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l. Introduction



Heavy tetra-quark states Taq

() : heavy anti-quark (@ : heavy quark

q : light quark q : light anti-quark

genuine tetra-quark states
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The latest lattice study suggest a virtual state.

Padmanath-Prelovsek, PRL129(2022)3,032002: hadron spectra
talks@lattice2022



Tbb (Z;Eud)

not observed yet, but I1s more likely to exist as a bound state than charmed
tetra-quark states.

Expected mechanism picture from Bicudo et al., PRD93(2016) 034501

one-gluon-exchange (short distance) screening by light quarks (long distance)

* screens Coulomb potential * bound state  if bb are heavy enough



latest lattice QCD calculations

1. single channel potential between B and B*, static b quark Bicudo et al., PRD93(2016) 034501

one bound state in I(J¥) = 0(1T)
Ep = 90f§2 MeV, extrapolated to physical pion mass
2. coupled channel potential for BB* and B*B*, static b quark
Bicudo et al.,, PRD95(2017) 034502

binding energy is reduced to Eg = 59°%¢ MeV

3. spectra with NRQCD b quark, a bound state in 0(17).

Ep =165.0(32.5) MeV (a — 0)  Junnarkar et al, PRD99(2019) 034507
Ep =120(24)(10) MeV Leskovec et al., PRD100(2019) 014503

Ep =167(19) MeV Mohanta-Basak, PRD102(2020) 094516

moving b quark Ep* coupled channel Ep |



Aims of our study

1. confirm an existence of a bound Ty, in the HAL QCD (potential) method

2. investigate properties of Ty, in the HAL QCD method

3. perform a coupled channel analysis with moving b quarks by NRQCD

Takafumi Aoki mainly worked on this project and got his master degree this
March. Unfortunately, he left physics and is now working in a private company.
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ll. Methodology



1. HAL QCD method

Since the B* = B*B* threshold is about 45 MeV above B = BB* threshold,
we consider the coupled channel analysis in our study.

We employ the time-dependent coupled channel HAL QCD method at the

leading order In the derivative expansion.
Ishii et al. (HAL QCD), PLB712(2012)437 Aoki et al. (HAL QCD), Proc. Japan Acad. B&7 (2011) 509
Ishii, Aoki and Hatsuda, PRL99(2007)022001

time-dependent 2 x 2 coupled channel equation a, B =0(B),1(B")
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2. Non-Relativistic QCD (NRQCD)

Since b quark is too heavy to treat relativistically on current lattice spacings,
we employ NRQCD action for b quarks.

O(v*) Hamiltonian

Hy = Ho+ Zcic??-[(i), Ho = —WA
1 1
m_ (2) _ 8) — __~ _
OH STVl B, 0H SMQ(A E—-E-A), 0H il (AXE—-ExA),
1 1 1
(4 _ _ (2))2 (5) — (6) — _ (2))2
5H aEAP? oHO = AW 6 s (A0, (32)
¢, =1 values at tree level with tadpole improvement Uy, — U, /uo
Mass of heavy-light meson in NRQCD
kinetic energy = /p? + (ME")2 - § «—— additive mass renormalization

kinetic mass  jpgkin — p” — (Ex(p) — Ex(0))”
" 2(Ex(p) — Ex(0))

non-perturbative subtraction but noisier.



3. Operators

Sink operators (2 types of meson-meson operators)

=Y (aly)1sbly)) (Ax)3b(x) —[u & ],y =x+T,
x B(y) B+ (x)
B = e S (aly)3ebly)) (Ax)b(x)) — [u > d],

meson meson
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Since both B and B* source operators create similar combinations of states,
we introduce a diquark source operator.

Source operators (wall quark source with gauge fixing)

jBT — (67515) (nyjd) — |u <> d]  meson-meson

J
diquark operator

heavy diquark light diquark



4. Lattice QCD configurations

2 + 1 flavor full QCD configurations generated by the PACS-CS Collaboration
with the Iwasaki gauge action and the Wilson-Clover light quark action

400 configurations

Configuration|Vigy = L x Ly @ [fm] L [fm] Kud K Cow My n

PACS-CS-A | 323 x64  0.0907(13) 2.902(42) 0.13700 0.13640 1.715 1.919 0.868558(42)
PACS-CS-B | 323 x64  0.0907(13) 2.902(42) 0.13727 0.13640 1.715 1.919 0.868793(43)

PACS-CS-C | 323 x64  0.0907(13) 2.902(42) 0.13754 0.13640 1.715 1.919 0.869005(44)

M, is taken to give M;P™ V8 ~ 9450 MeV

Configuration|m, [MeV] m, [MeV] M%pinavg [MeV]

PACS-CS-A | 701(1)  1102(1) (174)
PACS-CS-B 571(0) ].011(]_) (269) . . decreasing
PACS-CS-C | 416(1)  920(3) (220)
spin—av 1 3
MBP o :ZMB—I_Z B AFE 55 :EB*(O)—EB(O)

MPPT®E ~ 5313 MeV within about 5% statistical errors



lll. Numerical Results

Takafumi Aoki and Sinya Aoki, in preparation.



1. Leading order potentials

1-1. Single channel LO potential
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1-2. Coupled channel LO potential my =~ 700 MeV
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A diagonal potential V55 is attractive at distances smaller than 0.8 fm.

Other one VB B™ hags a repulsive core surrounded by an attractive pocket
at r ~ 0.4 fm.

Off-diagonal interactions between B and B* are comparable to diagonal ones

Coupled channel analysis is important. (Single channel one may be insufficient.)




1-3. Pion mass dependence
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Both diagonal and off-diagonal potentials become stronger and more long-ranged,
as the pion mass decreases.

A mixing effect increases toward the physical pion mass.



2. Scattering analysis

Inclusion of virtual %* effects

Hermiticity is badly broken, probably due to the LO approximation.

2 x 2 coupled channel potential *

Ustr.p(x,y) = VEE(x)d(x — y) + VE (x)GE (%, y)VE H(y),

We consider scattering only in the B channel below B* threshold,

while employing 2 X 2 coupled channel potentials to include virtual B* states.

the effective single channel potential

(Ho+ USPs)¥p = EVp

B

non-locality of Ufﬁl? 2(X,y)



m, = 701 [MeV] m, = 571 [MeV]
200 2001
— -/~ — -/~
L @ B = —27.7 4+ 3.1 [MeV] L @ Ejgas) = —35.6 + 5.6 [MeV]
ol cot SF5(W) / S ply cot SF5(W) /
= —200 = —200
400 / 400 /
= FRE has smaller errors
ool // L
~
—380 —60 —40 —20 0 20 —380 —60 —40 —20 0 20
W—MB—MB* [MGV] W—MB—MB* [MGV]
m, = 416 [MeV]
2001
— /) One bound T, at each quark mass !
L @ Eje) = —68.1 £ 8.9 [MeV]
iy cot 05V ERE and GEM give consistent binding energy.
= —200
=]

—600

Effective Range Expansion (ERE) and a bound state

e

_

N

N

.

reliability of two analyses

" —V-p?

—40 —20

20
W — Mg — Mg [MeV]

bound state energy by the Gaussian

Expansion Method (GEM)

?

—30 —60

analytic continuation of ERE, physical pole condition is satisfied

d

e < 0.

peot3(p) — (—v/=p?)]

P?=—pgsg



Chiral extrapolation of binding energy
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Consistency between two chiral extrapolation
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GEM has smaller errors.

Both chiral extrapolations are consistent. reliability of chiral extrapolations



V. Conclusions



S-wave potential between B and B* mesons in I(J¥) = 0(1T) HAL QCD method

EGmaert™) — 1548 £17.2 420 MeV,  Epoin e = 830+ 10.2 + 20 MeV.

Systematics (empirical)

MeV]

Binding Energy

potential spectra potential
0 | i |
., NRQCD{ NRQCD . Static 1. Consistency among NRQCD
| coupled ] (single)
P ! sirgle 2. The binding energy increases
—100 1 | COL_J_pled frOm S’Eath to NRQCD
—125 ==
i single
R 3. The binding energy decreases
e T from single to coupled.
—200

NRQCD x Single [This work]

NRQCD x Coupled [This work]

NRQCD x Single [L. Leskovec et al., (2019)] /
NRQCD x Single [P. Mohanta et al., (2020)] Z h k

Static x Single [P. Bicudo et al.; (2016)] an yO u ‘
Static x Coupled [P. Bicudo et al., (2017)]

o B4 B B4 A b4



