity + Crossing symmetry $)+$ Factorization

$$
\sigma_{2}(\theta)=\frac{\theta(i \pi-\theta)}{(i 2 \pi-\theta)(i \pi+\theta)}, \quad \sigma_{1}(\theta)=\frac{-i 2 \pi}{i \pi-\theta} \sigma_{2}(\theta), \quad \sigma_{3}(\theta)=\frac{-i 2 \pi}{\theta} \sigma_{2}(\theta)
$$

$s=2 m^{2}[1+\cosh (\theta)]$

Two-particle $I=0$ channel

$$
P=\frac{2 \pi}{L} n \quad I=0 \text { channel }
$$

Three-particle $I=3$ and $I=2$ channels

$C_{l=2}=\left(\begin{array}{c}B_{1}-\frac{1}{2} B_{2}+B_{3}-\frac{1}{2} B_{4}-\frac{1}{2} B_{5}-\frac{1}{2} B_{6} \\ \frac{\sqrt{3}}{2}\left[B_{2}-B_{4}-B_{5}+B_{6}\right]\end{array}\right.$

$$
\left.\begin{array}{c}
\frac{\sqrt{3}}{2}\left[B_{2}-B_{4}+B_{5}-B_{6}\right] \\
B_{1}+\frac{1}{2} B_{2}-B_{3}+\frac{1}{2} B_{4}-\frac{1}{2} B_{5}-\frac{1}{2} B_{6}
\end{array}\right)
$$

1×1 matrix if a pair of inital/final momenta are equal
No contribution if all three initial/final momenta are equal

