Static Energy in (2 + 1 + 1)-Flavor Lattice QCD: Scale Setting and Charm Effects

Johannes H. Weber

[Humboldt-Universität zu Berlin] (for the TUMQCD collaboration)

Based on [N. Brambilla, et al., arXiv/2206.03156[hep-lat]]

The 39th International Symposium on Lattice Field Theory, Bonn, Germany August 11, 2022

Introduction		Fits of the static energy	Continuum limits	Charmed loops	Conclusions	
•0	000	00000	0000	00	0	
Motivat	ion					

- Static energy E₀(r) studied on the lattice since earliest times (confinement)¹, defined as ground state of Wilson loop.
- High accuracy, numerically cheap observable on the lattice.
- Of major importance for scale setting in the past still now?
- Wilson loops and related correlators contribute in most effective field theories for heavy quarks and quarkonia.
- **No scheme change** required between lattice and continuum.
- To date, extraordinarily **detailed lattice studies** in pure gauge theory ($N_{\rm f} = 0$) or (2+1)-flavor QCD ² $\Rightarrow \Lambda \frac{N_{\rm f}=0,3}{MS}$.
- So far, dearth of results in $N_f = (2+1+1)$ -flavor lattice QCD.

¹[K. Wilson, PRD 10 (1974) 2445]

²[A. Bazavov, et al., PRD 100 (2019) 11, 114511]

Introduction		Fits of the static energy	Continuum limits	Charmed loops	Conclusions	
000		00000	0000	00	0	
Summa	rv					

- We calculate the static energy in (2+1+1)-flavor QCD covering r ≈ 0.03 - 0.9 fm.
- We self-consistently convert the distance *r*/*a* and the static energy *aE*₀ to physical units using scales obtained from *E*₀.
- We resolve dependence of the scales and the effective string tension on sea quark masses.
- We study in detail effects of the charm sea for r ≥ 1/m_c.

53

Introduction 00	Simulations •00	Fits of the static energy	Continuum limits	Charmed loops	Conclusions 0

Lattice setup

- (2+1+1)-flavor QCD ensembles with HISQ ³ and 1-loop
 Symanzik gauge action generated by MILC collaboration ⁴.
- **Three light quark masses** $(m_l/m_s \approx 1/27, 1/10, 1/5)$, physical strange and charm sea.
- Six lattice spacings via f_{p4s} scale $(a_{f_{p4s}} \approx 0.03 0.15 \text{ fm})$.
- We compute the Wilson line correlator in Coulomb gauge, with or without one step of HYP smearing ⁵.

$$W(\mathbf{r},\tau,\mathbf{a}) = \prod_{u=0}^{\tau/a-1} U_4(\mathbf{r},ua,a),$$
$$C(\mathbf{r},\tau,a) = \left\langle \frac{1}{N_{\sigma}^3} \sum_{\mathbf{x}} \sum_{\mathbf{y}=R(\mathbf{r})} \frac{1}{N_c N_r} \operatorname{tr} \left[W^{\dagger}(\mathbf{x}+\mathbf{y},\tau,a) W(\mathbf{x},\tau,a) \right] \right\rangle,$$

³[E. Follana, et al., PRD 75 (2007) 054502] ⁴[A. Bazavov, et al., PRD 98 (2018) 7, 074512] ⁵[A. Hasenfratz, F. Knechtli, PRD 64 (2001) 034504] Introduction Simulations Fits of the static energy Continuum limits Charmed loops Conclusions oo o

Spectrum of Wilson line correlators

- **Improved action** \Rightarrow spectral representation holds at $\tau/a \ge 2$.
- Physical T_{max} and $r_{\text{max}} \simeq 0.6 0.9$ fm implies much fewer time slices on coarse lattices (factor five variation in *a*).
- On coarse lattices limitation in number of states, N_{st}.

$$C(\mathbf{r},\tau,\mathbf{a}) = e^{-\tau E_0(\mathbf{r},\mathbf{a})} \left(C_0(\mathbf{r},\mathbf{a}) + \sum_{n=1}^{N_{st}-1} C_n(\mathbf{r},\mathbf{a}) \prod_{m=1}^n e^{-\tau \Delta_m(\mathbf{r},\mathbf{a})} \right) + \dots,$$

4 / 17

(83)

	Simulations	Fits of the static energy	Continuum limits	Charmed loops	Conclusions
00	000	00000	0000	00	0
Fits					

Up to N_r ~ 500 |r|/a values after averaging, cover factor 24.
 Up to T_{max}/a × N_r ~ 10⁴ correlated data ⇒ automation!
 Fit range [i.e. τ_{min,Nst}(r/a)] varies with N_{st} and |r|

$$\begin{aligned} |\mathbf{r}| + 0.2 \text{ fm} &\leq \tau_{\min,1} \leq 0.3 \text{ fm} & \text{for } N_{\text{st}} = 1 \Rightarrow \text{ prior values,} \\ \frac{2}{3} |\mathbf{r}| + 0.1 \text{ fm} &\leq \tau_{\min,2} \leq \tau_{\min,1} - 2a & \text{for } N_{\text{st}} = 2 \Rightarrow \text{ final choice,} \\ \frac{1}{3} |\mathbf{r}| &\leq \tau_{\min,3} \leq \tau_{\min,2} - 2a & \text{for } N_{\text{st}} = 3 \Rightarrow \text{ cross-check} \end{aligned}$$

- We use Bayesian fits with loose, linear priors ($\geq 10\%$ width).
- Priors for excited state overlap factors with ≥ 100% width: no unacceptable examination of data, robust for prior variation.
- Priors for $\Delta_1 = E_1 E_0$ are from SU(3) pure gauge theory ⁶.

5 /

⁶[K. Juge, et al., PRL90, 161601 (2003)]

 Introduction
 Simulations
 Fits of the static energy
 Continuum limits
 Charmed loops
 Conclusions

 00
 000
 0000
 000
 00
 0
 0

Discretization artifacts

- $E_0(\mathbf{r}, a)$ is available only at discrete distances, and depends on the direction of $\mathbf{r} \Rightarrow$ not smooth in $|\mathbf{r}| = \sqrt{x_1^2 + x_2^2 + x_3^2}$.
- Distance r_l defined via tree-level ⁷ gluon propagator $D_{\mu\nu}(k)$

$$E_0^{\text{tree}}(\mathbf{r}, \mathbf{a}) = -C_{\text{F}}g_0^2 \int \frac{\mathrm{d}^3 k}{(2\pi)^3} \mathrm{e}^{\mathrm{i}\mathbf{k}\cdot\mathbf{r}} D_{44}(\mathbf{k}) \equiv -\frac{C_{\text{F}}g_0^2}{4\pi} \frac{1}{r_l}.$$

(🖏)

Determination of scales

The scales are defined in terms of **the force** $F(r) \equiv \frac{dE_0(r)}{dr}$

 $r_i^2 F(r_i) = c_i, \quad i = 0, 1, 2$

with $c_0 = 1.65$ ⁸, $c_1 = 1$ ⁹, and $c_2 = 1/2$ ¹⁰.

• The r_i correspond to **different regimes**. (2 + 1)-flavor QCD:

 $r_0 pprox 0.475 \text{ fm}, \quad r_1 pprox 0.3106 \text{ fm}, \quad r_2 pprox 0.145 \text{ fm},$

• A **Cornell Ansatz** encodes the main features of $E_0(r)$ locally

$$E(R,a)=-\frac{A}{R}+B+\Sigma R,$$

r_i/a = √(c_i − A)/Σ; identify Σ at large r with string tension
 Consistent definition of F(r, a) across various a is difficult

⁸[R. Sommer, NPB 411 (1994) 839] ⁹[C. Bernard, et al., PRD 62 (2000) 034503] ¹⁰[A. Bazavov, et al., PRD 97 (2018) 1, 014510]

Defining the force through asymmetric, random picking

8/17

53

(**6**3)

		Fits of the static energy	Continuum limits	Charmed loops	Conclusions
00	000	00000	0000	00	0
Smooth	ning (via	Allton-Ansatz)			

(53)

Introduction	Simulations	Fits of the static energy	Continuum limits	Charmed loops	Conclusions
00	000		●000	00	0
Contin		an alation			

Continuum extrapolation

- Using smoothed results we extrapolate to the continuum limit: r_0/r_1 , r_1/r_2 ; $a_{f_{p4s}}r_0/a$, $a_{f_{p4s}}r_1/a$; $\sqrt{\sigma a^2} r_0/a$
- Lattice spacing dependence via $x = (a/r_i)^2$, i = 0, 1
- $m_{\rm l}$ dependence via $y = m_{\rm l}/m_{\rm s}$ (sea or tuned ⁴ $m_{\rm s}$), where we use PDG values ¹¹ in the continuum GMOR

$$m_{\rm l}/m_{\rm s} = 1/(2M_K^2/M_\pi^2 - 1) \quad \Rightarrow \quad \begin{cases} m_{\rm l}/m_{\rm s}|_{M_\pi^2 = M_{\pi^\pm}^2} = 0.04128, \\ m_{\rm l}/m_{\rm s}|_{M_\pi^2 = M_{\pi^0}^2} = 0.03851. \end{cases}$$

• Logs in the Symanzik expansion via $\alpha = 1$ or $\alpha_b = g_0^2 / (4\pi u_0^2)$ $\xi = \xi_0 + \alpha^2 [\xi_1 x + \xi_2 x y^{1,2}] + \xi_3 x^2 + \xi_4 y$ (I,q;I,qm;mc),

53

⁴[A. Bazavov, et al., PRD 98 (2018) 7, 074512]

 ^{11}We use: $2\textit{M}_{\textit{K}}^2=\textit{M}_{\textit{K}^\pm}^2+\textit{M}_{\textit{K}^0}^2$ and $\textit{M}_{\pi}^2=\textit{M}_{\pi^\pm}^2$ or $\textit{M}_{\pi^0}^2$

Introduction	Simulations	Fits of the static energy	Continuum limits	Charmed loops	Conclusions
00	000		0000	00	0
The		a			

The ratios r_0/r_1 and r_1/r_2

12 / 17

63

The scales r_0 and r_1 and the string tension

The string tension is consistent with (2 + 1)-flavor QCD ¹²:

 $\sqrt{\sigma r_0^2} = 1.077 \pm 0.016$ (A = A_{r_0}), $\sqrt{\sigma r_0^2} = 1.110 \pm 0.016$ (A = $\pi/12$).

(8)

13 /

¹²[RBC/Bielefeld, PRD 77 (2008) 014511]

Static energy in perturbation theory with massless sea

The static energy is defined as

$$E_0(r) = \lim_{t\to\infty} \frac{\mathrm{i}}{t} \ln \left\langle \operatorname{tr} \mathcal{P} \exp \left[\operatorname{ig} \oint_{r\times t} \mathrm{d} z^{\mu} A_{\mu}(z) \right] \right\rangle,$$

and-for massless sea quarks-perturbatively known at N³LL

$$E_0(r) = \Lambda - \frac{C_F \alpha_s}{r} \left(1 + \#\alpha_s + \#\alpha_s^2 + \#\alpha_s^3 \ln \alpha_s + \#\alpha_s^3 + \#\alpha_s^4 \ln^2 \alpha_s + \#\alpha_s^4 \ln \alpha_s + \dots \right),$$

Integrating the force eliminates the leading renormalon

$$E_0(r) = \int_{r^*}^r \mathrm{d}r' \ F(r') + \mathrm{const.}$$

8

15/17

• $E_0(r)$ depends on N_f via its coefficients # and via α_s • α_s depends on a scale $\nu \sim 1/r$ (we use $\nu = 1/r$)

Introduction	Simulations	Fits of the static energy	Continuum limits	Charmed loops	Conclusions
00	000	00000	0000	00	0
Maccine	charm c	200			

Massive charm sea

■ Massive charm quark decouples for large *r*:

 $rm_{\rm c} \gg 1 \Rightarrow$ charm is effectively infinitely heavy $\Rightarrow N_{\rm f} = 3$

 $\mathit{rm}_{c} \ll 1 \; \Rightarrow \; charm$ is effectively massless $\Rightarrow \; \mathit{N}_{f} = 4$

• For $rm_{c} \sim 1 \Rightarrow \text{massive correction } \delta V_{m}^{(N_{f})}(r) \text{ known at N}^{2}\text{LO}$ $E_{0,m}^{(N_{f})}(r) = \int_{r^{*}}^{r} dr' F^{(N_{f})}(r') + \delta V_{m}^{(N_{f})}(r) + \text{const},$

16/17

(53)

Introduction 00	Simulations 000	Fits of the static energy	Continuum limits	Charmed loops	Conclusions •
Conclusi	ons				

- We have computed the static energy *E*₀(*r*) in (2+1+1)-flavor QCD over a wide range of lattice spacings and quark masses.
- First simultaneous determination of both the scales r_0 , r_1 and their ratio r_0/r_1 , and the ratio r_1/r_2 and the string tension σ .
- r_1/a on coarse lattices is slightly lower than earlier results ¹³; procedural differences in defining r_1/a lead to larger errors.
- r_0/r_1 and $r_0\sqrt{\sigma}$ are consistent with (2+1)-flavor QCD results.
- r_1/r_2 differs significantly from (2 + 1)-flavor QCD results.
- We study the charm quark contribution across its decoupling.
- E₀(r) at r ≤ 0.2 fm is inconsistent with (2 + 1)-flavor QCD, but well reproduced by perturbation theory at two-loop order.

¹³[MILC, PRD 82 (2010) 07450]; [MILC, PRD 87 (2013) 5, 054505]

Data sets

MILC (2+1+1)-flavor gauge ensembles ¹ used in this study.

our naming	$N_{\sigma}^3 imes N_{\tau}$	β	$a_{f_{p4s}}$ (fm)	u ₀	amı	ams	amc	$m_{\rm l}/m_{\rm s}$	(ams)tuned	M_{π} (MeV)	#conf.
β 5.80 M i	$32^3 \times 48$	5.80	0.15294	0.85535	0.00235	0.0647	0.831	phys	0.06852	131	1041
β 6.00 M ii β 6.00 M i	$\begin{array}{c} 32^3 \times 64 \\ 48^3 \times 64 \end{array}$	6.00	0.12224	0.86372	0.00507 0.00184	0.0507	0.628	1/10 phys	0.05296	217 132	1000 709
β 6.30 M iii β 6.30 M ii β 6.30 M ii β 6.30 M i	$\begin{array}{c} 32^3\times 96\\ 48^3\times 96\\ 64^3\times 96\end{array}$	6.30	0.08786	0.874164	0.0074 0.00363 0.0012	0.037 0.0363	0.44 0.43 0.432	1/5 1/10 phys	0.03627	316 221 129	1008 1031 1074
β 6.72 M iii β 6.72 M ii β 6.72 M ii β 6.72 M i	$\begin{array}{c} 48^3 \times 144 \\ 64^3 \times 144 \\ 96^3 \times 192 \end{array}$	6.72	0.05662	0.885773	0.0048 0.0024 0.0008	0.024 0.022	0.286 0.26	1/5 1/10 phys	0.02176	329 234 135	1017 1103 1268
β 7.00 M iii β 7.00 M i	$\begin{array}{c} 64^3 \times 192 \\ 144^3 \times 288 \end{array}$	7.00	0.0426	0.892186	0.00316 0.000569	0.0158 0.01555	0.188 0.1827	1/5 phys	0.01564	315 134	1165 478
β 7.28 M iii	$96^3 imes 288$	7.28	0.03216	0.89779	0.00223	0.01115	0.1316	1/5	0.01129	309	821

Time and distance intervals in the full data set.

$a_{f_{p4s}}$ (fm)	β	T _{min} /a	$T_{\rm max}/a$	$T_{\rm max}$ (fm)	r _{max} /a	r _{max} (fm)
0.15294	5.8	1	9	1.35	6	0.92
0.12224	6.0	1	6	0.73	6	0.73
0.08786	6.3	1	8	0.70	8	0.70
0.05662	6.72	1	10	0.57	12	0.68
0.0426	7.0	1	20	0.85	20	0.85
0.03216	7.28	1	28	0.91	24	0.78

¹[A. Bazavov, et al., PRD 98 (2018)]

Tables

Fits

- For each $N_{\rm st}$, $\tau_{\min,N_{\rm st}}(\mathbf{r}/a)$ is varied by $\pm a \Rightarrow$ fits are robust.
- 100 Jackknife pseudoensembles to propagate statistical errors.
- Randomized thinning of \(\tau\) range to invert correlation matrix ¹⁴.
- Or full τ range, but restricted to the diagonal \Rightarrow consistent.
- We use Bayesian fits with loose, linear priors ($\geq 10\%$ width).

force ●0

A consistent definition of the force on the lattice?

Wanted: independent determinations of the three scales!

- Small R: discretization artifacts $\sim 0.1 1\% \gg$ stat. errors
- The slope determining the 1/R coefficient A decreases with R
- Stat. errors of E(R, a) data increases with R or a
- Density of E(R, a) data increases with R or a
- Correlations between many data at similar R ⇒ many small eigenvalues ⇒ cannot invert correlation matrix

Can we possibly **trust the statistical errors** we obtain for r_i/a ?

A consistent definition of the force on the lattice?

Asymmetric, randomized thinning in intervals (expected $r_i/a \pm x\%$)

- x = 30 (or 35 for the finest lattice)
- Out of $10 = \sqrt{N_J}$ pick 3(7) below (above) expected R
- Extend inverval if necessary by demanding at least six(fourteen) below(above) to permit randomized picking
- If not possible relax to at least five(eleven) below(above)
- Pick $N_P = 100$ (or $N_P = 200$ for the finest lattice) R values