THE UNIVERSITY of EDINBURGH

Exploring distillation at the SU(3) flavor symmetric point

Fabian Joswig

in collaboration with F. Erben, M. T. Hansen, N. Lachini and A. Portelli

Hadronic D-decays

Motivation

- LHCb observed CP violation in $D \rightarrow \pi \pi$, KK (Phys. Rev. Lett. 122 (2019) 21)

$$
\Delta \mathrm{A}_{\mathrm{CP}}=\mathrm{A}_{\mathrm{CP}}\left(K^{-} K^{+}\right)-\mathrm{A}_{\mathrm{CP}}\left(\pi^{-} \pi^{+}\right)=(-15.4 \pm 2.9) \times 10^{-4}
$$

- Lattice calculations can provide the standard model prediction

- First model calculation: $D \rightarrow K \pi$ at the $S U(3)$ symmetric point

Hadronic D-decays

Lattice calculation

First full calculation of hadronic D-decays comes with various challenges:

$$
\left.|A|^{2}=8 \pi\left\{q \frac{\partial \phi}{\partial q}+k \frac{\partial \delta_{0}}{\partial k}\right\}_{k=k_{n}} \frac{E_{n}^{2} m_{D}}{k_{n}^{3}}\left|z^{\overline{\mathrm{MS}}}\langle n, L| \mathcal{H}_{\text {weak }}\right| D, L\right\rangle\left.\right|^{2}
$$

- Non-perturbative renormalization of four-quark operators
- Extraction of the matrix element from three-point functions
- Multi-hadron final state
- Finite volume formalism
\rightarrow See Max's talk (Monday 5:10 pm)

Computational setup

Gauge field ensembles

- Lattices generated by the OPEN LATtice initiative
- Three flavors of stabilised Wilson fermions at the $S U(3)$ symmetric point

Label	$T \times L^{3} / a^{4}$	β	κ	$a(f m)$	$m_{\pi}(\mathrm{MeV})$
a12m400	96×24^{3}	3.685	0.1394305	0.12	410
a094m400	96×32^{3}	3.8	0.1389630	0.094	410
a064m400	96×48^{3}	4.0	0.1382720	0.064	410

Computational setup

Software

- Our distillation framework is fully open source and based on
- Grid: A data parallel C++ library (github.com/paboyle/Grid)
- Hadrons: A Grid based workflow management system (github. com/aportelli/Hadrons)
- The distillation code was initially developed for domain wall fermions but the flexibility of Grid \& Hadrons allows us to also use it for Wilson fermions.
\rightarrow See Nelson's talk, tomorrow at 5:40 pm
- Our code runs on all major architectures including x86, Nvidia, AMD and Intel GPUs.
- Ongoing work on solvers for Wilson clover type fermions
\rightarrow See Felix Ziegler's talk (Monday 3:20 pm)
\rightarrow See Nils Meyer's poster

Computational setup

Distillation

- Smearing matrix from low-mode subspace of $-\nabla^{2}$

$$
\mathcal{S}(t)=\sum_{k=1}^{N_{\text {vec }}} v_{k}(t) v_{k}(t)^{\dagger}
$$

- Correlators can be cost effectively built from the smeared quark fields

$$
\tilde{q}=\mathcal{S} q
$$

- Construct GEVP matrix from bilinear and two-hadron operators

Operator structure

$$
\begin{aligned}
K_{0}^{+}(\vec{p}) \text { with }|p| & =0 \\
K(\vec{p}) \pi(-\vec{p}) \text { with }|p| & =0 \\
K(\vec{p}) \pi(-\vec{p}) \text { with }|p| & =\sqrt{1} \frac{2 \pi}{L} \\
K(\vec{p}) \pi(-\vec{p}) \text { with }|p| & =\sqrt{2} \frac{2 \pi}{L} \\
K(\vec{p}) \pi(-\vec{p}) \text { with }|p| & =\sqrt{3} \frac{2 \pi}{L} \\
K(\vec{p}) \pi(-\vec{p}) \text { with }|p| & =\sqrt{4} \frac{2 \pi}{L}
\end{aligned}
$$

Table: GEVP operator basis for s-wave scattering in the rest frame.

Computational setup

Choosing the number of eigenvectors $N_{\text {vec }}$

- The choice for $N_{\text {vec }}$ affects
- Computational cost
- Statistical error
- Operator smearing
- We choose an empirical approach and look at the energy spectrum as a function of $N_{\text {vec }}$.

Figure: Smearing profile as a function of $N_{\text {vec }}$.

s-wave $I=3 / 2 K \pi$ scattering

Ground state energy in the rest frame

Effective mass from a GEVP with $t_{0}=2$ for different values of $N_{\text {vec. }}$.

s-wave $I=3 / 2 K \pi$ scattering

First excited state energy in the rest frame

Effective mass from a GEVP with $t_{0}=2$ for different values of $N_{\text {vec }}$.

s-wave $I=3 / 2 K \pi$ scattering

Second excited state energy in the rest frame

Effective mass from a GEVP with $t_{0}=2$ for different values of N_{vec}.

s-wave $I=3 / 2 K \pi$ scattering

Third excited state energy in the rest frame

Effective mass from a GEVP with $t_{0}=2$ for different values of $N_{\text {vec }}$.

$I=3 / 2 K \pi$ scattering

Scattering phase shift

We model the phase shift as a linear function of the momentum.

$I=3 / 2 K \pi$ scattering

Lellouch-Lüscher proportionality factors

q	F
$0.110(16)$	$117(27)$
$1.0253(87)$	$69.84(65)$
$1.4375(93)$	$59.60(41)$
$1.7530(96)$	$80.99(37)$

Table: Finite-to-infinite volume proportionality factors
$F^{2}=8 \pi\left\{q \frac{\partial \phi}{\partial q}+k \frac{\partial \delta_{0}}{\partial k}\right\} \frac{E_{n}^{2}}{k_{n}^{3}}$

Conclusions \& Outlook

Exploring distillation at the SU(3) flavor symmetric point

- We have a working and flexible distillation setup.
- $N_{\text {vec }}=60$ seems to be a good compromise for what we want to achieve.
- First results for $I=3 / 2 K \pi$ scattering and finite-to-infinite volume proportionality factors.
- The next steps:
- Extend analysis to moving frames.
- Our dataset also allows us to look at $I=1 / 2 K \pi$ as well as $\pi \pi$ and $K \bar{K}$ scattering.
- We will perform the calculation at multiple lattice spacings with (approximately) constant quark masses and physical volume.

Conclusions \& Outlook

Steps towards hadronic D-decays

$$
\left.|\mathrm{A}|^{2}=8 \pi\left\{q \frac{\partial \phi}{\partial q}+k \frac{\partial \delta_{0}}{\partial k}\right\}_{k=k_{n}} \frac{E_{n}^{2} m_{D}}{k_{n}^{3}}\left|z^{\overline{\mathrm{MS}}}\langle n, L| \mathcal{H}_{\text {weak }}\right| D, L\right\rangle\left.\right|^{2}
$$

- Non-perturbative renormalization of four-quark operators
- Extraction of the matrix element from three-point functions
- Multi-hadron final state
- Finite volume formalism

