Two-link Staggered Quark Smearing in QUDA

Steven Gottlieb!, Hwancheol Jeong!', Alexei Strelchenko?

L Indiana University, * Fermilab

Abstract

e For staggered quarks, gauge covariant smearing based on the 3D lattice Laplacian
needs to introduce two-link parallel transport to preserve taste properties.

e MILC code provides this two-link staggered quark smearing, but we found that it
was taking an inordinate amount of time on the CPU.

e We have implemented it in QUDA. We have also improved the algorithm to reuse
two-link matrices stored in the memory.

Two-link staggered quark smearing

e 3D lattice Laplacian:

3
VZ(x,y) — Z [UM(CB) Oz4fi,y T Ul(a:' — [1) Oz —p,] — 602,y (1)
=1
e Taste-preserving (two-link) 3D lattice Laplacian:
3
Viwo (T, 4) = Z Vu(m) Ox+2/,y T VT(“’ —2f1) 6525, y} — 604,y (2)
/l,:
where two-link V() = U, (z2)U,(x + 1).
e Gaussian smearing for staggered quark ¥ (x):
~ o n
= (142 Vi) ¥ (3)

where n € Z, n > 0 and o € R are tunable parameters.
e Forn > 1, w ~ exp(avtwo)w

e For U =1, @Z follows the GGaussian distribution.

1 0.40 t0.40
035 o T 0.35
+ 0.30 T 0.30
+ 0.25 T 0.25
T 0.20 § 7020 X
T 0.15 g T 0.15 §
7 0.10 r0.10 —
IO A T 0.05

RO .00: °°°:°°q:::°:°o ~ 0.00

Z=O,t=0
Z=0,t=0

4
) ° ° ‘0-05
0 .9 e% 0 %%
°°°°°°0
° 0. "o 0.00
° ° .
o _© °o ° ° o
.......

Unit gauge (U = 1) HISQ gauge

GPU implementation & algorithm improvement

MILC code
CPU

QUDA (this work)

GPU
— Higher FLOPS

Computes two-link once
and reuse it for all iterations and
even for different sources and sinks

(Vu(z)(z + 240))
— Less # of FLOPs

— Less communication

Computes two consecutive
parallel transports every iteration

(Up(2)Up(z + p)y(z + 2[1))

e Performance improvement (Big Red 200, n = 50)

Q. 7/ i
p— MILC code s -
_ (2-node x2x64-core AMD EPYC 7742) '
0 6 QUDA 1st source (2-nodex4xA100) 5
¢ | EEE QUDA 2nd source (2-nodex4xA100)
= .
A |
2 ‘ 1.48 1.15 '
11 019015 003 -0 34 0.09 .0-49 0.15 oo |

40°% x 96 643 x 96

| attice volume

243 ><64 3 % 96

P 2nd source (and so on) reuses two-link in the memory.

» Our QUDA code on GPU is faster than the MILC code on CPU by
600~1800%. The bigger the lattice volume, the greater the improvement.

e In practice, we have many sources and sinks that can share the same two-link.

I speaker, sonchac@gmail.com

Performance on NVIDIA GPU

o Runtime to smear three (different color) wall sources, n = 50
o Unshaded: two-link calculation, shaded: smearings

e Volume scalability (Big Red 200) e Strong scalability (Big Red 200)

0.8
| W 8 x A100 4.52 3 0o MM 484 A100
ORS @ 0.6° 0.50
£ E04- s =
c 9. E
r - ¥ 0.2-
- 0.60 :
0 O_I()4 0.11 0.0 -
124 244 484 064 1(4) 2(8) 4(16) 8(32)

of nodes (# of GPUs)

| attice volume

P Volume scalability looks good. But strong scalability is poor.

e Smearing a source with and without NVSHMEM (Summit)

| =] W 8 x V100 (w/o NVSHMEM) :_
= | mEE 8 x V100 (w/ NVSHMEM) ;
c 1.0 - X
e 0.71 _
S I | |
o 0.0 - .45 0.36 i
0.0 - __
5 % 96

243 x 64 323 x 96 40° x 96
L attice volume

» NVSHMEM improves the two-link computation speed by 30~50%.

Performance on AMD GPU

o Runtime to smear three (different color) wall sources, n = 50
o Unshaded: two-link calculation, shaded: smearings

e Volume scalability (Crusher) e Strong scalability (Crusher)

Bl 16 x MI250X 7 0 484, MI250X

G QL <1 1.72 1.76 1.72
E E
g - '

1(4) 2(8) 4(16) 8(32)

244

Lattlce volume # of nodes (# of GPUs)

» Two-link computation is much slower than that on NVIDIA GPUs.

|Application| Baryon correlator calculation

o 72 source and sink smearings (n = 30)

o Shaded: total smearing time
o Personal server similar to Cooley: 2 MPI x (6 OpenMP threads + 1 K80)

2167

2000 { T w/o QUDA smearing
0 Bl v/ QUDA smearing
=
£ 1000 - Utk
-
e

O .

243 x 64 323 x 48

L attice volume

P Total smearing time is reduced by around 400~700%.

Conclusion & Plan

e We have significantly reduced the cost to smear staggered quark fields.
e (Gaussian smearing is no longer a bottleneck in the baryon correlator calculation.
e Need to improve the scalability and the two-link computation on AMD GPUs.

e It will be available in the develop branch of QUDA soon. (Pull request is open.)

