Lattice results for hybrid static potentials at short quark-antiquark separations and their parametrization

Carolin Schlosser

schlosser@itp.uni-frankfurt.de

in collaboration with Sonja Köhler and Marc Wagner

39th International Symposium on Lattice Field Theory August 8-13, 2022

Hybrid static potentials

- = gluonic energy between a static quark and antiquark in a distance r
- Quantum numbers $\Lambda^\epsilon_\eta = \Sigma^+_g, \, \Pi_u, \, \Sigma^-_u, \, \dots$
- excited gluon field \rightarrow exotic quantum numbers J^{PC} are possible for *hybrid mesons*

active field of research $^{1\ 2}$, both experimentally (GlueX, PANDA) and theoretically (lattice gauge theory)

¹ S. L. Olsen, T. Skwarnicki, D. Zieminska, Rev. Mod. Phys. 90 (2018) no.1, 015003 [arXiv:1708.04012 [hep-ph]]

²N. Brambilla, S. Eidelman, C. Hanhart, A. Nefediev, C. P. Shen, C. E. Thomas, A. Vairo, C. Z. Yuan, Phys. Rept. 873 (2020), 1-154 [arXiv:1907.07583 [hep-ex]]

SU(3) lattice Yang-Mills data for hybrid static potentials

Main goal

- investigation of the small-r region of the Π_u and Σ_u^- hybrid static potentials $^{\rm 3~4~5~6}$
- precise parametrizations consistent with the continuum limit by
 - combining several small lattice spacings $0.040\,\mathrm{fm},\ldots,0.093\,\mathrm{fm}$
 - removing leading lattice discretization errors
- \rightarrow to be used to predict the spectra of $\bar{b}b$ and $\bar{c}c$ hybrid mesons in Born-Oppenheimer approximations (coupled channels, heavy quark spin effects) $^{7\ 8\ 9\ 10\ 11\ 12}$

- ⁶G. S. Bali, A. Pineda, Phys. Rev. D 69, 094001 (2004) [hep-ph/0310130]
- 7 S. Perantonis and C. Michael, Nuclear Physics B 347 no. 3, (1990) 854 868
- 8 K. J. Juge, J. Kuti and C. J. Morningstar, Nucl. Phys. Proc. Suppl. 63, 326 (1998) [hep-lat/9709131]
- 9 P. Guo, A. P. Szczepaniak, G. Galata, A. Vassallo, and E. Santopinto, Phys. Rev. D 78 (2008) 056003, arXiv:0807.2721 [hep-ph]

³s. Perantonis and C. Michael, Nuclear Physics B 347 no. 3, (1990) 854 – 868

⁴ K. J. Juge, J. Kuti, C. Morningstar, Phys. Rev. Lett. 90, 161601 (2003) [hep-lat/0207004]

 $^{^5}$ G. S. Bali et al. [SESAM and T χ L Collaborations], Phys. Rev. D 62, 054503 (2000) [hep-lat/0003012]

¹⁰ E. Braaten, C. Langmack, and D. H. Smith, Phys. Rev. D 90 no. 1, (2014) 014044, arXiv:1402.0438 [hep-ph]

¹¹ R. Oncala and J. Soto, Phys. Rev. D96 no. 1, (2017) 014004, arXiv:1702.03900 [hep-ph]

¹² N. Brambilla, W. K. Lai, J. Segovia, J. Tarrús Castellà, A. Vairo, Phys. Rev. D 99 no. 1, (2019) 014017, arXiv:1805.07713 [hep-ph]

(Hybrid) static potentials $\Lambda_{\eta}^{\epsilon} = \Sigma_{g}^{+}, \Pi_{u}, \Sigma_{u}^{-}$ from fine lattices

SU(3) ensemble	β	$a \ {\rm in} \ {\rm fm}$
A	6.000	0.093
В	6.284	0.060
C	6.451	0.048
D	6.594	0.040
A ^{HYP2 13}	6.000	0.093

- Optimized hybrid static potential creation operators¹³
- optimized APE-smearing
- Multilevel algorithm ¹⁴

¹³ S. Capitani, O. Philipsen, C. Reisinger, C. Riehl and M. Wagner, Phys. Rev. D 99, no. 3, 034502 (2019) [arXiv:1811.11046 [hep-lat]]

¹⁴ M. Lüscher and P. Weisz, JHEP 09 (2001), 010 [arXiv:hep-lat/0108014 [hep-lat]

(Hybrid) static potentials $\Lambda_{\eta}^{\epsilon} = \Sigma_{q}^{+}, \Pi_{u}, \Sigma_{u}^{-}$ from fine lattices

5

Reducing lattice discretization errors

Static potential at tree level of perturbation theory:

- $V^{\text{continuum}}(r) \propto \frac{1}{r}$
- $V^{\text{lattice}}(r) \propto G(\mathbf{r})$

 $G(\mathbf{r}) = \text{tree-level lattice gluon propagator}$

Methods of tree-level improvement:

(1) Improving the separation: $r \rightarrow r_{impr}$

- initially used for static force [R. Sommer, Nucl. Phys. B 411, 839 (1994) [arXiv:hep-lat/9310022v1]]
- $r_{\rm impr}$ determined from $\frac{1}{4\pi r_{\rm impr}}=G({\bf r})$

(2) Correcting the potential value: $\tilde{V}(r) = V(r) - \Delta V^{\text{lat}}(r)$

•
$$\Delta V^{\mathsf{lat}}(r) = \alpha' \left(\frac{1}{r} - \frac{G(\mathbf{r})}{a}\right)$$

- α^\prime determined from a fit of lattice data

[C. Michael, Phys. Lett. B 283, 103 (1992) [arXiv:hep-lat/9205010v1]]

[A. Hasenfratz, R. Hoffmann, and F. Knechtli, Nucl. Phys. Proc. Suppl. 106, 418 (2002) [arXiv:hep-lat/0110168v1]]

Methods of tree-level improvement for the static potential

(1) Improving the separation:

(2) Correcting the potential value:

 $\tilde{V}(r) = V(r) - \Delta V^{\text{lat}}(r)$

Unimproved data

7

Parametrization of the ordinary static potential Σ_q^+

- $\rightarrow\,$ subtraction of a-dependent self-energy C^e
- \rightarrow determination and subtraction of lattice discretization errors $\Delta V^{{\rm lat},e}(r)$

8-parameter fit of lattice data from all ensembles:

$$V_{\Sigma_g^+}^{\mathsf{fit},e}(r) = V_{\Sigma_g^+}(r) + C^e + \Delta V_{\Sigma_g^+}^{\mathsf{lat},e}(r) \tag{1}$$

- $\bullet \ e \in \{A,B,C,D,A^{\mathsf{HYP2}}\}$
- *C*^{*e*}: *a*-dependent self energy
- $\Delta V_{\Sigma_g^+}^{\mathsf{lat},e}(r) = \alpha' \left(\frac{1}{r} \frac{G^e(r/a)}{a}\right)$: lattice discretization error at tree-level
- $V_{\Sigma_g^+}(r)=-\frac{\alpha}{r}+\sigma r$ parametrization of ordinary static potential Σ_g^+

Parametrization of the hybrid static potentials Π_u and Σ_u^-

10-parameter fit of lattice data for $\Lambda_n^{\epsilon} = \Pi_u$ and Σ_u^- :

$$V_{\Lambda_{\eta}^{\epsilon}}^{\mathsf{fit},e}(r) = V_{\Lambda_{\eta}^{\epsilon}}(r) + C^{e} + \Delta V_{\mathsf{hybrid}}^{\mathsf{lat},e}(r) + A_{2,\Lambda_{\eta}^{\epsilon}}^{\prime e}a^{2}$$
(2)

• $\Delta V_{\text{hybrid}}^{\text{lat},e}(r) = -\frac{1}{8} \Delta V_{\Sigma_{q}^{+}}^{\text{lat},e}(r)$: lattice discretization error at tree-level

Parametrization of the hybrid static potentials Π_u and Σ_u^-

10-parameter fit of lattice data for $\Lambda_n^{\epsilon} = \Pi_u$ and Σ_u^- :

$$V_{\Lambda_{\eta}^{\epsilon}}^{\mathsf{fit},e}(r) = V_{\Lambda_{\eta}^{\epsilon}}(r) + C^{e} + \Delta V_{\mathsf{hybrid}}^{\mathsf{lat},e}(r) + A_{2,\Lambda_{\eta}^{\epsilon}}^{\prime e} a^{2}$$
(2)

- $\Delta V_{\text{hybrid}}^{\text{lat},e}(r) = -\frac{1}{8} \Delta V_{\Sigma_g^+}^{\text{lat},e}(r)$: lattice discretization error at tree-level
- hybrid static potential parametrization $V_{\Lambda_{\eta}^{\epsilon}}(r)$ (based on pNRQCD¹⁵):

$$V_{\Pi_{u}}(r) = \frac{A_{1}}{r} + A_{2} + A_{3}r^{2}$$
(3)

$$V_{\Sigma_{\overline{u}}}(r) = \frac{A_1}{r} + A_2 + A_3 r^2 + \frac{B_1 r^2}{1 + B_2 r + B_3 r^2},$$
(4)

¹⁵ M. Berwein, N. Brambilla, J. Tarrús Castellá, and A. Vairo, Phys. Rev. D 92 no. 11, (2015) 114019, arXiv:1510.04299 [hep-ph]

Parametrization of the hybrid static potentials Π_u and Σ_u^-

10-parameter fit of lattice data for $\Lambda_{\eta}^{\epsilon} = \Pi_{u}$ and Σ_{u}^{-} :

$$V_{\Lambda_{\eta}^{\epsilon}}^{\mathsf{fit},e}(r) = V_{\Lambda_{\eta}^{\epsilon}}(r) + C^{e} + \Delta V_{\mathsf{hybrid}}^{\mathsf{lat},e}(r) + A_{2,\Lambda_{\eta}^{\epsilon}}^{\prime e} a^{2}$$
(2)

- $\Delta V_{\text{hybrid}}^{\text{lat},e}(r) = -\frac{1}{8} \Delta V_{\Sigma_g^+}^{\text{lat},e}(r)$: lattice discretization error at tree-level
- hybrid static potential parametrization $V_{\Lambda_n^{\epsilon}}(r)$ (based on pNRQCD):

$$V_{\Pi_u}(r) = \frac{A_1}{r} + A_2 + A_3 r^2 \tag{3}$$

$$V_{\Sigma_{u}^{-}}(r) = \frac{A_{1}}{r} + A_{2} + A_{3}r^{2} + \frac{B_{1}r^{2}}{1 + B_{2}r + B_{3}r^{2}},$$
(4)

• $A_{2,\Lambda_{\eta}^{\epsilon}}^{\prime e}$: leading order discretization error in the difference to the ordinary static potential Σ_{q}^{+} ($\propto a^{2}$)

Hybrid static potentials Π_u and Σ_u^-

 \Rightarrow **Improved data points** are obtained by subtracting the *a*-dependent self-energy and the discretization errors:

$$\tilde{V}^{e}_{\Lambda^{e}_{\eta}}(r) = V^{e}_{\Lambda^{e}_{\eta}}(r) - C^{e} - \Delta V^{\mathsf{lat},e}_{\mathsf{hybrid}}(r) - A^{\prime e}_{2,\Lambda^{e}_{\eta}}a^{2}$$
(5)

10

Summary

- Parametrization of SU(3) lattice results for hybrid static potentials Π_u and Σ_u^- at r as small as 0.08 fm
- Elimination of leading lattice discretization errors
 - at tree level: $\Delta V^{\mathsf{lat}}(r) = \alpha' \left(\frac{1}{r} \frac{G(\mathbf{r})}{a}\right)$
 - in the difference to Σ_g^+ : $A_{2,\Lambda_n^{\epsilon}}^{\prime e}a^2$
- Improvements important: Born-Oppenheimer predictions of heavy hybrid meson masses change by $\mathcal{O}(10\dots45 \text{ MeV})$
- All fit parameters and data are provided in C. Schlosser and M. Wagner, Phys. Rev. D 105, 054503 (2022) [arXiv:2111.00741v1 [hep-lat]]

Improved lattice data:

black data point = parametrization $V_{\Sigma_g^+,\Pi_u}(r=0.24\,{\rm fm})$ \rightarrow consistent with continuum limit

Tree-level improvement

Fit parameters

$$V_{\Sigma_g^+}^{\text{fit},e}(r) = -\frac{\alpha}{r} + \sigma r + C^e + \alpha' \left(\frac{1}{r} - \frac{G^e(r/a)}{a}\right) \tag{6}$$

$$V_{\Lambda_{\eta}^{\epsilon}}^{\text{fit},e}(r) = V_{\Lambda_{\eta}^{\epsilon}}(r) + C^{e} + \Delta V_{\text{hybrid}}^{\text{lat},e}(r) + A_{2,\Lambda_{\eta}^{\epsilon}}^{e}a^{2}$$
(7)

$$V_{\Pi_u}(r) = \frac{A_1}{r} + A_2 + A_3 r^2 \tag{8}$$

$$V_{\Sigma_u^-}(r) = \frac{A_1}{r} + A_2 + A_3 r^2 + \frac{B_1 r^2}{1 + B_2 r + B_3 r^2},$$
(9)

		-								
			$\alpha [{ m GeVfn}$	σ [Ge	V/fm]	$\alpha' [{ m GeV} { m f}$	\dot{m}] χ^2_{rec}	ł		
		_	0.0571(4)) 1.06	4(4)	0.0735(2	3) 0.3	7		
	A_1 [Ge]	V fm] A	$_2$ [GeV]	A_3 [GeV	fm ²]	B_1 [GeV fr	n^2 B_2	$[{\rm fm}^{-1}]$	$B_3 [{ m fm}^{-2}]$	χ^2_{red}
Fit	1 0.012	4(9) 1	.135(8)	0.372(7)	1.56(15)	1.	2(3)	2.1(2)	1.2
Fit	2 0.0147	(18) 1.	126(11)	0.381	7)	1.57(17)	1.	0(4)	2.3(2)	0.8
Fit	3 0.0065	(16) 1.	190(14)	-0.092(91)	1.15(4)		-	-	0.5
										_
			Fit 1		F	lit 2 F		t 3		
	ensemble	$C^e [\text{GeV}]$	$[A_{2,\Pi_u}'^e]$	$A_{2,\Sigma_u^-}'^e$	$A_{2,\Pi_u}^{\prime e}$	$A_{2,\Sigma_u^-}'^e$	$A_{2,\Pi_u}^{\prime e}$	$A_{2,\Sigma_u^-}'^e$	$[{\rm GeV/fm^2}]$	2]
	A	1.398(2) 3.1(7)	6.7(8)	3.0(9)	6.5(9)	3.4(8)	5.7(9)		
	B	2.059(2)							
	C	2.472(2)							
	D	2.862(2)							
	$A^{ m HYP2}$	0.340(2	1.0(7)	5.0(5)	0.9(9)	4.7(9)	1.6(7)	4.4(6)		