Scale Setting for RBC-UKQCD 2+1 flavor Domain Wall Fermion Lattices

Lattice 2022 August 11, 2022 Bonn, Germany

Robert Mawhinney Columbia University

Most of the results reported here were produced by Yong-Chull Jang

RBC-UKQCD 2+1 flavor Domain Wall Fermion Lattices

The RBC & UKQCD collaborations

UC Berkeley/LBNL

Aaron Meyer

<u>University of Bern & Lund</u> Nils Hermansson Truedsson

BNL and BNL/RBRC

Yasumichi Aoki (KEK) Peter Boyle (Edinburgh) Taku Izubuchi Chulwoo Jung Christopher Kelly Meifeng Lin Nobuyuki Matsumoto Shigemi Ohta (KEK) Amarjit Soni Tianle Wang

<u>CERN</u>

Andreas Jüttner (Southampton) Tobias Tsang

Columbia University

Norman Christ Yikai Huo Yong-Chull Jang Joseph Karpie Bob Mawhinney Bigeng Wang (Kentucky) Yidi Zhao

University of Connecticut

Tom Blum Luchang Jin (RBRC) Douglas Stewart Joshua Swaim Masaaki Tomii

Edinburgh University

Matteo Di Carlo Luigi Del Debbio Felix Erben Vera Gülpers Maxwell T. Hansen **Tim Harris** Ryan Hill **Raoul Hodgson** Nelson Lachini Zi Yan Li Michael Marshall Fionn Ó hÓgáin Antonin Portelli **James Richings** Azusa Yamaguchi Andrew Z.N. Yong

Liverpool Hope/Uni. of Liverpool Nicolas Garron

Michigan State University Dan Hoying

<u>University of Milano Bicocca</u> Mattia Bruno

<u>Nara Women's University</u> Hiroshi Ohki

<u>Peking University</u> Xu Feng

University of Regensburg

Davide Giusti Christoph Lehner (BNL)

University of Siegen

Matthew Black Oliver Witzel

University of Southampton

Alessandro Barone Jonathan Flynn Nikolai Husung Rajnandini Mukherjee Callum Radley-Scott Chris Sachrajda

<u>Stony Brook University</u> Jun-Sik Yoo Sergey Syritsyn (RBRC)

RBC-UKQCD Ensembles

The gauge and fermion (G+F) action abbreviations used are:

- DWF = domain wall fermions
- MDWF = Mobius domain wall fermions,
- GMDWF = G-parity Mobius domain wall fermions,
- W = Wilson gauge action
- I = Iwasaki gauge action
- ID = Iwasaki plus Dislocation Suppressing Determinant Ratio (DSDR) gauge action.
- WE = Wilson plus Dislocation Enhancing Determinant (DED) gauge action.
- o following time extent = open boundary conditions in time

The total light quark mass (in lattice units) is $m_l + m_{res}$ and the total strange quark mass is similarly $m_s + m_{res}$.

Early ensembles with heavy pions								
Ens.	Action	1/a	Lattice	m_l	$m_l m_s m_{ m res}$			Size
	(F+G)	(GeV)	volume	(in	(in lattice units)			(fm)
1	DWF+I	1.785(5)	$24^3\!\times\!64\!\times\!16$	0.005	0.04	0.00308	340	2.6
2	DWF+I	1.785(5)	$24^3\!\times\!64\!\times\!16$	0.01	0.04	0.00308	432	2.6
3	DWF+I	1.785(5)	$24^3\!\times\!64\!\times\!16$	0.02	0.04	0.00308	560	2.6
4	DWF+I	1.785(5)	$24^3 \times 64 \times 16$	0.03	0.04	0.00308	670	2.6
5	DWF+I	2.383(9)	$32^3 \times 64 \times 16$	0.004	0.03	0.000664	303	2.6
6	DWF+I	2.383(9)	$32^3 \times 64 \times 16$	0.006	0.03	0.000664	360	2.6
7	DWF+I	2.383(9)	$32^3 \times 64 \times 16$	0.008	0.03	0.000664	412	2.6
8	DWF+ID	1.378(7)	$32^3 \times 64 \times 32$	0.0042	0.045	0.00184	246	4.6
9	DWF+ID	1.378(7)	$32^3 \times 64 \times 32$	0.001	0.045	0.00184	171	4.6

Table 1: Early ensembles with heavy pions.

Ensembles including those with physical pions								
Ens.	Action	1/a	Lattice	m_l	m_s	$m_{ m res}$	m_{π}	Size
	(F+G)	(GeV)	volume	(in	(in lattice units)		(MeV)	(fm)
10	MDWF+I	1.730(4)	$48^3 \times 96 \times 24$	0.00078	0.0362	0.000614	139	5.5
11	MDWF+I	2.359(7)	$64^3\!\times\!128\!\times\!12$	0.000678	0.02661	0.000314	139	5.4
12	DWF+I	3.15(2)	$32^3 \times 64 \times 12$	0.0047	0.0186	0.000631	371	2.0
13	MDWF+ID	0.98(4)	$32^3 \times 64 \times 24$	0.00022	0.05960	0.00217	117	3.8
14	MDWF+ID	2.02(1)	$32^3\!\times\!64\!\times\!24$	0.00478	0.03297	0.00447	401	6.2
15	GMDWF+ID	1.37(1)	$32^3 \times 64 \times 12$	0.0001	0.045	0.00184	141	4.6
16	MDWF+ID	0.98(4)	$32^3 \times 64 \times 24$	0.00107	0.0850	0.00217	137	6.4
17	MDWF+ID	0.98(4)	$24^3\!\times\!64\!\times\!24$	0.00107	0.0850	0.00217	137	4.8
18	MDWF+ID	0.98(4)	$48^3\!\times\!64\!\times\!24$	0.00107	0.0850	0.00217	137	9.6
19	MDWF+ID	1.37(1)	$32^3 \times 64 \times 12$	0.0001	0.045	0.00189	141	4.6
20	DWF+I	2.785	$48^3 \times 96 \times 12$	0.002144	0.02144	0.000968	267	3.5
21	MDWF+I	2.708	$32^3\!\times\!64\!\times\!12$	0.00054	0.02132	0.000233	140	2.3
22	MDWF+I	2.708	$96^3\!\times\!192\!\times\!12$	0.00054	0.02132	0.000233	140	6.9
23	MDWF+I	2.708	$48^3\!\times\!96\!\times\!12$	0.002144	0.02144	0.000236	232	3.5
24	GMDWF+ID	1.723	$40^3 \times 64 \times 12$	0.0003	0.0342	0.00101	135	4.6
25	GMDWF+ID	2.068	$48^3\!\times\!64\!\times\!12$	0.00074	0.02775	0.000276	135	4.6

Table 2: Ensembles including those with physical pions.

Iwasaki Physical Point Ensembles

Ensembles including those with physical pions								
Ens.	Action	1/a	Lattice	m_l	m_s	$m_{ m res}$	m_{π}	Size
	(F+G)	(GeV)	volume	(in	lattice un	its)	(MeV)	(fm)
10 48	MDWF+I	1.730(4)	$48^3 \times 96 \times 24$	0.00078	0.0362	0.000614	139	5.5
11 64	MDWF+I	2.359(7)	$64^3 \times 128 \times 12$	0.000678	0.02661	0.000314	139	5.4
12	DWF+I	3.15(2)	$32^3 \times 64 \times 12$	0.0047	0.0186	0.000631	371	2.0
13	MDWF+ID	0.98(4)	$32^3 \times 64 \times 24$	0.00022	0.05960	0.00217	117	3.8
14	MDWF+ID	2.02(1)	$32^3\!\times\!64\!\times\!24$	0.00478	0.03297	0.00447	401	6.2
15	GMDWF+ID	1.37(1)	$32^3 \times 64 \times 12$	0.0001	0.045	0.00184	141	4.6
16	MDWF+ID	0.98(4)	$32^3 \times 64 \times 24$	0.00107	0.0850	0.00217	137	6.4
17	MDWF+ID	0.98(4)	$24^3\!\times\!64\!\times\!24$	0.00107	0.0850	0.00217	137	4.8
18	MDWF+ID	0.98(4)	$48^3\!\times\!64\!\times\!24$	0.00107	0.0850	0.00217	137	9.6
19	MDWF+ID	1.37(1)	$32^3 \times 64 \times 12$	0.0001	0.045	0.00189	141	4.6
20	DWF+I	2.785	$48^3 \times 96 \times 12$	0.002144	0.02144	0.000968	267	3.5
21	MDWF+I	2.708	$32^3 \times 64 \times 12$	0.00054	0.02132	0.000233	140	2.3
22 96	MDWF+I	2.708	$96^3 \times 192 \times 12$	0.00054	0.02132	0.000233	140	6.9
23	MDWF+I	2.708	$48^3\!\times\!96\!\times\!12$	0.002144	0.02144	0.000236	232	3.5
24	GMDWF+ID	1.723	$40^3 \times 64 \times 12$	0.0003	0.0342	0.00101	135	4.6
25	GMDWF+ID	2.068	$48^3\!\times\!64\!\times\!12$	0.00074	0.02775	0.000276	135	4.6

Table 2: Ensembles including those with physical pions.

Ensembles probing effects near physical pion ensembles								
Ens.	Action	1/a	Lattice	m_l	m_l m_s $m_{ m res}$		m_{π}	Size
	(F+G)	(GeV)	volume	(in)	(in lattice units)		(MeV)	(fm)
26	MDWF+I	1.73	$32^3 \times 64 \times 24$	0.0025	0.0362	0.00063	208	3.7
27	MDWF+I	1.73	$24^3\!\times\!48\!\times\!32$	0.0055	0.0368	0.00046	284	2.8
28	MDWF+I	1.73	$32^3 \times 64 \times 24$	0.0025	0.05	0.00065	210	3.7
29	MDWF+I	1.74	$24^3\!\times\!48\!\times\!24$	0.0049	0.0362	0.00062	279	2.8
30	MDWF+I	2.37	$32^3 \times 64 \times 12$	0.00372	0.0257	0.00030	281	2.7
31	MDWF+I	1.76	$24^3 \times 48 \times 8$	0.002356	0.03366	0.00415	303	2.7
32	MDWF+I	1.73	$32^3 \times 64 \times 24$	0.00078	0.0362	0.00061	139	3.7
33	MDWF+I	1.73	$64^3 \times 128 \times 24$	0.00078	0.0362	0.00061	139	7.4
34	MDWF+I	1.74	$32^3 \times 64 \times 24$	0.0049	0.0362	0.00062	279	3.7
35	MDWF+I	3.50	$48^3 \times 1920 \times 12$	0.0026	0.0176	0.00014	280	2.7

Table 3: Ensembles probing effects near physical pion ensembles

New ensembles generated by Christoph Lehner. Not used in these fits.

Global Fits

- Global fits (PRD 83 (2011) 074508, PRD 87 (2013) 094514, PRD 93 (2016) 074505) are an expansion:
 - * About the continuum limit, $a^2 = 0$:
 - \diamond Different O(a²) coefficients for different actions for same observable
 - * About the chiral limit, $m_l = 0$, for light quarks:
 - Separate dependence on valence and dynamical light quarks
 - \diamond Use ChPT for m_{π}, f_{π} and light quark dependence of m_K and f_K
 - ♦ Linear dependence for m_{Ω} , w_0 , $t_0^{1/2}$, M_{ss}
 - * About the physical m_s for dynamical and valence strange quarks
 - ♦ Use separate linear dependence for dynamical and valence
- Choose m_{π} , m_{K} and m_{Ω} to set the scale and to have no O(a²) dependence
 - * With functional form of quark mass dependence known from fit, determine quark masses which give physical values for m_{π}/m_{K} and m_{K}/m_{Ω}
 - * Then lattice spacing is determined by any one of m_{π} , m_{K} , and m_{Ω}

Global Fits: More Details

• SU(2) NLO example for m_{π} and f_{π} :

$$(m_{ll}^{\mathbf{e}})^{2} = \chi_{l}^{\mathbf{e}} + \chi_{l}^{\mathbf{e}} \cdot \left\{ \frac{16}{f^{2}} \Big((2L_{8}^{(2)} - L_{5}^{(2)}) + 2(2L_{6}^{(2)} - L_{4}^{(2)}) \Big) \chi_{l}^{\mathbf{e}} + \frac{1}{16\pi^{2}f^{2}} \chi_{l}^{\mathbf{e}} \log \frac{\chi_{l}^{\mathbf{e}}}{\Lambda_{\chi}^{2}} \right\}$$
$$f_{ll}^{\mathbf{e}} = f \Big[1 + c_{f}(a^{\mathbf{e}})^{2} \Big] + f \cdot \left\{ \frac{8}{f^{2}} (2L_{4}^{(2)} + L_{5}^{(2)}) \chi_{l}^{\mathbf{e}} - \frac{\chi_{l}^{\mathbf{e}}}{8\pi^{2}f^{2}} \log \frac{\chi_{l}^{\mathbf{e}}}{\Lambda_{\chi}^{2}} \right\}$$

with

$$\chi_l^{\mathbf{e}} = \frac{Z_l^{\mathbf{e}}}{R_a^{\mathbf{e}}} \frac{B^{\mathbf{l}} \widetilde{m}_l^{\mathbf{e}}}{(a^{\mathbf{e}})^2}$$

- We include NLO ChPT finite volume effects in our formula.
- Input physical values
 - * m_π = 135.0 MeV
 - * m_K = 495.7 MeV
 - * $m_{\Omega} = 1672.45 \text{ MeV}$

Global Fit Cuts

- Will consider two fits, with cuts as listed
- Shaded points represent ensembles included in the fits
- Global fits are uncorrelated fits

Plots for Fit B

Some Results

		W	ith χ^2 weight on				
	A + 32ID		1	4	В		
f_{π}	0.12969(44)	0.12969(44)	0.12969(44)	0.12969(44)	0.12969(44)	0.12969(44)	
f_K	0.15496(42)	0.15496(42)	0.15496(42)	0.15496(42)	0.15496(42)	0.15496(42)	
$t_0^{1/2}$	0.7331(21)	0.7331(21)	0.7331(21)	0.7331(21)	0.7331(21)	0.7331(21)	
w_0	0.8798(24)	0.8798(24)	0.8798(24)	0.8798(24)	0.8798(24)	0.8798(24)	
M_{ss}^2	0.4772(07)		0.4772(07)		0.4772(08)		
f_K/f_π	1.1948(22)	1.1948(22)	1.1949(22)	1.1949(22)	1.1949(22)	1.1949(22)	
$a^{-1} 48I_M $	1.7283(31)	1.7283(31)	1.7283(31)	1.7283(31)	1.7285(31)	1.7285(31)	
$a^{-1} 64I_M $	2.3515(32)	2.3517(32)	2.3519(32)	2.3518(32)	2.3519(32)	2.3520(32)	
$a^{-1} 96I_M $	2.6874(42)	2.6872(42)	2.6870(42)	2.6870(42)	2.6872(42)	2.6870(42)	
		wit	hout χ^2 weight o	n physical ense	mbles		
	A +	32ID	1	A	Ι	3	
f_{π}	0.12929(59)	0.12924(60)	0.12929(60)	0.12920(60)	0.12982(44)	0.12978(44)	
f_K	0.15451(63)	0.15446(63)	0.15466(62)	0.15458(62)	0.15504(42)	0.15500(42)	
$t_0^{1/2}$	0.7372(30)	0.7375(30)	0.7363(28)	0.7368(28)	0.7324(22)	0.7326(21)	
w_0	0.8854(34)	0.8858(34)	0.8841(31)	0.8847(31)	0.8793(24)	0.8795(24)	
M_{ss}^2	0.4775(12)		0.4773(11)		0.4772(07)		
f_K/f_π	1.1951(29)	1.1952(29)	1.1962(29)	1.1964(28)	1.1942(22)	1.1943(22)	
$a^{-1} 48I_M $	1.7308(41)	1.7311(40)	1.7305(39)	1.7310(38)	1.7284(32)	1.7285(31)	
$a^{-1} 64I_M $	2.3483(38)	2.3476(38)	2.3492(35)	2.3484(35)	2.3530(33)	2.3527(32)	
$a^{-1} 96I_M $	2.6794(54)	2.6787(54)	2.6808(49)	2.6800(49)	2.6886(43)	2.6881(42)	

PRELIMINARY - blocking studies for autocorrelations to be done

Fitting with Different Physics Inputs

	w ₀ , M _{ss}				
	BMW	RBC			
w_0	0.87346 0.8798				
M_{ss}	0.68989 0.6908				
	with χ^2 weight on physical set of the se	sical ensembles			
	В				
f_{π}	$0.13061(26) \ 0.12968(26)$	0.12969(44)			
f_K	0.15579(28) $0.15495(26)$	0.15496(42)			
$t_0^{1/2}$	0.72747(36) $0.73332(42)$	0.7331(21)			
M_K^2	$0.24516(33) \ 0.24573(35)$	0.24572			
M_{Ω}	1.6790(27) $1.6723(26)$	1.67245			
f_K/f_π	1.1928(21) $1.1949(22)$	1.1949(22)			
a^{-1} 48I_M	1.7189(08) $1.7044(08)$	1.7285(31)			
$a^{-1} 64$ I_M	2.3539(15) 2.3343(16)	2.3519(32)			
$a^{-1} 96I_M$	2.6942(11) $2.6715(12)$	2.6872(42)			

- From RBC fit, produce
 w₀ and M_{ss}.
 - Feed the central values for w_0 and M_{ss} , along with m_{π} into a second global fit and check the result.
 - This second fit is done with no O(a²) errors for m_{π} , w₀ and M_{ss}.

Fitting with Different Physics Inputs

- Plot of a² dependence of various observables
- Top fit has no a^2 dependence in m_{π} , m_K , and m_{Ω}
- Lower fit has no a^2 dependence in m_{π} , w_0 , and M_{ss}

Summary

- Essentially physical point MDWF+I ensembles for 3 lattice spacings
 - * Ensembles away from physical point allow for ~5% adjustments in quark masses to reach truly physical results.
 - * For HVP project, additional "nearby" ensembles have recently been generated (Lehner). These give consistent results with those shown here.
 - * May be included in the future into a common fit.
- Same results to a few parts in 10⁴ for different pion mass cuts
 - * Indicates systematic effects from ChPT expansion are small
- Inclusion of coarse MDWF+ID ensembles shows need for a^4 terms in t_0 .