$\pi^{+} \pi^{+} K^{+}$and $K^{+} K^{+} \pi^{+}$interactions from the lattice

Steve Sharpe University of Washington

Based on work with Tyler Blanton, Zack Draper, Drew Hanlon, Ben Hörz, Colin Morningstar, \& Fernando Romero-López: 2111.12734 [hep-lat] (JHEP)
\& in preparation

\&

Overall program

[References in backup slides]

- Use finite-volume 2- and 3-particle spectra, obtained with lattice QCD, to determine 2- and 3-particle scattering amps
- Formalism exists for arbitrary choices of spinless particles
- Implemented for 3 identical scalars $\left(3 \pi^{+}, 3 K^{+}\right) \& 3 \pi(I=1) \& \phi^{4}$ theory
- Many systems of interest involve nondegenerate particles, e.g. $\pi \pi N$
- First step in this direction is to consider " $2+\mathrm{I}$ systems" $\pi^{+} \pi^{+} K^{+}$and $K^{+} K^{+} \pi^{+}$
- Dominant s-wave interactions are mildly repulsive, so no resonances in 2-particle subchannels or overall system
- Use RFT formalism

Workflow

2- and 3-particle spectra

Infinite-volume integral eqs.

- $\mathscr{K}_{\text {df, } 3}$ is a real, infinite-volume (but scheme-dependent) K matrix that is smooth aside from possible 3-particle resonance poles; integral equations ensure unitarity of \mathscr{M}_{3}
- Parametrize \mathscr{K}_{2} and $\mathscr{K}_{\mathrm{dff,3}}$ in an "effective-range-like expansion" about threshold and determine parameters by fitting spectrum
- With multiple frames and waves, there is not a 1-to-1 relation between energies and phase shifts, so a global fit is required

Workflow

- $\mathscr{K}_{\mathrm{dff}, 3}$ is a real, infinite-volume (but scheme-dependent) K matrix that is smooth aside from possible 3-particle resonance poles; integral equations ensure unitarity of \mathscr{M}_{3}
- Parametrize \mathscr{K}_{2} and $\mathscr{K}_{\mathrm{dff,3}}$ in an "effective-range-like expansion" about threshold and determine parameters by fitting spectrum
- With multiple frames and waves, there is not a 1-to-1 relation between energies and phase shifts, so a global fit is required

New features for 2+1 systems

[Blanton, SRS, 2105.I 2904 (PRD)]
[Blanton, Romero-López, SRS, 2 I I I.I 2734 (JHEP)]; https://github.com/ferolo2/QC3_release

$$
\operatorname{det}\left[\widehat{F}_{3}^{-1}(E, \boldsymbol{P}, L)+\widehat{\mathcal{K}}_{\mathrm{df}, 3}\left(E^{*}\right)\right]=0
$$

- QC3 involves matrices with an additional spectator-flavor index: $k \ell m i$
- E.g., for $\pi^{+} \pi^{+} K^{+}$, spectator is π^{+}($i=1 \Rightarrow \pi^{+} K^{+}$scattering) or K^{+}($i=2 \Rightarrow \pi^{+} \pi^{+}$scattering)
- All partial waves contribute to $\pi^{+} K^{+}$scattering $(i=1)$, while only even waves contribute to $\pi^{+} \pi^{+}$scattering $(i=2)$
- In practice, we set $\ell_{\max }=1$, in order to avoid too many parameters, particularly in $\mathscr{K}_{\text {df }, 3}$
- Cut-off function H , must be chosen to avoid left-hand cuts, which occur when $s_{2}=\left|m_{1}^{2}-m_{2}^{2}\right|$ in subchannel with particles of masses $m_{1} \& m_{2}$
- Python implementation of QC3 available on GitHub

LQCD details

- Use similar methods as for $3 \pi^{+}$and $3 K^{+}$[Blanton, Hanlon, Hörz, Morningstar, Romero-López, SRS, 2106.05590 (JHEP)]
- CLS ensembles D200 \& N203 (open BC in time): $a \approx 0.064 \mathrm{fm}$
- Use stochastic LapH \& contraction tricks to obtain multiple levels for $2 \pi^{+}, \pi^{+} K^{+}, 2 K^{+}$, $\pi^{+} \pi^{+} K^{+} \& \pi^{+} K^{+} K^{+}$in frames with up to $d^{2}=3(\mathbf{P}=(2 \pi / L) \mathbf{d})$, projected onto irreps of corresponding finite-volume little groups
- Fit to correlator ratios to directly obtain shifts from free energies in "lab frame", $\Delta E_{\text {lab }}$

	$(L / a)^{3} \times(T / a)$	$M_{\pi}[\mathrm{MeV}]$	$M_{K}[\mathrm{MeV}]$	$N_{\text {cfg }}$	Bin size	$M_{\pi} L$
N203	$48^{3} \times 128$	340	440	771	1	5.4
D200	$64^{3} \times 128$	200	480	2000	3	4.2

Example of levels

D200: $\pi^{+} \pi^{+} K^{+}$

- Previously converted energy shifts $\Delta E_{\text {lab }}$ to E_{CM} using $M_{\pi} \& M_{K}$ determined at rest on given jackknife sample, and with continuum dispersion relation, and then fit QCs to E_{CM}
- Increases errors in data, leading to fits that seem better than they really are
- Here fit QCs directly to $\Delta E_{\text {lab }}$

Threshold expansion for \mathscr{K}_{2}

- Work to linear order in q^{2} expansion, dropping $\mathcal{O}\left(q^{4}\right)$ terms
- Implies that we keep s- and p-wave terms in $\pi^{+} K^{+}$channel, but only s waves for identical pairs
- Previously we found that d-wave terms were needed for a good description of $2 \pi^{+}$ and $2 K^{+}$levels, but here that would lead to too many parameters
- Thus we expect (and find) poorer global fits
- Use forms with Adler zero rather than effective-range expansions, since we have previously found the former to provide better fits for $2 \pi^{+} / 3 \pi^{+}$system

$$
\begin{array}{ll}
\text { For } 2 \pi^{+}\left(\& \text { similarly } 2 K^{+}\right): & q \cot \delta_{0}^{\pi \pi}=\frac{M^{2} \sqrt{s_{2}}}{s_{2}-2 z^{2} M^{2}}\left(B_{0}^{\pi \pi}+B_{1}^{\pi \pi} q^{2}\right) \\
\text { For } \pi^{+} K^{+} s \text {-wave: } & q \cot \delta_{0}^{\pi K}=\frac{M_{\pi}^{2} \sqrt{s_{2}}}{s_{2}-M_{\pi}^{2}-M_{K}^{2}}\left(B_{0}^{\pi K}+B_{1}^{\pi K} q^{2}\right) \\
\text { For } \pi^{+} K^{+} \text {p-wave: } & q^{3} \cot \delta_{1}^{\pi K}=\frac{M_{\pi}^{3} \sqrt{s_{2}}}{M_{\pi}+M_{K}} \frac{1}{P_{0}^{\pi K}}
\end{array}
$$

- Work to linear order, dropping $\mathcal{O}\left(\Delta^{2}\right)$ terms
- 4 terms allowed by symmetries (Lorentz, $1 \leftrightarrow 1^{\prime}$, time-reversal, parity)
- Only \mathscr{K}^{E} couples to nontrivial irreps: contains $\mathrm{J}=0$, I while other terms only have $\mathrm{J}=0$

$$
\mathcal{K}_{\mathrm{df}, 3}=\mathcal{K}_{\mathrm{df}, 3}^{\mathrm{iso}, 0}+\mathcal{K}_{\mathrm{df}, 3}^{\mathrm{iso}, 1} \Delta+\mathcal{K}_{\mathrm{df}, 3}^{B, 1} \Delta_{2}^{S}+\mathcal{K}_{\mathrm{df}, 3}^{E, 1} \tilde{t}_{22}
$$

$$
\begin{aligned}
\Delta & =\frac{s-M}{M^{2}}, \quad s=\left(p_{1}+p_{1^{\prime}}+p_{2}\right)^{2}=P^{2}, \\
\Delta_{2}^{S} & =\Delta_{2}+\Delta_{2}^{\prime}, \quad \Delta_{2}=\frac{\left(p_{1}+p_{1^{\prime}}\right)^{2}-4 m_{1}^{2}}{M^{2}}, \quad \Delta_{2}^{\prime}=\frac{\left(p_{1}^{\prime}+p_{1^{\prime}}^{\prime}\right)^{2}-4 m_{1}^{2}}{M^{2}}, \\
\tilde{t}_{22} & =\frac{t_{22}}{M^{2}}=\frac{\left(p_{2}-p_{2}^{\prime}\right)^{2}}{M^{2}}, \quad M=2 m_{1}+m_{2} .
\end{aligned}
$$

Preliminary results

9-parameter fit to $59 \pi^{+} \pi^{+}, \pi^{+} K^{+}, \pi^{+} \pi^{+} K^{+}$levels on D200: $\chi^{2} /$ dof $=112 / 50$

Preliminary results

9-parameter fit to $59 \pi^{+} \pi^{+}, \pi^{+} K^{+}, \pi^{+} \pi^{+} K^{+}$levels on D200: $\chi^{2} /$ dof $=112 / 50$

Preliminary results
 D200 πK fit to 16 levels

3-parameter fit to $16 \pi^{+} K^{+}$levels on D200: $\chi^{2} /$ dof $=15.5 / 13$

Preliminary results

Fit predicts levels above inelastic threshold

3-parameter fit to $16 \pi^{+} K^{+}$levels on D200: $\chi^{2} /$ dof $=15.5 / 13$

Conclusions from fits

- Working at linear order (s- + p-wave) in threshold expansions gives a reasonable description of energy levels, although significantly worse than that we obtained for identical particles when including d waves
- Fits continue to predict levels with good accuracy above inelastic threshold, indicating that the threshold expansions are not breaking down
- Simultaneous fits to 2- and 3-particle spectra lead to somewhat smaller errors in 2particle parameters compared to fits to 2-particle spectra alone
- We obtain I-2\% precision in s-wave scattering lengths for all channels
- We find attractive p-wave $\pi^{+} K^{+}$scattering length, but only with I- 2σ significance
- Opposite sign to (very weakly) repulsive experimental result
- We find nonzero $\mathscr{K}_{\mathrm{dff}, 3}$ with $3-5 \sigma$ significance for $\pi^{+} \pi^{+} K^{+} \& K^{+} K^{+} \pi^{+}$
- To do better would require a reduction in the $\sim 10 \%$ errors in $\Delta E_{\text {lab }}$

Comparison with ChPT

Simultaneous fits to $a_{0}^{\pi \pi}, a_{0}^{\pi K}, a_{0}^{K K}$ using NLO SU(3) ChPT

Determine LECs (at scale $4 \pi F_{\pi}$)

$\chi^{2} /$ dof	$L_{\pi \pi}$	L_{5}
$5.5 / 4$	$-0.00089(3)$	$-0.00050(8)$

Figure 7: Results for $M_{\pi}^{2} \mathcal{K}^{B, E}(\pi \pi K)$ compared to generic NLO ChPT forms.

Figure 10: Results for $M_{K}^{2} \mathcal{K}^{B, E}(K K \pi)$ compared to generic NLO ChPT forms.

Generic NLO ChPT forms:

$$
\begin{aligned}
& M_{\pi}^{2} \mathcal{K}_{\mathrm{df}, 3}^{B, E}(\pi \pi K)=c_{B E} r_{\pi}^{4} r_{K}^{2} \\
& \\
& \qquad r_{\pi}=\frac{M_{\pi}}{F_{\pi}} \text { and } r_{K}=\frac{M_{K}}{F_{K}}
\end{aligned}
$$

$$
M_{\pi}^{2} \mathcal{K}_{\mathrm{df}, 3}^{B, E}(K K \pi)=c_{B E} r_{K}^{4} r_{\pi}^{2}
$$

Summary \& Outlook

- (First step of) 3-particle formalism successfully applied to $2+1$ systems
- We encountered no problems with unphysical solutions in applying the QC3
- Enlarged matrices in QC3 require small clusters to perform fits in ~days
- Determining 3-particle interaction ($\mathscr{K}_{\mathrm{df}, 3}$) remains challenging
- Current \& future work
- Analysis should be extended to chiral behavior of effective range
- Solving integral equations (second step of formalism)
- Physical-point ensembles [See plenary talk by Fernando Romero-López]
- Extend to systems with 2- and 3-particle resonant behavior (e.g. $3 \pi(I=0,1), \pi \pi N)$
- Dreaming of 3 neutrons (formalism in progress [Draper, Hansen, Romero-López, SRS])

Thanks Any questions?

Backup slides

RFT 3-particle papers

Max Hansen \& SRS:

"Relativistic, model-independent, three-particle quantization condition,"
arXiv:1408.5933 (PRD) [HS14]
"Expressing the 3-particle finite-volume spectrum in terms of the 3-to-3 scattering amplitude," arXiv:1504.04028 (PRD) [HS15]
"Perturbative results for 2-\& 3-particle threshold energies in finite volume," arXiv: 1509.07929 (PRD) [HSPT15]
"Threshold expansion of the 3-particle quantization condition,"
arXiv:1602.00324 (PRD) [HSTH15]
"Applying the relativistic quantization condition to a 3-particle bound state in a periodic box," arXiv: 1609.04317 (PRD) [HSBS16]
"Lattice QCD and three-particle decays of Resonances," arXiv: 1901.00483 (Ann. Rev. Nucl. Part. Science) [HSREV19]

Raúl Briceño, Max Hansen \& SRS:

"Relating the finite-volume spectrum and the 2-and-3-particle S-matrix for relativistic systems of identical scalar particles," arXiv:1701.07465 (PRD) [BHS17]
"Numerical study of the relativistic three-body quantization condition in the isotropic approximation,"
arXiv:1803.04169 (PRD) [BHS18]
"Three-particle systems with resonant sub-processes in a finite volume," arXiv:1810.01429 (PRD 19) [BHS19]

SRS

"Testing the threshold expansion for three-particle energies at fourth order in φ^{4} theory," arXiv:1707.04279 (PRD) [SPT17]

Tyler Blanton, Fernando Romero-López \& SRS:

"Implementing the three-particle quantization condition including higher partial waves," arXiv:1901.07095 (JHEP) [BRS19] "I=3 three-pion scattering amplitude from lattice QCD," arXiv:1909.02973 (PRL) [BRS-PRL19]
"Implementing the three-particle quantization condition for $\pi^{+} \pi^{+} K^{+}$and related systems" 2111.12734 (JHEP)
S.R.Sharpe, " ${ }^{\text {Three-particle quantization condition for non-degenerate scalars," LATTICE 202I, 7/29//202| }}$

$21 / 17$

Tyler Blanton, Raúl Briceño, Max Hansen, Fernando Romero-López, SRS:

"Numerical exploration of three relativistic particles in a finite volume including two-particle resonances and bound states", arXiv:1908.02411 (JHEP) [BBHRS19]

Raúl Briceño, Max Hansen, SRS \& Adam Szczepaniak:
"Unitarity of the infinite-volume three-particle scattering amplitude arising from a finite-volume formalism,"
arXiv:1905.11188 (PRD)

Andrew Jackura, S. Dawid, C. Fernández-Ramírez, V. Mathieu, M. Mikhasenko, A. Pilloni, SRS \& A. Szczepaniak:
"On the Equivalence of Three-Particle Scattering Formalisms," arXiv:1905.12007 (PRD)

Max Hansen, Fernando Romero-López, SRS:

"Generalizing the relativistic quantization condition to include all three-pion isospin channels", arXiv:2003.10974 (JHEP) [HRS20]
"Decay amplitudes to three particles from finite-volume matrix elements," arXiv: 2101.10246 (JHEP)

Tyler Blanton \& SRS:

"Alternative derivation of the relativistic three-particle quantization condition," arXiv:2007.16188 (PRD) [BS20a]
"Equivalence of relativistic three-particle quantization conditions," arXiv:2007.16190 (PRD) [BS20b]

"Relativistic three-particle quantization condition for nondegenerate scalars," arXiv:2011.05520 (PRD)
"Three-particle finite-volume formalism for $\pi^{+} \pi^{+} K^{+} \&$ related systems," arXiv:2105.12904 (PRD)

Tyler Blanton, Drew Hanlon, Ben Hörz, Colin Morningstar, Fernando Romero-López \& SRS
" $3 \pi^{+} \& 3 K^{+}$interactions beyond leading order from lattice QCD," arXiv:2106.05590 (JHEP) " $\pi^{+} \pi^{+} K^{+}$and $K^{+} K^{+} \pi^{+}$interactions from lattice QCD ," in progress

Other work

* Implementing RFT integral equations

- A. Jackura et al., 2010.09820 [Solving s-wave RFT integral equations in presence of bound states]
- M.T. Hansen et al. (HADSPEC), 2009.04931, PRL [Calculating $3 \pi^{+}$spectrum and using to determine three-particle scattering amplitude]

* Reviews

- A. Rusetsky, 1911.01253 [LATTICE 2019 plenary]
- M. Mai, M. Döring and A. Rusetsky, 2103.00577 [Review of formalisms and chiral extrapolations]
- F. Romero-López, 2112.05170, [Three-particle scattering amplitudes from lattice QCD]
\star Numerical simulations in scalar theories
- F. Romero-López, A. Rusetsky, C. Urbach, 1806.02367, [2- \& 3-body interactions in φ^{4} theory]

Other work

\star NREFT approach

- H.-W. Hammer, J.-Y. Pang \& A. Rusetsky, 1706.07700, JHEP \& 1707.02176, JHEP [Formalism \& examples]
- M. Döring et al., 1802.03362, PRD [Numerical implementation]
- J.-Y. Pang et al., 1902.01111, PRD [large volume expansion for excited levels]
- F. Müller, T. Yu \& A. Rusetsky, 2011.14178, PRD [large volume expansion for I=1 three pion ground state]
- F. Romero-López, A. Rusetsky, N. Schlage \& C. Urbach, 2010.11715, JHEP [generalized large-volume exps]
- F. Müller \& A. Rusetsky, 2012.13957, JHEP [Three-particle analog of Lellouch-Lüscher formula]
- J-Y. Pang, M. Ebert, H-W. Hammer, F. Müller, A. Rusetsky, 2204.04807, JHEP, [Spurious poles in a finite volume]
- F. Müller, J-Y. Pang, A. Rusetsky, J-J. Wu, $\underline{2110.09351, ~ J H E P, ~[R e l a t i v i s t i c-i n v a r i a n t ~ f o r m u l a t i o n ~ o f ~ t h e ~ N R E F T ~ t h r e e-p a r t i c l e ~}$ quantization condition]
- J. Lozano, U. Meißner, F. Romero-López, A. Rusetsky \& G. Schierholz, 2205.11316, [Resonance form factors from finite-volu correlation functions with the external field method]

Alternate 3-particle approaches

\star Finite-volume unitarity (FVU) approach

- M. Mai \& M. Döring, 1709.08222, EPJA [formalism]
- M. Mai et al., 1706.06118 , EPJA [unitary parametrization of M_{3} involving R matrix; used in FVU approach]
- A. Jackura et al., 1809.10523, EPJC [further analysis of R matrix parametrization]
- M. Mai \& M. Döring, 1807.04746, PRL [3 pion spectrum at finite-volume from FVU]
- M. Mai et al., 1909.05749,PRD [applying FVU approach to $3 \pi^{+}$spectrum from Hanlon \& Hörz]
- C. Culver et al., 1911.09047, PRD [calculating $3 \pi^{+}$spectrum and comparing with FVU predictions]
- A. Alexandru et al., 2009.12358, PRD [calculating $3 K^{-}$spectrum and comparing with FVU predictions]
- R. Brett et al., 2101.06144 [determining $3 \pi^{+}$interaction from LQCD spectrum]

\star HALQCD approach

- T. Doi et al. (HALQCD collab.), 1106.2276, Prog.Theor.Phys. [3 nucleon potentials in NR regime]

