Two- and three-particle scattering in the (1+1)-dimensional O(3) non-linear sigma model

Jorge Baeza-Ballesteros

In collaboration with M. T. Hansen

IFIC, University of Valencia-CSIC

Lattice22 - 8th August 2022

J. Baeza-Ballesteros

 Quantization conditions
 O(3) model
 Lattice simulations
 Results
 Summary

 •O
 000
 0000
 0000
 0

Finite-volume quantization conditions

Finite-volume spectrum:

Infinite-volume scattering:

 Quantization conditions
 Q(3) model 0000
 Lattice simulations
 Results 0000
 Summary 0000

 Finite-volume quantization conditions

Finite-volume spectrum:

Infinite-volume scattering:

Two-particle QC: Lüscher's formalism [1986]

 $\det[\mathcal{K}_2^{-1} + F(P,L)] = 0$

 Quantization conditions
 Q(3) model 0000
 Lattice simulations
 Results 0000
 Summary 0000

 Finite-volume quantization conditions

Finite-volume spectrum:

Infinite-volume scattering:

Two-particle QC: Lüscher's formalism [1986]

 $\det[\mathcal{K}_2^{-1} + F(P, L)] = 0$ $\rho(s) \cot \delta(s) \checkmark$
 Quantization conditions
 O(3) model 0000
 Lattice simulations
 Results 0000
 Summary 0000

 Finite-volume quantization conditions

Finite-volume spectrum:

Infinite-volume scattering:

Two-particle QC: Lüscher's formalism [1986]

 Quantization conditions
 O(3) model 0000
 Lattice simulations
 Results 0000
 Summary 0000

 Finite-volume quantization conditions

Finite-volume spectrum:

Infinite-volume scattering:

Two-particle QC: Lüscher's formalism [1986]

Three-particle QC: various approaches

- Relativistic field theory (RFT) [Hansen, Sharpe (2014, 2015)]
- Non-relativistic effective field theory (NREFT) [Hammer, et al. (2017)]
- Finite-volume unitarity (FVU) [Döring, Mai (2016, 2017)]

 Quantization conditions
 Q(3) model 0000
 Lattice simulations
 Results 0000
 Summary 0000

 •o
 •o
 •o
 •o
 •o

 •o
 •o
 •o
 •o
 •o

 •o
 •o
 •o
 •o
 •o

Finite-volume spectrum:

Infinite-volume scattering:

Two-particle QC: Lüscher's formalism [1986]

Three-particle QC: various approaches

- Relativistic field theory (RFT) [Hansen, Sharpe (2014, 2015)] \rightarrow This talk
- Non-relativistic effective field theory (NREFT) [Hammer, et al. (2017)]
- Finite-volume unitarity (FVU) [Döring, Mai (2016, 2017)]

Quantization conditions	O(3) model 0000	Lattice simulations	Results 0000	
Recap of the RF	T formalism			

Quantization conditions	O(3) model	Lattice simulations		
00	0000	0000	0000	
Recap of the RF	T formalism			

1. Constrain two- and three-body ${\mathcal K}$ matrices

 $det[\mathcal{K}_{df,3}^{-1} + F_3(\mathcal{M}_2; P, L)] = 0$ $\bigcup \text{Unphysical,}$ scheme dependent

Quantization conditions	O(3) model 0000	Lattice simulations	Results 0000	
Recap of the RF	T formalism			

1. Constrain two- and three-body ${\mathcal K}$ matrices

$$det[\mathcal{K}_{df,3}^{-1} + F_3(\mathcal{M}_2; P, L)] = 0 \qquad F_3 = \frac{1}{3}F + F\frac{1}{\tilde{\mathcal{K}}_2^{-1} - (F+G)}F$$
Unphysical,
scheme dependent

Quantization conditions	O(3) model	Lattice simulations	Results	
Recap of the RF	T formalism			

1. Constrain two- and three-body ${\mathcal K}$ matrices

$$det[\mathcal{K}_{df,3}^{-1} + F_3(\mathcal{M}_2; P, L)] = 0 \qquad F_3 = \frac{1}{3}F + F\frac{1}{\tilde{\mathcal{K}}_2^{-1} - (F+G)}F$$
Unphysical,
scheme dependent

Quantization conditions	O(3) model	Lattice simulations	Results	Summary
	0000	0000	0000	0
Recap of the RF	T formalism			

1. Constrain two- and three-body ${\mathcal K}$ matrices

$$det[\mathcal{K}_{df,3}^{-1} + F_3(\mathcal{M}_2; P, L)] = 0 \qquad F_3 = \frac{1}{3}F + F\frac{1}{\tilde{\mathcal{K}}_2^{-1} - (F+G)}F$$
Unphysical,
scheme dependent

2. Solve integral equation to extract \mathcal{M}_3

Quantization conditions	O(3) model	Lattice simulations		
00	0000	0000	0000	
Recap of the RF	T formalism			

1. Constrain two- and three-body ${\mathcal K}$ matrices

2. Solve integral equation to extract \mathcal{M}_3

Generalizations: $3 \rightarrow 2$ vertices, multiple subchannels, non-identical particles...

Quantization conditions O•	O(3) model 0000	Lattice simulations	Results 0000	
Recap of the RF	T formalism			

1. Constrain two- and three-body \mathcal{K} matrices

$$det[\mathcal{K}_{df,3}^{-1} + F_3(\mathcal{M}_2; P, L)] = 0 \qquad F_3 = \frac{1}{3}F + F\frac{1}{\tilde{\mathcal{K}}_2^{-1} - (F+G)}F$$
Unphysical,
scheme dependent

2. Solve integral equation to extract \mathcal{M}_3

Generalizations: $3 \rightarrow 2$ vertices, multiple subchannels, non-identical particles...

Used in: $\pi^{+}\pi^{+}\pi^{+}$, $K^{+}K^{+}K^{+}$, $K^{+}\pi^{+}\pi^{+}$, $K^{+}K^{+}\pi^{+}$

Quantization conditions	O(3) model 0000	Lattice simulations	Results 0000	Summary O
Recap of the RF	T formalism			

1. Constrain two- and three-body \mathcal{K} matrices

2. Solve integral equation to extract \mathcal{M}_3

Generalizations: $3 \rightarrow 2$ vertices, multiple subchannels, non-identical particles...

Used in: $\pi^{+}\pi^{+}\pi^{+}$, $K^{+}K^{+}K^{+}$, $K^{+}\pi^{+}\pi^{+}$, $K^{+}K^{+}\pi^{+}$

Goal: Test RFT formalism on a solvable toy model

Quantization conditions $O(3) \mod del$ Lattice simulationsResultsSummary $O(3) \mod del$ OOOOOOOOOOOOOOO $O(3) \mod del$ OOOOOOOOOOOOOOO

O(3) non-linear sigma model in (1+1) dimensions

We study the O(3) non-linear sigma model (NLSM) in 1+1 dimensions

$$S[\sigma] = \frac{\beta}{2} \int d^2 x \, \partial_\mu \sigma(x) \cdot \partial_\mu \sigma(x) \qquad \qquad \sigma = (\sigma^1, \sigma^2, \sigma^3) \\ \sigma(x) \cdot \sigma(x) = 1$$

Quantization conditions O(3) model O(3) non-linear sigma model in (1+1) dimensions

We study the O(3) non-linear sigma model (NLSM) in 1+1 dimensions

$$S[\sigma] = rac{eta}{2}\int \mathsf{d}^2 x\, \partial_\mu \sigma(x)\cdot \partial_\mu \sigma(x)$$

$$\sigma = (\sigma^1, \sigma^2, \sigma^3)$$
$$\sigma(x) \cdot \sigma(x) = 1$$

- Asymptotically free
- Dynamical mass gap m
- Global O(3) isospin symmetry

Quantization conditions $O(3) \mod del$ Lattice simulationsResultsSummary $O(3) \mod del$ $O(3) \mod del$

O(3) non-linear sigma model in (1+1) dimensions

We study the O(3) non-linear sigma model (NLSM) in 1+1 dimensions

$$S[\sigma] = rac{eta}{2}\int \mathsf{d}^2 x\, \partial_\mu \sigma(x)\cdot \partial_\mu \sigma(x)$$

- Asymptotically free
- Dynamical mass gap m
- Global O(3) isospin symmetry

Low-energy spectrum: isospin-1 multiplet

We study the O(3) non-linear sigma model (NLSM) in 1+1 dimensions

$$S[\sigma] = rac{eta}{2} \int \mathsf{d}^2 x \, \partial_\mu \sigma(x) \cdot \partial_\mu \sigma(x)$$

- Asymptotically free
- Dynamical mass gap m
- Global O(3) isospin symmetry

$$\sigma = (\sigma^1, \sigma^2, \sigma^3)$$
$$\sigma(x) \cdot \sigma(x) = 1$$

Low-energy spectrum: isospin-1 multiplet

Integrable at low energies [Zamolodchikov, Zamolodchikov (1977)]:

Quantization conditions	O(3) model	Lattice simulations	Results	Summary
Two- and three	-particle s	cattering	0000	

We focus on two- and three-particle scattering channels that include no vacuum contractions $% \left({{{\left[{{{c_{1}}} \right]}_{i}}}_{i}} \right)$

Quantization conditions 00	O(3) model O●OO	Lattice simulations	Results 0000	
Two- and thr	ee-particle s	cattering		

Two particles: 3 isospin channels

 $3 \otimes 3 = 5 \oplus 3 \oplus 1$ I = 2 I = 1 I = 0
 Quantization conditions
 O(3) model o o o
 Lattice simulations
 Results o 000
 Summary o 000

 Two- and three-particle scattering

We focus on two- and three-particle scattering channels that include no vacuum contractions

 Quantization conditions
 Q(3) model o o o
 Lattice simulations
 Results o o o o
 Summary o o o o

 Two- and three-particle scattering

We focus on two- and three-particle scattering channels that include no vacuum contractions

Quantization conditions	O(3) model	Lattice simulations	Summary
	0000		
Two- and th	ree-particle so	cattering	

Three particles: 7 irreps \rightarrow 4 isospin channels

 $3 \otimes 3 \otimes 3 = 7 \oplus (5 \oplus 5) \oplus (3 \oplus 3 \oplus 3) \oplus 1$ $l = 3 \quad l = 2 \quad l = 1 \quad l = 0$

Quantization conditions	O(3) model	Lattice simulations	Summary
	0000		
Two- and thr	ee-particle s	cattering	

Three particles: 7 irreps \rightarrow 4 isospin channels

Quantization conditions	O(3) model	Lattice simulations	Summary
	0000		
Two- and thr	ee-particle s	cattering	

Three particles: 7 irreps \rightarrow 4 isospin channels

each momenta combination

Quantization conditions	O(3) model	Lattice simulations		
00	0000	0000	0000	0
Quantization	conditions i	n 1+1 dimensio	ns	

QCs in 1+1 dimensions \rightarrow no angular momentum

Quantization	conditions i	n 1 \pm 1 dimensio	ns	
00	0000	0000	0000	0
Quantization conditions	O(3) model	Lattice simulations		

QCs in 1+1 dimensions \rightarrow no angular momentum

• Two-particle QC [Briceño, et al (2020)]:

 β, γ : boost factors $\omega_k = E_{CM}/2$:

$$\cot \delta(k) = -rac{1}{2} \left[\cot \left(rac{L\gamma(k+\omega_k eta)}{2}
ight) + \cot \left(rac{L\gamma(k-\omega_k eta)}{2}
ight)
ight]$$

 Quantization conditions
 Q(3) model 000
 Lattice simulations
 Results 0000
 Summary 0000

 Quantization conditions in 1+1 dimensions

QCs in 1+1 dimensions \rightarrow no angular momentum

• Two-particle QC [Briceño, et al (2020)]:

 β, γ : boost factors $\omega_k = E_{CM}/2$:

$$\cot \delta(k) = -rac{1}{2}\left[\cot\left(rac{L\gamma(k+\omega_keta)}{2}
ight)+\cot\left(rac{L\gamma(k-\omega_keta)}{2}
ight)
ight]$$

QCs in 1+1 dimensions \rightarrow no angular momentum

Two-particle QC [Briceño, et al (2020)]:

 β, γ : boost factors $\omega_k = E_{CM}/2$:

QCs in 1+1 dimensions \rightarrow no angular momentum

Two-particle QC [Briceño, et al (2020)]:

 β, γ : boost factors $\omega_k = E_{CM}/2$:

• Three-particle QC: analogous to (3+1) [Work in progress]

Quantization conditions	O(3) model	Lattice simulations	Results	
OO	0000	●000	0000	
Lattice simulation	ons			

We use the standard lattice action

$$S[\sigma] = -\beta \sum_{x} \sum_{\mu} \sigma(x) \cdot \sigma(x + a\hat{\mu})$$

We generate the configurations and evaluate *n*-point functions using a **cluster algorithm**: [Single-cluster: Wolff (1989), Two-cluster: Lüscher, Wolff (1990)]

- \star Overcomes critical slowing down
- * Improves the signal-to-noise ratio

Single-cluster	algorithm			
00	0000	0000	0000	
Quantization conditions	O(3) model	Lattice simulations	Results	Summary

Cluster algorithm:

- 1. Choose a random unit vector $\mathbf{r} \in \mathbb{R}^3$ and a random "seed" site
- 2. Grow the cluster, C, by adding neighbors

 $p_{\text{add}} = 1 - \exp[\min\{-2\beta\sigma_r(x)\sigma_r(x+a\hat{\mu}), 0\}] \qquad \sigma_r(x) = \sigma(x) \cdot r$

3. Update the cluster

$$\sigma(x) \to \sigma(x) - 2\sigma_r(x)r$$

4. Measure on the cluster

Single-cluster	algorithm			
00	0000	0000	0000	
Quantization conditions	O(3) model	Lattice simulations	Results	Summary

Cluster algorithm:

- 1. Choose a random unit vector $\mathbf{r} \in \mathbb{R}^3$ and a random "seed" site
- 2. Grow the cluster, C, by adding neighbors

$$p_{add} = 1 - \exp[\min\{-2\beta\sigma_r(x)\sigma_r(x+a\hat{\mu}), 0\}] \qquad \sigma_r(x) = \sigma(x) \cdot r$$

3. Update the cluster

$$\sigma(x) \to \sigma(x) - 2\sigma_r(x)r$$

4. Measure on the cluster

Example: Two-point function

$$\sigma_r(\tau, p) = \sum_{x \in C} e^{ipx} \sigma_r(\tau, x) \longrightarrow C_{2pt}(\tau, p) = 3 \langle \sigma_r(\tau, p) \sigma_r^*(0, p) \rangle$$

Single-cluster	algorithm			
00	0000	0000	0000	
Quantization conditions	O(3) model	Lattice simulations	Results	Summary

Cluster algorithm:

- 1. Choose a random unit vector $\mathbf{r} \in \mathbb{R}^3$ and a random "seed" site
- 2. Grow the cluster, C, by adding neighbors

$$p_{add} = 1 - \exp[\min\{-2\beta\sigma_r(x)\sigma_r(x+a\hat{\mu}), 0\}] \qquad \sigma_r(x) = \sigma(x) \cdot r$$

3. Update the cluster

$$\sigma(x) \to \sigma(x) - 2\sigma_r(x)r$$

4. Measure on the cluster

Example: Two-point function

$$\sigma_r(\tau, p) = \sum_{x \in C} e^{ipx} \sigma_r(\tau, x) \longrightarrow C_{2pt}(\tau, p) = 3 \langle \sigma_r(\tau, p) \sigma_r^*(0, p) \rangle$$

Need to average over many updates!

Quantization conditions	O(3) model	Lattice simulations	Results	
00	0000	0000	0000	
Three-cluster	algorithm			

To measure six-point functions we need a three-cluster algorithm:

- 1. Choose three random orthogonal unit vector $\mathbf{r}, \mathbf{u}, \mathbf{v} \in \mathbb{R}^3$ and three random "seed" site
- 2. Grow each cluster, C_r , C_u and C_v , separately
- 3. Update each cluster
- 4. Measure using various clusters

Quantization conditions	O(3) model	Lattice simulations	Summary
		0000	
Three-cluster	algorithm		

To measure six-point functions we need a three-cluster algorithm:

- 1. Choose three random orthogonal unit vector $r, u, v \in \mathbb{R}^3$ and three random "seed" site
- 2. Grow each cluster, C_r , C_u and C_v , separately
- 3. Update each cluster
- 4. Measure using various clusters

Example: Four- and six-point function

Quantization conditions	O(3) model	Lattice simulations	Results	
OO	0000	000●	0000	
Our ensembles				

We have used the "o3_cluster" code [Bulava, 2021]

Quantization conditions	O(3) model	Lattice simulations		
00	0000	0000	0000	0
Our ensembles				

We have used the "o3_cluster" code [Bulava, 2021]

Ensembles: $[mL \sim 6, 9, 12, 15] \times [\beta = 1.63, 1.72, 1.78] = 12$ ensembles

 $\star\,$ Tuned mL and $mT\sim20.5$

Quantization conditions OO	0(3) model 0000	Lattice simulations	Results 0000	
Our ensembles				

We have used the "o3_cluster" code [Bulava, 2021] **Ensembles**: $[mL \sim 6, 9, 12, 15] \times [\beta = 1.63, 1.72, 1.78] = 12$ ensembles

- $\star\,$ Tuned mL and $mT\sim20.5$
- \star 256/512/1024 replicas
- $\star~\sim$ 10 million thermalization updates
- \star Averaged over \sim 1 million measurement updates

Quantization conditions	O(3) model	Lattice simulations	Results	Summary
			0000	
Energy spectrum	from lattice	simulations		

Solve GEVP and extract energy spectrum

$$C^{-1/2}(t_0)C(t)C^{-1/2}(t_0)v_n = \lambda_n(t)v_n \longrightarrow \lambda_n(t) \xrightarrow{T \gg t \gg t_0} A_n e^{-E_n t}$$

 Quantization conditions
 O(3) model
 Lattice simulations
 Results
 Summary

 00
 0000
 0000
 0000
 0

Solve GEVP and extract energy spectrum

$$C^{-1/2}(t_0)C(t)C^{-1/2}(t_0)v_n = \lambda_n(t)v_n \longrightarrow \lambda_n(t) \xrightarrow{T \gg t \gg t_0} A_n e^{-E_n t}$$

Quantization conditions	O(3) model	Lattice simulations	Results	Summary
			0000	
Continuum limi	t			

The O(3) NLSM has large discretization effects [Balog, et al (2009, 2010)]:

$$Q(ma) = Q(0) + C(ma)^2 \beta^3 \left[1 + \sum_{k=1}^{\infty} c_k \beta^{-k}\right] + \mathcal{O}(a^4)$$

with c_1 and c_2 known

Quantization conditions	O(3) model	Lattice simulations	Results	Summary
00	0000	0000	0000	
Continuum lim	it			

The O(3) NLSM has large discretization effects [Balog, et al (2009, 2010)]:

$$Q(ma) = Q(0) + C(ma)^2\beta^3 \left[1 + \sum_{k=1}^{\infty} c_k \beta^{-k}\right] + \mathcal{O}(a^4)$$

with c_1 and c_2 known

Quantization conditions	O(3) model	Lattice simulations	Results	Summary
00	0000	0000	0000	
Two-particle	scattering			

Quantization conditions	O(3) model	Lattice simulations	Results	Summary
00	0000	0000	0000	
Two-particle	scattering			

00	0000	0000	0000	0
Two-particle	scattering			

 \mathbf{C}

00	0000	0000	0000	0	
Two-particle scattering					

 \mathbf{C}

Quantization conditions	O(3) model	Lattice simulations	Results	Summary
00	0000	0000	0000	
Three-particle	e scattering			

We have determined 3-particle finite-volume energies at maximal isospin

 $P = \frac{2\pi}{L}n$ I = 3 channel (Preliminary)

Quantization conditions	O(3) model	Lattice simulations	Results	Summary
00	0000		0000	•
Summary and	l outlook			

Quantization conditions OO	0(3) model 0000	Lattice simulations	Results 0000	Summary •
Summary and	l outlook			

- $\checkmark\,$ We have implemented a three-cluster algorithm and computed two- and three-particle energies
- \checkmark We have extrapolated the finite-volume energies to the continuum
- \checkmark We have found very good agreement (sub-percent precision) between lattice and analytical results in the two-particle sector

Quantization conditions OO	0(3) model 0000	Lattice simulations	Results 0000	Summary •
Summary and	d outlook			

- $\checkmark\,$ We have implemented a three-cluster algorithm and computed two- and three-particle energies
- \checkmark We have extrapolated the finite-volume energies to the continuum
- ✓ We have found very good agreement (sub-percent precision) between lattice and analytical results in the two-particle sector

Next steps: 3-particle energy predictions, 3-particle I = 2 channel

Quantization conditions OO	0(3) model 0000	Lattice simulations	Results 0000	Summary •
Summary and	d outlook			

- ✓ We have implemented a three-cluster algorithm and computed twoand three-particle energies
- \checkmark We have extrapolated the finite-volume energies to the continuum
- ✓ We have found very good agreement (sub-percent precision) between lattice and analytical results in the two-particle sector

Next steps: 3-particle energy predictions, 3-particle I = 2 channel More O(3) model: J. Bulava's plenary talk on Tuesday

		0000	0000	•
Summary and outlook				

- ✓ We have implemented a three-cluster algorithm and computed twoand three-particle energies
- \checkmark We have extrapolated the finite-volume energies to the continuum
- ✓ We have found very good agreement (sub-percent precision) between lattice and analytical results in the two-particle sector

Next steps: 3-particle energy predictions, 3-particle I = 2 channel More O(3) model: J. Bulava's plenary talk on Tuesday

Thank you for your attention!

Integrable at low energies [Zamolodchikov, Zamolodchikov (1977)]:

Unitarity + Crossing symmetry + Factorization

$$p_{1}, i \qquad p_{1}', j = (4\pi)^{2} \delta(p_{1} - p_{1}') \delta(p_{2} - p_{2}') [\delta_{ik} \delta_{jl} \sigma_{1}(s) + \delta_{ij} \delta_{kl} \sigma_{2}(s) + \delta_{il} \delta_{jk} \sigma_{3}(s)]$$

$$\sigma_2(\theta) = \frac{\theta(i\pi - \theta)}{(i2\pi - \theta)(i\pi + \theta)}, \quad \sigma_1(\theta) = \frac{-i2\pi}{i\pi - \theta}\sigma_2(\theta), \quad \sigma_3(\theta) = \frac{-i2\pi}{\theta}\sigma_2(\theta)$$

$$s = 2m^2[1 + \cosh(\theta)]$$

Two-particle I = 0 channel

Three-particle I = 3 and I = 2 channels

