

## THE UNIVERSITY of EDINBURGH



## Exploring distillation at the SU(3) flavor symmetric point

Fabian Joswig in collaboration with F. Erben, M. T. Hansen, N. Lachini and A. Portelli

## Hadronic D-decays

Motivation

• LHCb observed CP violation in D  $ightarrow \pi\pi$ , KK (Phys. Rev. Lett. 122 (2019) 21)

$$\Delta A_{
m CP} = A_{
m CP}(K^-K^+) - A_{
m CP}(\pi^-\pi^+) = (-15.4 \pm 2.9) imes 10^{-4}$$

• Lattice calculations can provide the standard model prediction



• First model calculation:  $D \rightarrow K\pi$  at the SU(3) symmetric point

## Hadronic D-decays

Lattice calculation

First full calculation of hadronic D-decays comes with various challenges:

$$|\mathsf{A}|^{2} = 8\pi \left\{ q \frac{\partial \phi}{\partial q} + k \frac{\partial \delta_{0}}{\partial k} \right\}_{k=k_{n}} \frac{\mathsf{E}_{n}^{2} m_{D}}{k_{n}^{3}} \left| \mathsf{Z}^{\overline{\mathrm{MS}}} \langle \mathsf{n}, \mathsf{L} | \mathcal{H}_{\mathrm{weak}} | \mathsf{D}, \mathsf{L} \rangle \right|^{2}$$

- Non-perturbative renormalization of four-quark operators
- Extraction of the matrix element from three-point functions
- Multi-hadron final state
- Finite volume formalism
  - ightarrow See Max's talk (Monday 5:10 pm)

Gauge field ensembles

- Lattices generated by the OPEN LATtice initiative
- Three flavors of stabilised Wilson fermions at the SU(3) symmetric point

| Label    | $T 	imes L^3/a^4$ | $\beta$ | $\kappa$  | a (fm) | $m_\pi$ (MeV) |
|----------|-------------------|---------|-----------|--------|---------------|
| a12m400  | $96 	imes 24^3$   | 3.685   | 0.1394305 | 0.12   | 410           |
| a094m400 | $96 	imes 32^3$   | 3.8     | 0.1389630 | 0.094  | 410           |
| a064m400 | $96 	imes 48^3$   | 4.0     | 0.1382720 | 0.064  | 410           |

Software

- Our distillation framework is fully open source and based on
  - Grid: A data parallel C++ library (github.com/paboyle/Grid)
  - Hadrons: A Grid based workflow management system (github.com/aportelli/Hadrons)
- The distillation code was initially developed for domain wall fermions but the flexibility of Grid & Hadrons allows us to also use it for Wilson fermions.
  - $ightarrow\,$  See Nelson's talk, tomorrow at 5:40 pm
- Our code runs on all major architectures including x86, Nvidia, AMD and Intel GPUs.
- Ongoing work on solvers for Wilson clover type fermions
  - $\rightarrow$  See Felix Ziegler's talk (Monday 3:20 pm)
  - ightarrow See Nils Meyer's poster

Distillation

• Smearing matrix from low-mode subspace of  $-\nabla^2$ 

$$S(t) = \sum_{k=1}^{N_{
m vec}} {
m v}_k(t) {
m v}_k(t)^\dagger$$

• Correlators can be cost effectively built from the smeared quark fields

$$\tilde{q} = Sq$$

• Construct GEVP matrix from bilinear and two-hadron operators

**Operator structure** 

$$K_0^+(\vec{p}) \text{ with } |p| = 0$$
  

$$K(\vec{p})\pi(-\vec{p}) \text{ with } |p| = 0$$
  

$$K(\vec{p})\pi(-\vec{p}) \text{ with } |p| = \sqrt{1}\frac{2\pi}{L}$$
  

$$K(\vec{p})\pi(-\vec{p}) \text{ with } |p| = \sqrt{3}\frac{2\pi}{L}$$
  

$$K(\vec{p})\pi(-\vec{p}) \text{ with } |p| = \sqrt{4}\frac{2\pi}{L}$$

Table: GEVP operator basis for *s*-wave scattering in the rest frame.

Choosing the number of eigenvectors  $N_{\rm vec}$ 

- The choice for  $N_{\rm vec}$  affects
  - Computational cost
  - Statistical error
  - Operator smearing
- We choose an empirical approach and look at the energy spectrum as a function of N<sub>vec</sub>.



Figure: Smearing profile as a function of  $N_{\rm vec}$ .

#### s-wave $I = 3/2 K\pi$ scattering Ground state energy in the rest frame



Effective mass from a GEVP with  $t_0 = 2$  for different values of  $N_{\rm vec}$ .

#### *s*-wave $I = 3/2 K\pi$ scattering First excited state energy in the rest frame



Effective mass from a GEVP with  $t_0 = 2$  for different values of  $N_{\rm vec}$ .

#### *s*-wave $I = 3/2 K\pi$ scattering Second excited state energy in the rest frame



Effective mass from a GEVP with  $t_0 = 2$  for different values of  $N_{\rm vec}$ .

#### s-wave $I = 3/2 K\pi$ scattering Third excited state energy in the rest frame



Effective mass from a GEVP with  $t_0 = 2$  for different values of  $N_{\rm vec}$ .

#### $I = 3/2 \ K\pi$ scattering Scattering phase shift



We model the phase shift as a linear function of the momentum.

#### $I = 3/2 K\pi$ scattering Lellouch-Lüscher proportionality factors

| 9          | F         |
|------------|-----------|
| 0.110(16)  | 117(27)   |
| 1.0253(87) | 69.84(65) |
| 1.4375(93) | 59.60(41) |
| 1.7530(96) | 80.99(37) |
|            |           |

Table: Finite-to-infinite volume proportionality factors  $F^{2} = 8\pi \left\{ q \frac{\partial \phi}{\partial q} + k \frac{\partial \delta_{0}}{\partial k} \right\} \frac{E_{n}^{2}}{k_{n}^{3}}$ 



## **Conclusions & Outlook**

Exploring distillation at the SU(3) flavor symmetric point

- We have a working and flexible distillation setup.
  - $N_{\rm vec} = 60$  seems to be a good compromise for what we want to achieve.
  - First results for  $I = 3/2 K\pi$  scattering and finite-to-infinite volume proportionality factors.
- The next steps:
  - Extend analysis to moving frames.
  - Our dataset also allows us to look at  $I = 1/2 K\pi$  as well as  $\pi\pi$  and  $K\bar{K}$  scattering.
  - We will perform the calculation at multiple lattice spacings with (approximately) constant quark masses and physical volume.

#### Conclusions & Outlook Steps towards hadronic D-decays

$$|\mathsf{A}|^{2} = 8\pi \left\{ q \frac{\partial \phi}{\partial q} + k \frac{\partial \delta_{0}}{\partial k} \right\}_{k=k_{n}} \frac{\mathsf{E}_{n}^{2} m_{\mathsf{D}}}{k_{n}^{3}} \left| \mathsf{Z}^{\overline{\mathrm{MS}}} \langle n, \mathsf{L} | \mathcal{H}_{\mathrm{weak}} | \mathsf{D}, \mathsf{L} \rangle \right|^{2}$$

- Non-perturbative renormalization of four-quark operators
- Extraction of the matrix element from three-point functions
- Multi-hadron final state
- Finite volume formalism