The long-distance behaviour of the vector correlator from π - π scattering at the physical point

Srijit Paul
Institute of Nuclear Physics, JGU Mainz

Collab:

A. Hanlon, B. Hörz, D. Mohler, C. Morningstar, H. Wittig

LATTICE 2022 Bonn

• Lattice community $m \to m_{\rm phys}$, dominance of multihadron states, reconstruct the observable using tower of multihadron states.

²/8

- Lattice community $m \to m_{\rm phys}$, dominance of multihadron states, reconstruct the observable using tower of multihadron states.
 - Talk by Ferenc Pittler on πN contamination on nucleons.
 - Nucleon structure talks, dealing with excited state contaminations especially $N\pi$.
 - $B\pi$ excited states in B-meson observables.
 -

- Lattice community $m \to m_{\rm phys}$, dominance of multihadron states, reconstruct the observable using tower of multihadron states.
- Precise estimation of $a_{\mu}^{\rm hvp}$ in (g-2) calculation, compute long distance behaviour of vector correlator using its overlap with low lying $\pi-\pi$ states.[model independent]

 $^{2}/_{8}$

- Lattice community $m \to m_{\rm phys}$, dominance of multihadron states, reconstruct the observable using tower of multihadron states.
- Precise estimation of $a_{\mu}^{\rm hyp}$ in (g-2) calculation, compute long distance behaviour of vector correlator using its overlap with low lying $\pi-\pi$ states.[model independent]

$$\left(a_{\mu}^{\text{hvp}}\right)^{f} = \left(\frac{\alpha}{\pi}\right)^{2} \int_{0}^{\infty} dx_{0} \frac{G\left(x_{0}\right)\widetilde{K}\left(x_{0}\right)}{m_{\mu}}$$

[1807.09370]

- Lattice community $m \to m_{\rm phys}$, dominance of multihadron states, reconstruct the observable using tower of multihadron states.
- Precise estimation of $a_{\mu}^{\rm hvp}$ in (g-2) calculation, compute long distance behaviour of vector correlator using its overlap with low lying $\pi-\pi$ states.[model independent]

[1807.09370]

• Precursor to calculating timelike pion form factor, one way to estimate finite-size effects in $a_{\mu}^{\rm hvp}$.

[1808.05007]

 $^{2}/_{8}$

Lattice Setup

• CLS simulations $N_f=2+1$ E250 Ensemble (periodic) O(a) Improved Wilson fermions, $m_\pi=129.60(97)$ MeV, (lower than physical) $L\approx 6.2$ fm, $96^3\times 192$, $m_\pi\,L=4.1$ Enables $0\leq |\vec{P}|^2\leq 4$ a=0.06426 fm (fine) $N_{confias}=353$

[1712.04884]

• Distillation Setup:

$$N_{eigenvector} = 1536, N_{noise} = 6$$

 $N_{src} = 4$

 $^{3}/_{8}$

[Hadron Spectroscopy]

- Construct local multihadron operators I=1 channel $0 \leq |\vec{P}|^2 \leq 4$.
- Compute correlation matrices.
- · Project onto irreps.
- Extract spectrum and principal eigenvectors using GEVP.

$$R_1^{(n)}(t) = \left| \frac{\hat{D}_n(t)}{\sqrt{\hat{C}_n(t)e^{-E_n t}}} \right|, \quad R_2^{(n)}(t) = \left| \frac{\hat{D}_n(t)}{A_n e^{-E_n t}} \right|,$$
$$R_3^{(n)}(t) = \left| \frac{\hat{D}_n(t)A_n}{\hat{C}_n(t)} \right|$$

- $\hat{D}_n(t)$ Current overlap π - π
- $\hat{C}_n(t)$, A_n from ratio fits.
- · Visual plateau selection
- Plateau average
- R_2 , R_3 for comparison
- Source of systematic uncertainty.

[1808.05007]

Reconstructed long distance regime

$$G_{n_{\text{max}}}^{ud}(x_0) = \frac{10}{9} \sum_{n=0}^{n_{\text{max}}} \left| R_1^{(n)} \right|^2 e^{-E_n x_0}$$

[1705.01775]

Reconstructed long distance regime

$$G_{n_{\text{max}}}^{ud}(x_0) = \frac{10}{9} \sum_{n=0}^{n_{\text{max}}} \left| R_1^{(n)} \right|^2 e^{-E_n x_0}$$

[1705.01775]

Srijit Paul spaul@uni-mainz.de

Reconstructed long distance regime: error comparison

Exponential noise reduction in the tail.

Another way of reconstructing the VV correlator

$$G^{\rho\rho}(x_0)_{\text{ext}} = \int_0^\infty d\omega \omega^2 \rho(\omega^2) e^{-\omega x_0}$$

where

$$\rho(\omega^{2}) = \frac{1}{48\pi^{2}} \left(1 - \frac{4m_{\pi}^{2}}{\omega^{2}} \right)^{\frac{3}{2}} |F_{\pi}(\omega)|^{2},$$

[1107.4388]

• Extract resonance parameters using moving frames.

Lüscher (1991)

• Construct Time-Like Pion form factor $F_{\pi}(\omega)$

Another way of reconstructing the VV correlator

In the process of extracting the resonance parameters with a t-matrix fit.

Outlook

- Take into contributions from higher partial waves.
- Different K-matrix parametrization fits for coupling and width.
- Extraction of F_π for inputs to estimating FV effects in a_μ^{hvp} .
- Compare with VV correlator using Low Mode Averaging. (g-2 Workshop, Edinburgh: Simon Kuberski)
- Another ongoing analysis on J303, CLS ensemble, to systematically reduce the uncertainties in (g-2) calculations.

 $^{8}/_{8}$