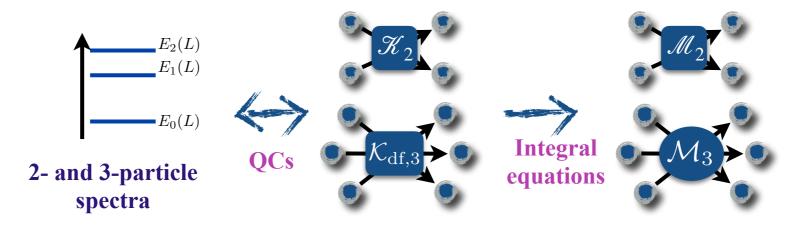
$\pi^+\pi^+K^+$ and $K^+K^+\pi^+$ interactions from the lattice

Based on work with Tyler Blanton, Zack Draper, Drew Hanlon, Ben Hörz, Colin Morningstar, & Fernando Romero-López: 2111.12734 [hep-lat] (JHEP) & in preparation

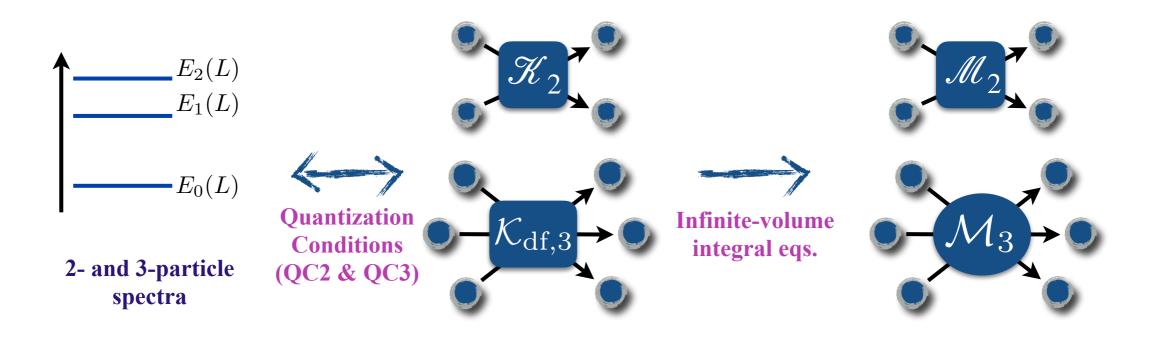
Overall program

[References in backup slides]



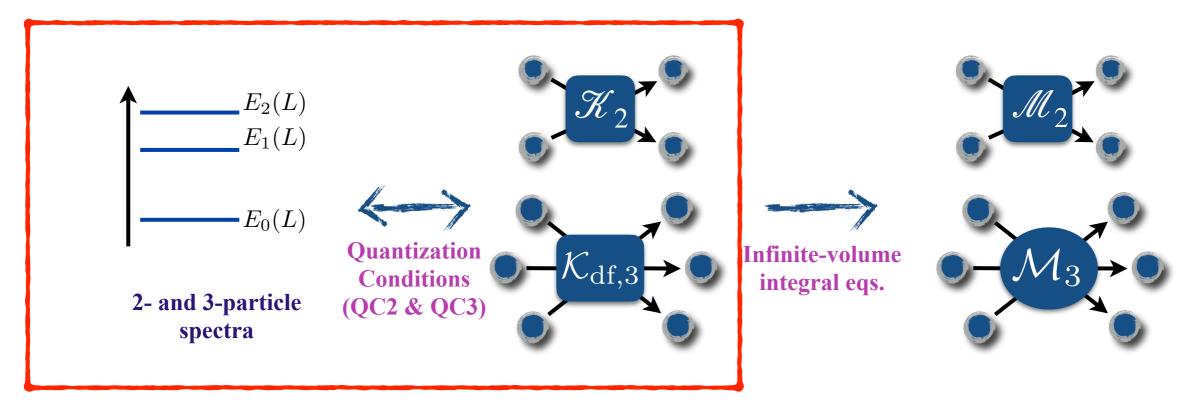
- Use finite-volume 2- and 3-particle spectra, obtained with lattice QCD, to determine 2- and 3-particle scattering amps
 - Formalism exists for arbitrary choices of spinless particles
 - Implemented for 3 identical scalars $(3\pi^+, 3K^+)$ & $3\pi(I=1)$ & ϕ^4 theory
 - Many systems of interest involve nondegenerate particles, e.g. $\pi\pi N$
 - First step in this direction is to consider "2+1 systems" $\pi^+\pi^+K^+$ and $K^+K^+\pi^+$
 - Dominant s-wave interactions are mildly repulsive, so no resonances in 2-particle subchannels or overall system
 - Use RFT formalism

Workflow



- $\mathcal{K}_{df,3}$ is a real, infinite-volume (but scheme-dependent) K matrix that is smooth aside from possible 3-particle resonance poles; integral equations ensure unitarity of \mathcal{M}_3
- Parametrize \mathscr{K}_2 and $\mathscr{K}_{df,3}$ in an "effective-range-like expansion" about threshold and determine parameters by fitting spectrum
- With multiple frames and waves, there is not a 1-to-1 relation between energies and phase shifts, so a global fit is required

Workflow



- $\mathcal{K}_{df,3}$ is a real, infinite-volume (but scheme-dependent) K matrix that is smooth aside from possible 3-particle resonance poles; integral equations ensure unitarity of \mathcal{M}_3
- Parametrize \mathscr{K}_2 and $\mathscr{K}_{df,3}$ in an "effective-range-like expansion" about threshold and determine parameters by fitting spectrum
- With multiple frames and waves, there is not a 1-to-1 relation between energies and phase shifts, so a global fit is required

New features for 2+1 systems

[Blanton, SRS, 2105.12904 (PRD)]

[Blanton, Romero-López, SRS, 2111.12734 (JHEP)]; https://github.com/ferolo2/QC3_release

$$\det\left[\widehat{F}_{3}^{-1}(E,\boldsymbol{P},L) + \widehat{\mathcal{K}}_{\mathrm{df},3}(E^{*})\right] = 0$$

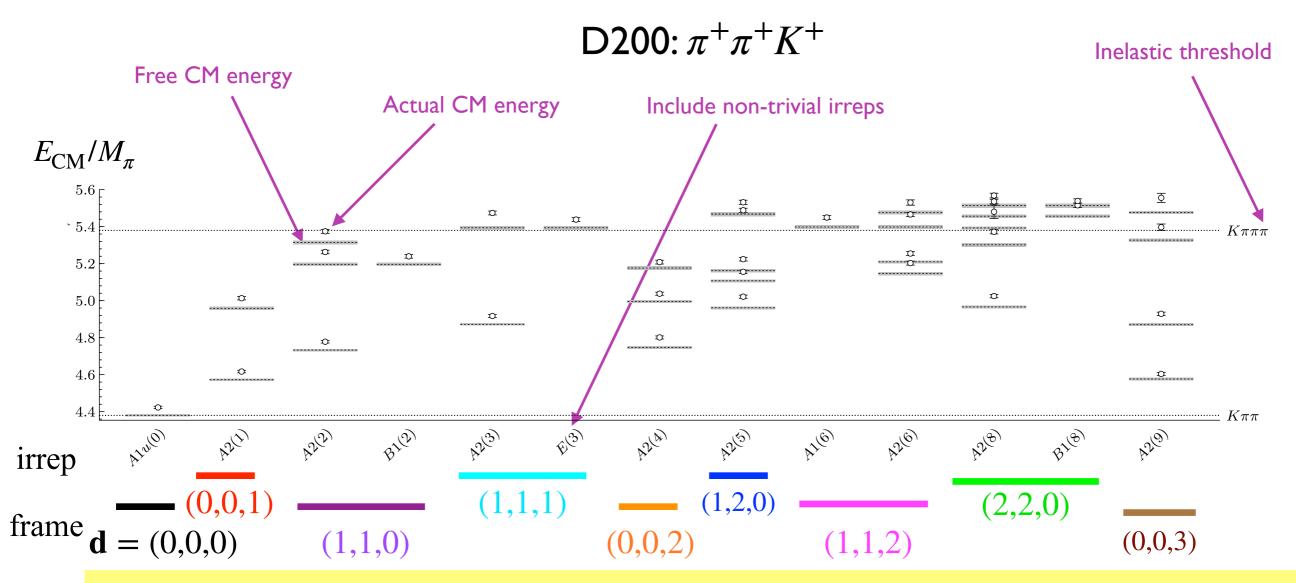
- QC3 involves matrices with an additional spectator-flavor index: $k\ell mi$
 - E.g., for $\pi^+\pi^+K^+$, spectator is π^+ ($i = 1 \Rightarrow \pi^+K^+$ scattering) or K^+ ($i = 2 \Rightarrow \pi^+\pi^+$ scattering)
 - All partial waves contribute to $\pi^+ K^+$ scattering (i = 1), while only even waves contribute to $\pi^+ \pi^+$ scattering (i = 2)
 - In practice, we set $\ell_{max} = 1$, in order to avoid too many parameters, particularly in $\mathcal{K}_{df,3}$
- Cut-off function H, must be chosen to avoid left-hand cuts, which occur when $s_2 = |m_1^2 m_2^2|$ in subchannel with particles of masses $m_1 \& m_2$
- Python implementation of QC3 available on GitHub

LQCD details

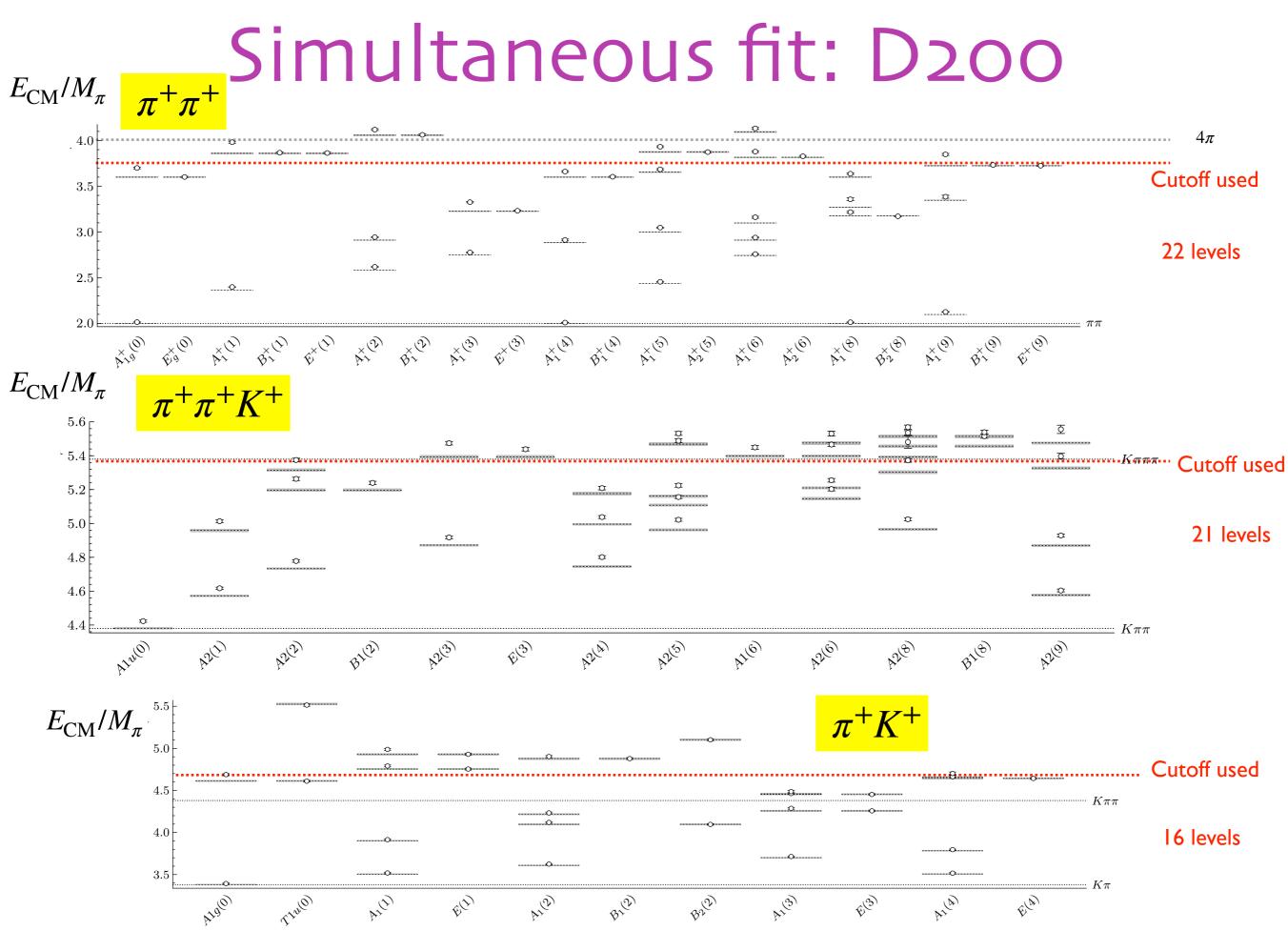
- Use similar methods as for $3\pi^+$ and $3K^+$ [Blanton, Hanlon, Hörz, Morningstar, Romero-López, SRS, 2106.05590 (JHEP)]
 - CLS ensembles D200 & N203 (open BC in time): $a \approx 0.064$ fm
 - Use stochastic LapH & contraction tricks to obtain multiple levels for $2\pi^+$, π^+K^+ , $2K^+$, $\pi^+\pi^+K^+$ & $\pi^+K^+K^+$ in frames with up to $d^2 = 3$ ($\mathbf{P} = (2\pi/L)\mathbf{d}$), projected onto irreps of corresponding finite-volume little groups
 - Fit to correlator ratios to directly obtain shifts from free energies in "lab frame", $\Delta E_{
 m lab}$

	$(L/a)^3 \times (T/a)$	$M_{\pi} [{ m MeV}]$	$M_K [{ m MeV}]$	$N_{\rm cfg}$	Bin size	$M_{\pi}L$
N203	$48^3 \times 128$	340	440	771	1	5.4
D200	$64^3 \times 128$	200	480	2000	3	4.2

Example of levels



- Previously converted energy shifts ΔE_{lab} to E_{CM} using $M_{\pi} \& M_{K}$ determined at rest on given jackknife sample, and with continuum dispersion relation, and then fit QCs to E_{CM}
 - Increases errors in data, leading to fits that seem better than they really are
- Here fit QCs directly to ΔE_{lab}



S.R.Sharpe, " $\pi^+\pi^+K^+$ and $K^+K^+\pi^+$ interactions from the lattice," LATTICE 2022, 8/8/2022

7 /17

Threshold expansion for \mathcal{K}_2

- Work to linear order in q^2 expansion, dropping $\mathcal{O}(q^4)$ terms
 - Implies that we keep s- and p-wave terms in π^+K^+ channel, but only s waves for identical pairs
 - Previously we found that d-wave terms were needed for a good description of $2\pi^+$ and $2K^+$ levels, but here that would lead to too many parameters
 - Thus we expect (and find) poorer global fits
- Use forms with Adler zero rather than effective-range expansions, since we have previously found the former to provide better fits for $2\pi^+/3\pi^+$ system

For
$$2\pi^+$$
 (& similarly $2K^+$): $q \cot \delta_0^{\pi\pi} = \frac{M^2 \sqrt{s_2}}{s_2 - 2z^2 M^2} (B_0^{\pi\pi} + B_1^{\pi\pi} q^2)$

For
$$\pi^+ K^+$$
 s-wave: $q \cot \delta_0^{\pi K} = \frac{M_\pi^2 \sqrt{s_2}}{s_2 - M_\pi^2 - M_K^2} (B_0^{\pi K} + B_1^{\pi K} q^2)$

For
$$\pi^+ K^+$$
 p-wave: $q^3 \cot \delta_1^{\pi K} = \frac{M_\pi^3 \sqrt{s_2}}{M_\pi + M_K} \frac{1}{P_0^{\pi K}}$

Threshold expansion for $\mathscr{K}_{df,3}$ [Blanton, SRS, 2105.12904 (PRD)]

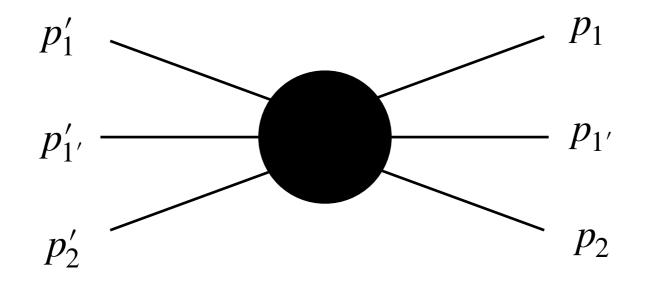
- Work to linear order, dropping $\mathcal{O}(\Delta^2)$ terms
- 4 terms allowed by symmetries (Lorentz, $1 \leftrightarrow 1'$, time-reversal, parity)
 - Only \mathscr{K}^E couples to nontrivial irreps: contains J=0, I while other terms only have J=0

$$\mathcal{K}_{\mathrm{df},3} = \mathcal{K}_{\mathrm{df},3}^{\mathrm{iso},0} + \mathcal{K}_{\mathrm{df},3}^{\mathrm{iso},1} \Delta + \mathcal{K}_{\mathrm{df},3}^{B,1} \Delta_{2}^{S} + \mathcal{K}_{\mathrm{df},3}^{E,1} \tilde{t}_{22}$$

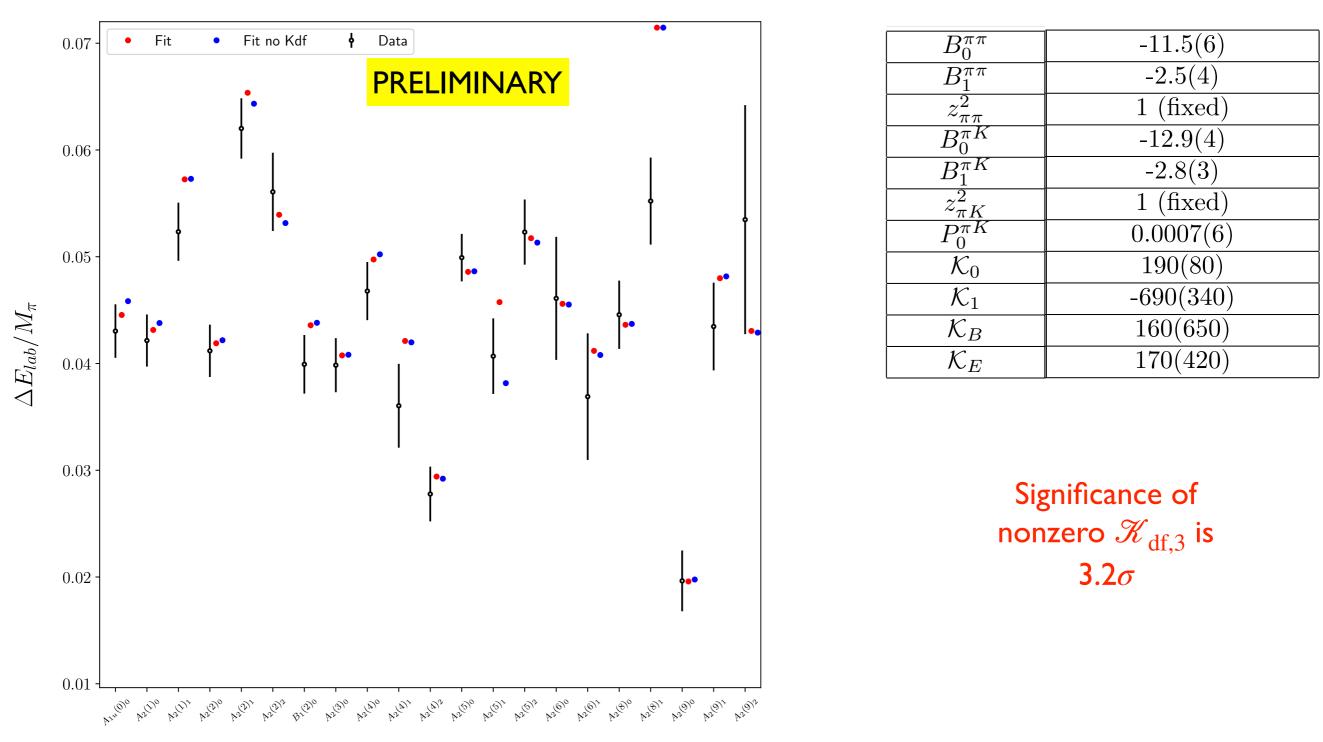
$$\Delta = \frac{s - M}{M^{2}}, \quad s = (p_{1} + p_{1'} + p_{2})^{2} = P^{2},$$

$$\Delta_{2}^{S} = \Delta_{2} + \Delta_{2}', \quad \Delta_{2} = \frac{(p_{1} + p_{1'})^{2} - 4m_{1}^{2}}{M^{2}}, \quad \Delta_{2}' = \frac{(p_{1}' + p_{1'}')^{2} - 4m_{1}^{2}}{M^{2}},$$

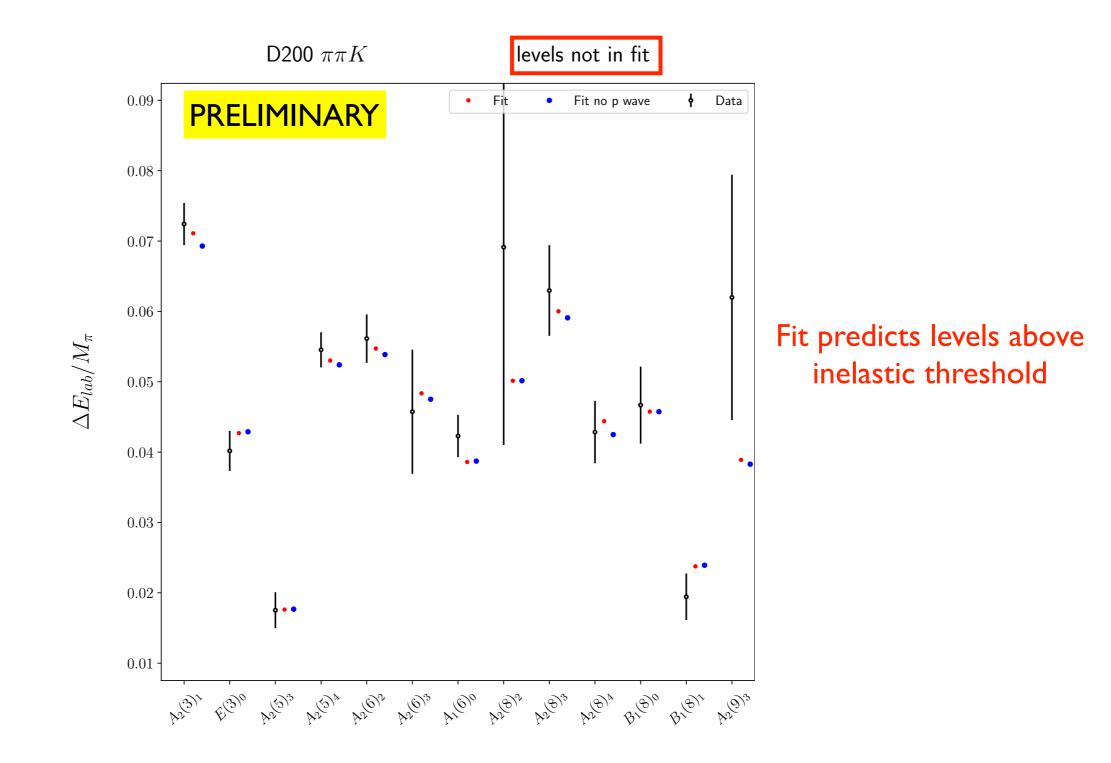
$$\tilde{t}_{22} = \frac{t_{22}}{M^{2}} = \frac{(p_{2} - p_{2}')^{2}}{M^{2}}, \quad M = 2m_{1} + m_{2}.$$



D200 $\pi\pi K$

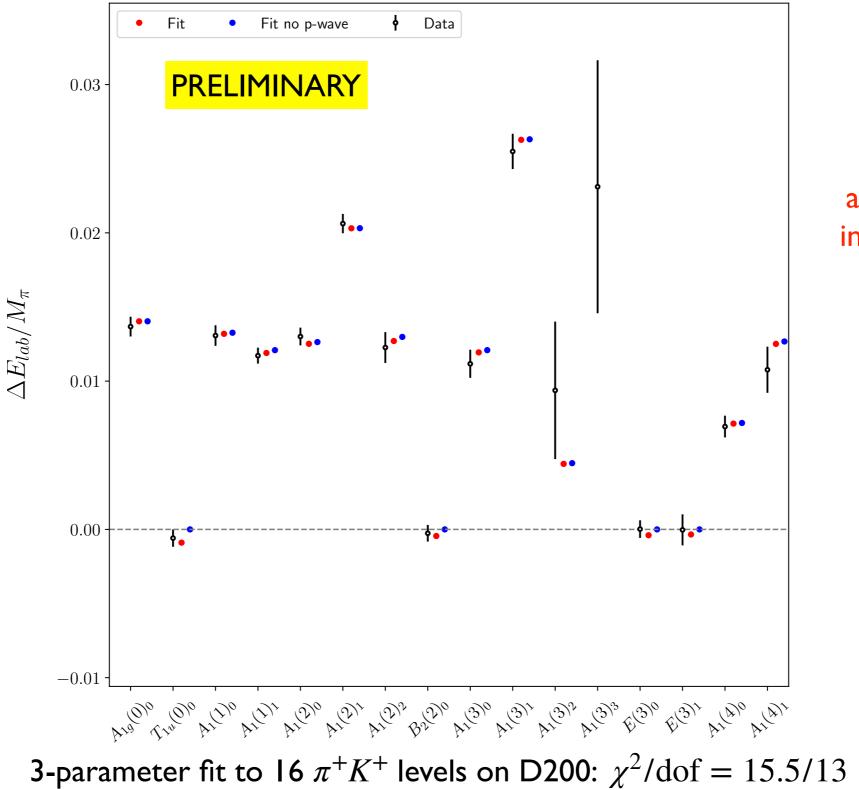


9-parameter fit to 59 $\pi^+\pi^+$, π^+K^+ , $\pi^+\pi^+K^+$ levels on D200: $\chi^2/dof = 112/50$

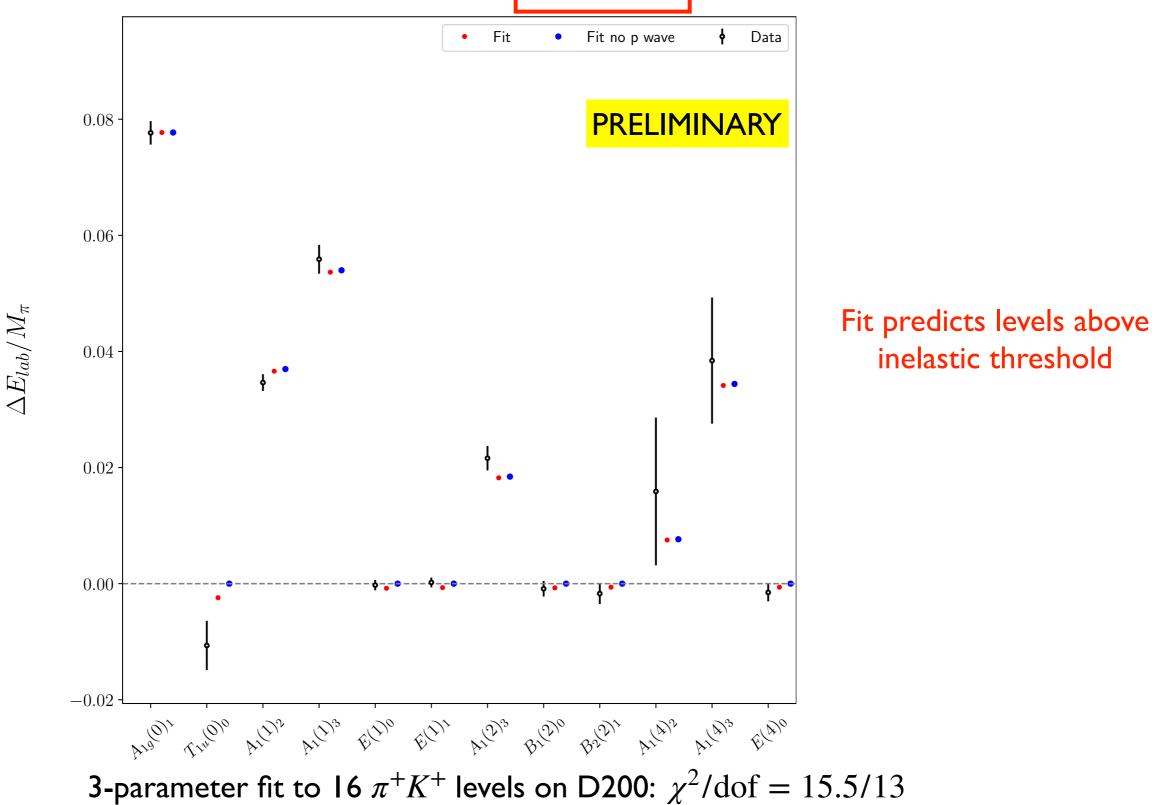


9-parameter fit to 59 $\pi^+\pi^+$, π^+K^+ , $\pi^+\pi^+K^+$ levels on D200: $\chi^2/dof = 112/50$

D200 πK fit to 16 levels

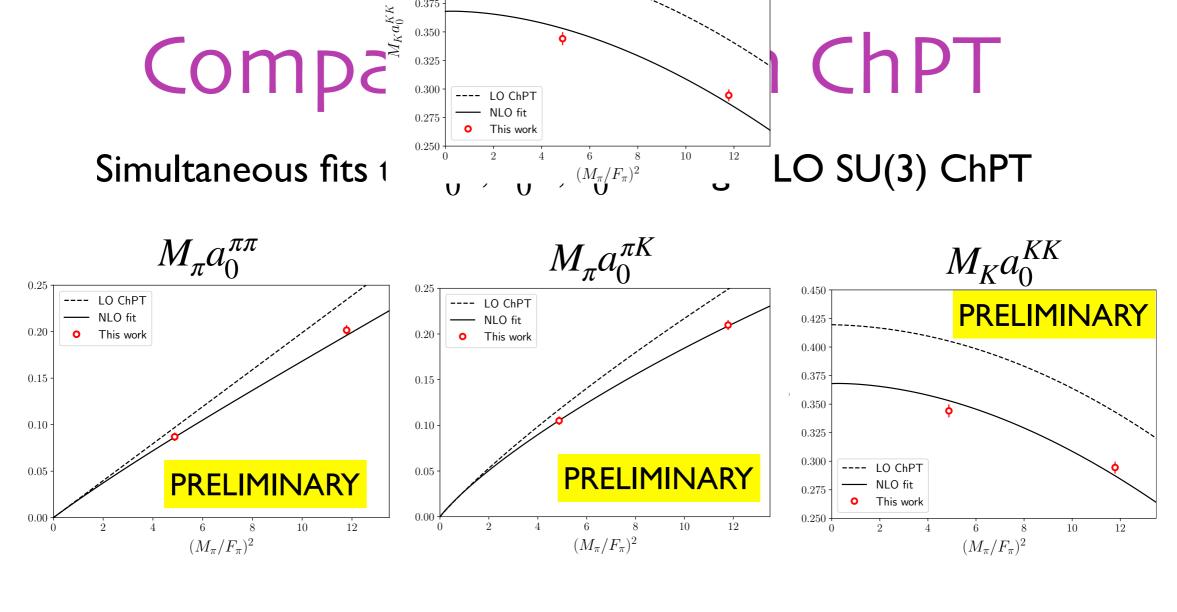


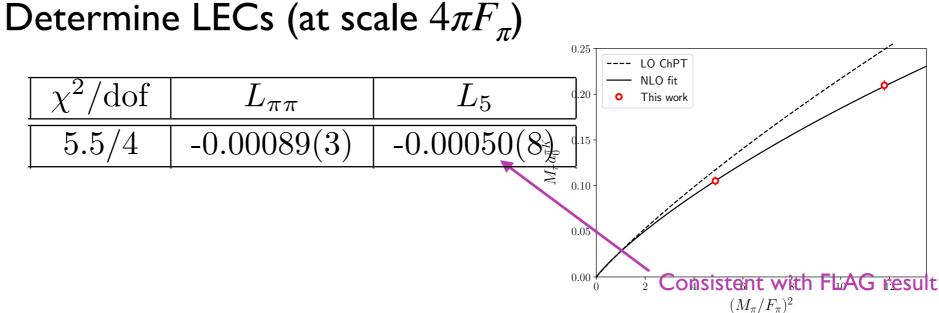
Significance of attractive p-wave interaction is 1.7σ



Conclusions from fits

- Working at linear order (s- + p-wave) in threshold expansions gives a reasonable description of energy levels, although significantly worse than that we obtained for identical particles when including d waves
- Fits continue to predict levels with good accuracy above inelastic threshold, indicating that the threshold expansions are not breaking down
- Simultaneous fits to 2- and 3-particle spectra lead to somewhat smaller errors in 2particle parameters compared to fits to 2-particle spectra alone
- We obtain 1-2% precision in s-wave scattering lengths for all channels
- We find attractive p-wave $\pi^+ K^+$ scattering length, but only with 1-2 σ significance
 - Opposite sign to (very weakly) repulsive experimental result
- We find nonzero $\mathscr{K}_{\mathrm{df},3}$ with 3-5 σ significance for $\pi^+\pi^+K^+$ & $K^+K^+\pi^+$
 - To do better would require a reduction in the ~10% errors in $\Delta E_{\rm lab}$





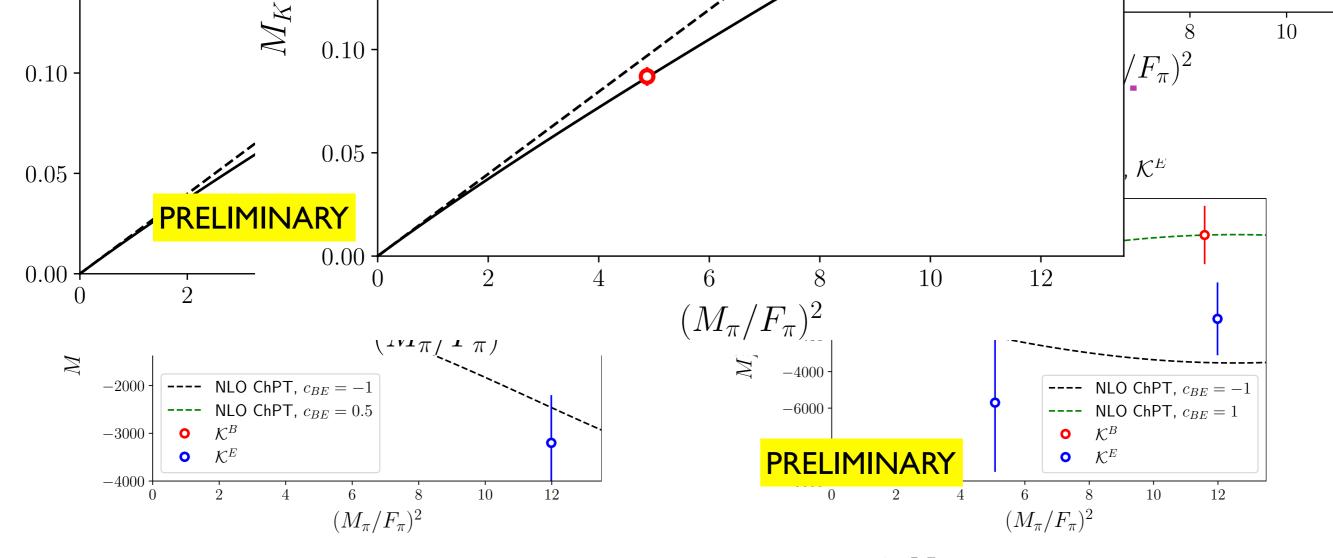


Figure 7: Results for $M_{\pi}^2 \mathcal{K}^{B,E}(\pi \pi K)$ compared to generic NLO ChPT forms.

Figure 10: Results for $M_K^2 \mathcal{K}^{B,E}(KK\pi)$ compared to generic NLO ChPT forms.

Generic NLO ChPT forms:

$$M_{\pi}^{2}\mathcal{K}_{df,3}^{B,E}(\pi\pi K) = c_{BE}r_{\pi}^{4}r_{K}^{2}, \qquad \qquad M_{\pi}^{2}\mathcal{K}_{df,3}^{B,E}(KK\pi) = c_{BE}r_{K}^{4}r_{\pi}^{2}.$$

$$r_{\pi} = \frac{M_{\pi}}{F_{\pi}}$$
 and $r_{K} = \frac{M_{K}}{F_{K}}$

Summary & Outlook

- (First step of) 3-particle formalism successfully applied to 2+1 systems
 - We encountered no problems with unphysical solutions in applying the QC3
 - Enlarged matrices in QC3 require small clusters to perform fits in ~days
- Determining 3-particle interaction ($\mathscr{K}_{df,3}$) remains challenging
- Current & future work
 - Analysis should be extended to chiral behavior of effective range
 - Solving integral equations (second step of formalism)
 - Physical-point ensembles [See plenary talk by Fernando Romero-López]
 - Extend to systems with 2- and 3-particle resonant behavior (e.g. $3\pi(I = 0, 1), \pi\pi N$)
 - Dreaming of 3 neutrons (formalism in progress [Draper, Hansen, Romero-López, SRS])

Thanks Any questions?

Backup slides

RFT 3-particle papers

Max Hansen & SRS:

arXiv:1408.5933 (PRD) [HS14]

"Expressing the 3-particle finite-volume spectrum in terms of the 3-to-3 scattering amplitude,"

arXiv:1504.04028 (PRD) [HS15]

"Perturbative results for 2- & 3-particle threshold energies in finite volume,"

arXiv:1509.07929 (PRD) [HSPT15]

"Threshold expansion of the 3-particle quantization condition,"

arXiv:1602.00324 (PRD) [HSTH15]

"Applying the relativistic quantization condition to a 3-particle bound state in a periodic box,"

arXiv: 1609.04317 (PRD) [HSBS16]

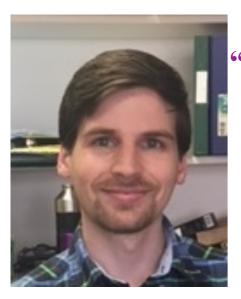
"Lattice QCD and three-particle decays of Resonances,"

arXiv: 1901.00483 (Ann. Rev. Nucl. Part. Science) [HSREV19]

Raúl Briceño, Max Hansen & SRS:

"Relating the finite-volume spectrum and the 2-and-3-particle S-matrix for relativistic systems of identical scalar particles," arXiv:1701.07465 (PRD) [BHS17]
"Numerical study of the relativistic three-body quantization condition in the isotropic approximation," arXiv:1803.04169 (PRD) [BHS18]
"Three-particle systems with resonant sub-processes in a finite volume," arXiv:1810.01429 (PRD 19) [BHS19]

"Testing the threshold expansion for three-particle energies at fourth order in φ⁴ theory," arXiv:1707.04279 (PRD) [SPT17]



Tyler Blanton, Fernando Romero-López & SRS:

"Implementing the three-particle quantization condition including higher partial waves," arXiv:1901.07095 (JHEP) [BRS19]

"I=3 three-pion scattering amplitude from lattice QCD," arXiv:1909.02973 (PRL) [BRS-PRL19]

"Implementing the three-particle quantization condition for $\pi^+\pi^+K^+$ and related systems" 2111.12734 (JHEP)

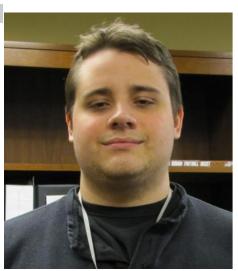
S.R.Sharpe, ``Three-particle quantization condition for non-degenerate scalars," LATTICE 2021, 7/29//2021

Tyler Blanton, Raúl Briceño, Max Hansen, Fernando Romero-López, SRS:

"Numerical exploration of three relativistic particles in a finite volume including two-particle resonances and bound states", arXiv:1908.02411 (JHEP) [BBHRS19]

Raúl Briceño, Max Hansen, SRS & Adam Szczepaniak:

"Unitarity of the infinite-volume three-particle scattering amplitude arising from a finite-volume formalism," arXiv:1905.11188 (PRD)



<u>Andrew Jackura, S. Dawid, C. Fernández-Ramírez, V. Mathieu,</u> <u>M. Mikhasenko, A. Pilloni, SRS & A. Szczepaniak:</u>

"On the Equivalence of Three-Particle Scattering Formalisms," arXiv:1905.12007 (PRD)

Max Hansen, Fernando Romero-López, SRS:

"Generalizing the relativistic quantization condition to include all three-pion isospin channels", arXiv:2003.10974 (JHEP) [HRS20]

"Decay amplitudes to three particles from finite-volume matrix elements," arXiv: 2101.10246 (JHEP)

Tyler Blanton & SRS:

- "Alternative derivation of the relativistic three-particle quantization condition," arXiv:2007.16188 (PRD) [BS20a]
- "Equivalence of relativistic three-particle quantization conditions," arXiv:2007.16100 (PDD) [PS20b]

- "Relativistic three-particle quantization condition for nondegenerate scalars," arXiv:2011.05520 (PRD)
- "Three-particle finite-volume formalism for $\pi^+\pi^+K^+$ & related systems," arXiv:2105.12904 (PRD)
 - **Tyler Blanton, Drew Hanlon, Ben Hörz, Colin Morningstar, Fernando Romero-López & SRS** " $3\pi^+ \& 3K^+$ interactions beyond leading order from lattice QCD," arXiv:2106.05590 (JHEP) " $\pi^+\pi^+K^+$ and $K^+K^+\pi^+$ interactions from lattice QCD," in progress

Other work

★ Implementing RFT integral equations

- A. Jackura et al., <u>2010.09820</u> [Solving s-wave RFT integral equations in presence of bound states]
- M.T. Hansen et al. (HADSPEC), 2009.04931, PRL [Calculating $3\pi^+$ spectrum and using to determine three-particle scattering amplitude]

★ Reviews

- A. Rusetsky, <u>1911.01253</u> [LATTICE 2019 plenary]
- M. Mai, M. Döring and A. Rusetsky, <u>2103.00577</u> [Review of formalisms and chiral extrapolations]
- F. Romero-López, 2112.05170, [Three-particle scattering amplitudes from lattice QCD]

★ Numerical simulations in scalar theories

• F. Romero-López, A. Rusetsky, C. Urbach, <u>1806.02367</u>, [2- & 3-body interactions in φ^4 theory]

Other work

***** NREFT approach

- H.-W. Hammer, J.-Y. Pang & A. Rusetsky, <u>1706.07700</u>, JHEP & <u>1707.02176</u>, JHEP [Formalism & examples]
- M. Döring et al., <u>1802.03362</u>, PRD [Numerical implementation]
- J.-Y. Pang et al., <u>1902.01111</u>, PRD [large volume expansion for excited levels]
- F. Müller, T. Yu & A. Rusetsky, <u>2011.14178</u>, PRD [large volume expansion for I=1 three pion ground state]
- F. Romero-López, A. Rusetsky, N. Schlage & C. Urbach, <u>2010.11715</u>, JHEP [generalized large-volume exps]
- F. Müller & A. Rusetsky, 2012.13957, JHEP [Three-particle analog of Lellouch-Lüscher formula]
- J-Y. Pang, M. Ebert, H-W. Hammer, F. Müller, A. Rusetsky, <u>2204.04807</u>, JHEP, [Spurious poles in a finite volume]
- F. Müller, J-Y. Pang, A. Rusetsky, J-J. Wu, 2110.09351, JHEP, [Relativistic-invariant formulation of the NREFT three-particle quantization condition]
- J. Lozano, U. Meißner, F. Romero-López, A. Rusetsky & G. Schierholz, <u>2205.11316</u>, <u>[Resonance form factors from finite-volu correlation functions with the external field method]</u>

Alternate 3-particle approaches

★ Finite-volume unitarity (FVU) approach

- M. Mai & M. Döring, <u>1709.08222</u>, EPJA [formalism]
- M. Mai et al., <u>1706.06118</u>, EPJA [unitary parametrization of M₃ involving R matrix; used in FVU approach]
- A. Jackura et al., <u>1809.10523</u>, EPJC [further analysis of R matrix parametrization]
- M. Mai & M. Döring, <u>1807.04746</u>, PRL [3 pion spectrum at finite-volume from FVU]
- M. Mai et al., <u>1909.05749</u>, PRD [applying FVU approach to $3\pi^+$ spectrum from Hanlon & Hörz]
- C. Culver et al., <u>1911.09047</u>, PRD [calculating $3\pi^+$ spectrum and comparing with FVU predictions]
- A. Alexandru et al., <u>2009.12358</u>, PRD [calculating $3K^-$ spectrum and comparing with FVU predictions]
- R. Brett et al., <u>2101.06144</u> [determining $3\pi^+$ interaction from LQCD spectrum]

★ HALQCD approach

• T. Doi et al. (HALQCD collab.), <u>1106.2276</u>, Prog.Theor.Phys. [3 nucleon potentials in NR regime]