Setting the Scale Using Baryon Masses with Isospin-Breaking Corrections

Alexander Segner Andrew Hanlon, Andreas Risch, Hartmut Wittig

August 11, 2022

Motivation

- Increased interest in high-precision observables
 - Discrepency between theory and experiment on $a_{\mu} = \frac{(g-2)_{\mu}}{2}$
 - Theoretical uncertainty is dominated by QCD
 - \rightarrow Strongly influenced by the uncertainty of the lattice scale
 - CLS $N_f = 2 + 1$ ensembles
 - \rightarrow Isospin symmetric action leads to systematic uncertainty
 - \rightarrow Need to account for QED effects and difference in light quark masses
- Scale setting currently done using f_{π} and f_{K}^{1}
 - \rightarrow Difficult to determine IB corrections² reliably
 - \rightarrow Use baryon masses instead
- Allows for calculations of mass splittings of isospin multiplets³

¹Bruno et al. 2017, *Phys. Rev. D* **95** no. 7, p. 074504.

²Carrasco et al. 2015, *Phys. Rev. D* **91** no. 7, p. 074506.

³Borsanyi 2015, *Science* **347**, pp. 1452–1455.

Operator Basis

- Construction based on isospin-symmetric QCD following a procedure introduced by the *Lattice Hadron Physics Collaboration*⁴
- Classification by symmetries in flavor and spin (and parity eigenvalues)
- Example for symmetric spin and flavor indices (e.g. $\Omega_{ijk}^- = s_i s_j s_k$, $\Delta_{ijk}^+ = \frac{1}{\sqrt{3}} (u_i u_j d_k + u_i d_j u_k + d_i u_j u_k)$, etc.) (Operators in Dirac-Pauli basis)

Embedding	S_z	gerade (even)	ungerade (odd)
1	$\frac{3}{2}$	Ω_{111}	$\sqrt{3}\Omega_{113}$
1	$\frac{\overline{1}}{2}$	$\sqrt{3}\Omega_{112}$	$\Omega_{114} + 2\Omega_{123}$
1	$-\frac{1}{2}$	$\sqrt{3}\Omega_{122}$	$2\Omega_{124} + \Omega_{223}$
1	$-\frac{3}{2}$	Ω_{222}	$\sqrt{3}\Omega_{224}$
2	$\frac{3}{2}$	$\sqrt{3}\Omega_{133}$	Ω_{333}
2	$\frac{\overline{1}}{2}$	$2\Omega_{134} + \Omega_{233}$	$\sqrt{3}\Omega_{334}$
2	$-\frac{1}{2}$	$\Omega_{144} + 2\Omega_{234}$	$\sqrt{3}\Omega_{344}$
2	$-\frac{\bar{3}}{2}$	$\sqrt{3}\Omega_{244}$	Ω_{444}
H irrep for symmetric spin and flavor indices			

⁴Basak et al. 2005, *Phys. Rev. D* 72, p. 074501.

Baryon Spectrum at $m_{\pi} \in \{215 \text{ MeV}, 290 \text{ MeV}\}$

• Setup:

- $\mathcal{O}(a)$ -improved Wilson fermions
- tree-level Lüscher–Weisz gauge action
- Interpolators as described before
- $\bullet~$ Wuppertal smeared point sources with smearing radius $\sim 0.5\,\text{fm}$
- APE smeared gauge links
- Correlation functions averaged over
 - Different S_z
 - Forward propagator and backwards parity partner
- Have access to correlator matrices allowing for GEVP
 - $\rightarrow\,$ Found that one operator is much less noisy than the others for each state
 - $\rightarrow~{\rm GEVP}$ mostly projects on less noisy correlator
 - $\rightarrow\,$ Data shown only from one correlation function

QCD+QED vs. QCD_{iso}

- Method based on a procedure introduced by the RM123 collaboration⁵⁶
- Consider a QCD+QED action S with parameters:

$$\varepsilon = \left(\beta, e^2, m_u, m_d, m_s\right)$$

• Expand around isosymmetric action $S^{(0)}$ with parameters

$$\varepsilon^{(0)} = \left(\beta^{(0)}, 0, m_{ud}^{(0)}, m_{ud}^{(0)}, m_s^{(0)}\right)$$

• Dividing S into three parts, write

$$S[U, A, \psi, \bar{\psi}] = S_g[U] + S_\gamma[A] + S_q[U, A, \psi, \bar{\psi}]$$

•
$$\operatorname{QED}_L$$
 action S_{γ}^{7} in Coulomb gauge
 \rightarrow IR regularisation by setting $\sum_{\mathbf{x}} A^{\mathbf{x},t} = 0 \forall t$

⁵Divitiis 2012, JHEP **04**, p. 124.

⁶Divitiis et al. 2013, *Phys. Rev. D* 87 no. 11, p. 114505.

⁷Hayakawa and Uno 2008, *Prog. Theor. Phys.* **120**, pp. 413–441.

Expectation values

$$\begin{split} \langle \mathcal{O} \rangle^{\varepsilon} &= \left\langle \langle \mathcal{O} \rangle_{q\gamma} \right\rangle_{\text{eff}}^{\varepsilon} \\ \langle \mathcal{O} \rangle_{q\gamma} \left[U \right] &= \frac{1}{Z_{q\gamma}[U]} \int \mathcal{D}A\mathcal{D}\psi \mathcal{D}\bar{\psi} \,\mathcal{O}[U,A,\psi,\bar{\psi}] e^{-S_{\gamma}[A] - S_{q}[U,A,\psi,\bar{\psi}]} \\ \langle \mathcal{O}[U] \rangle_{\text{eff}}^{\varepsilon} &= \frac{1}{Z} \int \mathcal{D}U \,\mathcal{O}[U] Z_{q\gamma}[U] e^{-S_{g}[U]} \\ &= \frac{1}{Z} \int \mathcal{D}U \,\mathcal{O}[U] e^{-S_{\text{eff}}[U]} \end{split}$$

Can relate $\langle \mathcal{O} \rangle^{\varepsilon}$ to $\langle \mathcal{O} \rangle^{\varepsilon^{(0)}}$ via reweighting:

$$\langle \mathcal{O} \rangle^{\varepsilon} = \frac{\left\langle R \left\langle \mathcal{O} \right\rangle_{q\gamma} \right\rangle_{\text{eff}}^{\varepsilon^{(0)}}}{\left\langle R \right\rangle_{\text{eff}}^{\varepsilon^{(0)}}}, \quad R = \frac{\exp(-S_{\text{eff}})}{\exp\left(-S_{\text{eff}}^{(0)}\right)} = \frac{\exp(-S_g)Z_{q\gamma}}{\exp\left(-S_g^{(0)}\right)Z_q^{(0)}}$$

Perturbative Expansion – Expectation Values

Expand expectation values

$$\langle \mathcal{O} \rangle^{\varepsilon} = \langle \mathcal{O} \rangle^{\varepsilon^{(0)}} + \sum_{\varepsilon_i \in \varepsilon} \underbrace{\left(\varepsilon_i - \varepsilon_i^{(0)}\right)}_{=:\Delta \varepsilon_i} \frac{\partial \langle \mathcal{O} \rangle^{\varepsilon}}{\partial \varepsilon_i} \bigg|_{\varepsilon = \varepsilon^{(0)}} + O(\Delta \varepsilon^2)$$

$$\varepsilon = \left(\beta, e^2, m_u, m_d, m_s\right)$$

$$\varepsilon^{(0)} = \left(\beta, 0, m_{ud}^{(0)}, m_{ud}^{(0)}, m_s^{(0)}\right) \delta \varepsilon = (0, e^2, \Delta m_u, \Delta m_d, \Delta m_s)$$

Baryon correlation function:

Perturbative Expansion – Spectroscopy

• Correlation functions asymptotically behave like

$$C(t) = ce^{-mt}$$

• Expansion in isospin breaking parameters $(\Delta \varepsilon_i := \varepsilon_i - \varepsilon_i^{(0)})$

$$\rightarrow C(t) = c^{(0)} e^{-m^{(0)}t}$$

$$+ \sum_{i} \Delta \varepsilon_{i} \Big(c_{i}^{(1)} - c^{(0)} m_{i}^{(1)} t \Big) e^{-m^{(0)}t}$$

$$+ \mathcal{O}(\Delta \varepsilon^{2})$$

 \rightarrow Can define effective mass at first order via

$$(am_{\mathsf{eff}})^{(1)}_{\Delta\varepsilon_i} := -a \frac{\mathrm{d}}{\mathrm{d}t} \frac{C_i^{(1)}(t)}{C^{(0)}(t)}$$

• $\Delta \varepsilon_i$ can be set by matching different average multiplet masses and mass splittings

Correlators for Ω at $m_{\pi}=$ 215 MeV, a= 0.076 fm

Renormalization Scheme

Expansion coefficients provided by Andreas Risch using the renormalization scheme $^{\rm 9}$

$$(m_{\pi^0}^2)^{\text{QCD}+\text{QED}} = (m_{\pi^0}^2)^{\text{phys}} (m_{K^+}^2 + m_{K^0}^2 - m_{\pi^+}^2)^{\text{QCD}+\text{QED}} = (m_{K^+}^2 + m_{K^0}^2 - m_{\pi^+}^2)^{\text{phys}} (m_{K^+}^2 - m_{K^0}^2 - m_{\pi^+}^2 + m_{\pi^0}^2)^{\text{QCD}+\text{QED}} = (m_{K^+}^2 - m_{K^0}^2 - m_{\pi^+}^2 + m_{\pi^0}^2)^{\text{phys}} (\alpha_{\text{em}})^{\text{QCD}+\text{QED}} = (\alpha_{\text{em}})^{\text{phys}}$$

⁹Risch and Wittig 2022, PoS LATTICE2021, p. 106.

- We perform a calculation of a complete set of octet and decuplet baryon operators
- We use a perturbative approach to include isospin breaking effects on isosymmetric ensembles
- Two Ensembles processed so far with sub-percent precision for some baryon masses (e.g. $0.25\,\%$ for $\Omega)$
 - $\rightarrow\,$ Even high precision in isospin breaking corrections (e.g. 0.8 % for $\Omega)$
 - → We intend to expand parameter space to further ensembles (N200 ($m_{\pi} = 285 \text{ MeV}$), N203 ($m_{\pi} = 345 \text{ MeV}$), D200 ($m_{\pi} = 200 \text{ MeV}$), J303 ($m_{\pi} = 260 \text{ MeV}$))
- We search for a suitable observable for setting the Scale
- We intend to investigate $\Sigma\text{-}\Lambda\text{-}\mathrm{mixing}$