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Abstract

e For staggered quarks, gauge covariant smearing based on the 3D lattice Laplacian
needs to introduce two-link parallel transport to preserve taste properties.

e MILC code provides this two-link staggered quark smearing, but we found that it
was taking an inordinate amount of time on the CPU.

e We have implemented it in QUDA. We have also improved the algorithm to reuse
two-link matrices stored in the memory.

Two-link staggered quark smearing

e 3D lattice Laplacian:

3
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=1
e Taste-preserving (two-link) 3D lattice Laplacian:
3
Viwo (T, 4) = Z Vu(m) Ox+2/,y T VT(“’ —2f1) 6525, y} — 604,y (2)
/l,:
where two-link V() = U, (z2)U,(x + 1).
e Gaussian smearing for staggered quark ¥ (x):
~ o n
= (142 Vi) ¥ (3)

where n € Z, n > 0 and o € R are tunable parameters.
e Forn > 1, w ~ exp(avtwo)w

e For U =1, @Z follows the GGaussian distribution.
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GPU implementation & algorithm improvement

MILC code
CPU

QUDA (this work)

GPU
— Higher FLOPS

Computes two-link once
and reuse it for all iterations and
even for different sources and sinks

(Vu(z)(z + 240))
— Less # of FLOPs

— Less communication

Computes two consecutive
parallel transports every iteration

(Up(2)Up(z + p)y(z + 2[1))

e Performance improvement (Big Red 200, n = 50)
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P 2nd source (and so on) reuses two-link in the memory.

» Our QUDA code on GPU is faster than the MILC code on CPU by
600~1800%. The bigger the lattice volume, the greater the improvement.

e In practice, we have many sources and sinks that can share the same two-link.
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Performance on NVIDIA GPU

o Runtime to smear three (different color) wall sources, n = 50
o Unshaded: two-link calculation, shaded: smearings

e Volume scalability (Big Red 200) e Strong scalability (Big Red 200)
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P Volume scalability looks good. But strong scalability is poor.

e Smearing a source with and without NVSHMEM (Summit)
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» NVSHMEM improves the two-link computation speed by 30~50%.

Performance on AMD GPU

o Runtime to smear three (different color) wall sources, n = 50
o Unshaded: two-link calculation, shaded: smearings

e Volume scalability (Crusher) e Strong scalability (Crusher)
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» Two-link computation is much slower than that on NVIDIA GPUs.

|Application| Baryon correlator calculation

o 72 source and sink smearings (n = 30)

o Shaded: total smearing time
o Personal server similar to Cooley: 2 MPI x ( 6 OpenMP threads + 1 K80 )
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P Total smearing time is reduced by around 400~700%.

Conclusion & Plan

e We have significantly reduced the cost to smear staggered quark fields.
e (Gaussian smearing is no longer a bottleneck in the baryon correlator calculation.
e Need to improve the scalability and the two-link computation on AMD GPUs.

e It will be available in the develop branch of QUDA soon. (Pull request is open.)



