Evidence for a doubly charm tetraquark in DD* scattering

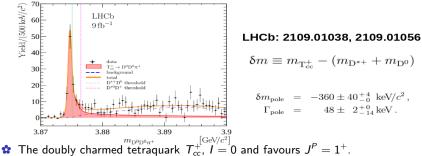
M. Padmanath

Mainz, Germany

@ Lattice 2022, Bonn 09th August, 2022

with S. Prelovsek. Based on article PhysRevLett.129.032002

The motivation, T_{cc}^+



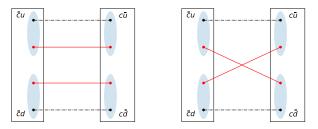
- The doubly charmed tetraquark T_{cc}^{+} , I = 0 and favours $J^{P} = 1^{+}$. Striking similarities with the longest known heavy exotic, X(3872).
- **‡** No features observed in $D^0D^+\pi^+$: possibly not I = 1.
- Near-threshold state from lattice QCD: Demands pole identification.
- ***** HALQCD procedure: HALQCD 2013. Attraction in $I = 0, J^P = 1^+$.
- Two other lattice investigations : HSC 2017, ILGTI 2018.
 No scattering amplitude determination involved.
- Another recent calculation: CLQCD 2022
 Finds attractive interaction, but no claim on poles.

Hadron spectroscopy using lattice QCD

Compute matrices of two point correlation functions

$$C_{ji}(t) = \langle 0|ar{O}_j(t)O_i(0)|0
angle = \sum_n rac{Z_n^n Z_j^n *}{2E_n} e^{-E_n(t)}$$

- ☆ For doubly charmed four quark systems near DD^* threshold, we use 'only' *O* of type $(\bar{q}\Gamma_1c)_{1_c}(\bar{q}'\Gamma_2c)_{1_c}$.
- ***** Wick contractions to compute: [c, q, q']



☆ Lattice QCD ensembles : CLS Consortium $m_{\pi} \sim 280$ MeV, $m_{K} \sim 467$ MeV, $a \sim 0.086$ fm Spatial volumes: $L \sim 2$ fm and $L \sim 2.7$ fm Charm quark masses $(m_{c}^{?})$: $m_{D} \sim 1762$ MeV and 1927 MeV

M. Padmanath

Irreps and interpolators

\vec{P}	LG	Λ^P	J^P	l	interpolators: $M_1(\vec{p_1}^2)M_2(\vec{p_2}^2)$
(0, 0, 0)	O_h	T_1^+	1+	0,2	$D(0)D^*(0), D(1)D^*(1)$ [2], $D^*(0)D^*(0)$
(0,0,0)				1	$D(1)D^{*}(1)$
$(0,0,1)\frac{2\pi}{L}$	Dic_4	A_2	$0^{-}, 1^{+}, 2^{-}$	0, 1, 2	$D(0)D^*(1), \ D(1)D^*(0)$
$(1,1,0)\frac{2\pi}{L}$	Dic_2	A_2	$0^{-}, 1^{+}, 2^{-}, 2^{+}$	0, 1, 2	$D(0)D^{*}(2), D(1)D^{*}(1)$ [2], $D(2)D^{*}(1)$
$(0,0,2)\frac{2\pi}{L}$	Dic_4	A_2	$0^{-}, 1^{+}, 2^{-}$	0, 1, 2	$D(1)D^{*}(1)$

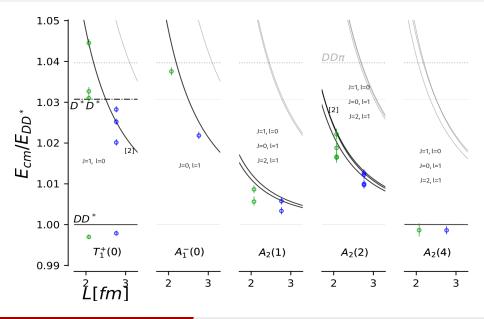
***** DD^* scattering in *s*-wave leads to $J^P = 1^+$. Our study focus on $T_1^+[0]$, $A_2[1]$, $A_2[2]$, and $A_2[4]$.

Higher partial wave effects: Consider only up to $l \le 2$ and $J \le 2$. $l = 1 \rightarrow J^P = 0^-/2^- \Rightarrow A_2[1], A_2[2], \text{ and } A_2[4].$ $l = 2 \rightarrow J^P = 1^+ \Rightarrow A_2[1], A_2[2], \text{ and } A_2[4] \text{ and also introduce mixing.}$ $l = 2 \rightarrow J^P = 2^+ \Rightarrow A_2[2].$

✿ We assume contributions from $l \ge 2$ to be negligible. $l = 1 \rightarrow J^P = 0^-$ are constrained also considering $A_1^-[0]$.

 $+/{\rm g}$ refers to positive parity, $-/{\rm u}$ refers to negative parity.

Finite volume spectrum T_{cc}



T_{cc} from DD* scattering M. Padmanath Helmholtz Institut Mainz (5 of 14)

What do we learn till now?

- The inelastic threshold D*D* is sufficiently high.
 Assume elastic scattering near DD* threshold.
- At $m_{\pi} \sim 280$ MeV, lowest three particle threshold $DD\pi$ is higher up the lowest two particle inelastic threshold.
- Clear signatures for shifts from non-interacting scenario in s-wave and p-wave scattering.
- Solution consistent with the non-interacting level. l = 2 contribution consistent with the non-interacting level.
- **\$** Safe to assume no effects from $l \ge 2$.

Scattering amplitude and the parametrization

☆ For the DD* system [total spin equals 1], and assuming only *l* < 2, we have a 3 × 3 diagonal *t* matrix.

$$(t_l^{(J)})^{-1} = \frac{2(\tilde{K}_l^{(J)})^{-1}}{E_{cm}p^{2l}} - i\frac{2p}{E_{cm}}, \quad (\tilde{K}_l^{(J)})^{-1} = p^{2l+1}\cot\delta_l^{(J)}$$

Using an effective range expansion near-threshold, we have

$$\tilde{K}^{-1} = \begin{bmatrix} \frac{1}{a_0^{(1)}} + \frac{r_0^{(1)}p^2}{2} & 0 & 0\\ 0 & \frac{1}{a_1^{(0)}} + \frac{r_1^{(0)}p^2}{2} & 0\\ 0 & 0 & \frac{1}{a_1^{(2)}} \end{bmatrix} J = 1 \quad l=0$$

$$J = 0 \quad l=1$$

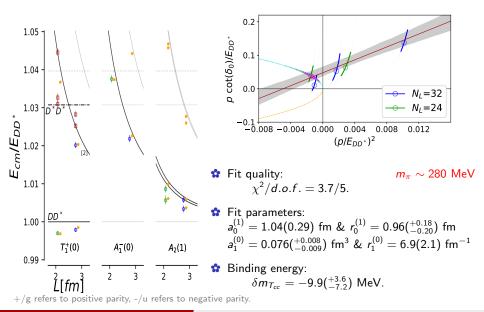
$$J = 2 \quad l=1$$

Constraint on bound states:

$$p^{2l+1} \cot(\delta_l) = -1^{\alpha} p^{2l} \sqrt{-p^2}$$

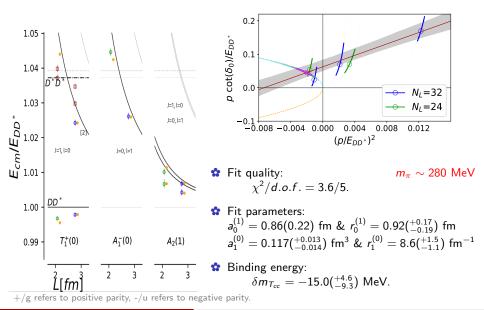
 $\alpha = 1(2)$ for a real (virtual) bound state.

 DD^* scattering in I = 0, 1 @ $m_c^{(h)}$



M. Padmanath

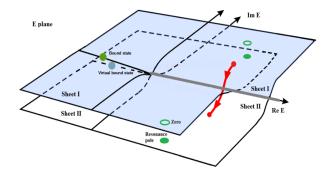
 DD^* scattering in I = 0, 1 @ $m_c^{(I)}$



T_{CC} from DD* scattering

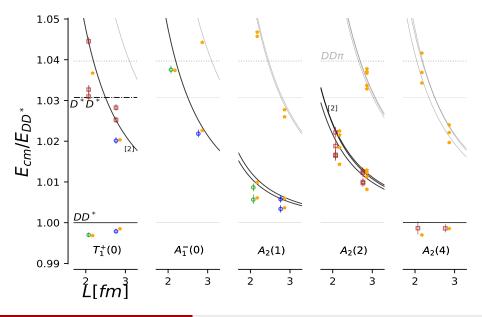
M. Padmanath

Virtual bound states



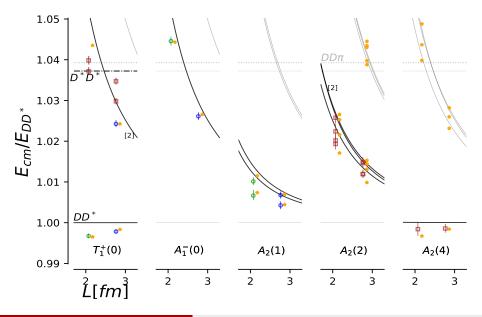
- ☆ $T \propto (p \cot \delta_0 ip)^{-1}$. Bound state is a pole in T with p = i|p|. Virtual bound state is a pole in T with p = -i|p|.
- An example for virtual bound state: spin-singlet dineutron.

Predicting the finite volume spectrum @ $m_c^{(h)}$



T_{cc} from DD* scattering M. Padmanath Helmholtz Institut Mainz (11 of 14)

Predicting the finite volume spectrum @ $m_c^{(\prime)}$



T_{cc} from DD* scattering M. Padmanath Helmholtz Institut Mainz (12 of 14)

Our observations and inferences

\$A shallow virtual bound state pole in*s* $-wave related to <math>T_{cc}$.

	m_D [MeV]	$\delta m_{T_{cc}}$ [MeV]	T_{cc}
lat. $(m_{\pi} \simeq 280 \text{ MeV}, m_c^{(h)})$	1927(1)	$-9.9^{+3.6}_{-7.2}$	virtual bound st.
lat. $(m_{\pi} \simeq 280 \text{ MeV}, m_c^{(l)})$	1762(1)	$-15.0(^{+4.6}_{-9.3})$	virtual bound st.
exp.	1864.85(5)	-0.36(4)	bound st.

Observations in line with the expected light and charm quark mass dependence of a near-threshold pole in simple Quantum Mechanical potentials.

An extended discussion in the next talk by S. Prelovsek

Summary

- First observation of a shallow virtual bound state pole in the DD* s-wave scattering amplitude related to T_{cc} from lattice QCD.
- The results are qualitatively robust to disretization effects for such a near-threshold pole, where these effects are expected to be small.

- No features observed in *p*-wave in the energy region constrained by the finite-volume spectrum.
- Quark mass dependence and comparison between lattice result and T_{cc}.
 See next talk, by S. Prelovsek

Thank you