
MPI Job Manager (MPI_JM)

Lattice 2022

André Walker-Loud

2

MPI Job Manager
Ken McElvain (architect), André Walker-Loud, [Evan Berkowitz]

What is the issue that this code is addressing?

How does it work? (high level)

What are future features?

How and when can you get it?

3

What is the issue?
The “measurement” stage of lattice QCD calculations requires the execution of millions of
independent MPI tasks

The tasks have mixed resource needs on heterogeneous systems

GPU-intense, CPU-only, heavy I/O

The tasks often have chained/nested dependencies

A coherent sequential propagator for a 3-pt function can require 8 previous propagators to
make a coherent sink

A team may desire to run multiple projects with the same computing allocation with
dynamic priorities (project A is higher priority generally, but you need results for project B for
an upcoming seminar/conference…)

Running this “swarm” of millions of MPI tasks as individual computations on “leadership
computing facilities” is not tolerable by the supercomputing centers

4

Jargon

job
 a resource allocation on the compute cluster

task
 an independent MPI task that could be run as a single job, or in a bundle on a larger job

5

Computing Centers often disfavor many small jobs

We often bundle similar jobs into larger jobs

On heterogeneous architectures, different jobs may have very different resource needs

Even with similar jobs - significant waste can happen as fast/regular jobs wait for slow ones

Managing millions of tasks on heterogeneous architectures

� � � � � �
�

��

��

��

��	

���

���

���

���

����� ���	�
�� �����

�
��
��

6

METAQ - https://github.com/evanberkowitz/metaq - Evan Berkowitz

Our first solution is a set of configurable bash scripts that can manage many different types
of tasks and backfill idle nodes

Different colors represent jobs with different resource needs
(on average, 30% wasted idle nodes reduced to ~5% wasted idle nodes)

Managing millions of tasks on heterogeneous architectures

� � � � � �
�

��

��

��

��	

���

���

���

���

����� ���	�
�� �����

�
��
��

� � � � � �
�

��

��

��

��	

���

���

���

���

����� ���	�
�� �����
�
��
��

https://github.com/evanberkowitz/metaq

7

METAQ - https://github.com/evanberkowitz/metaq - Evan Berkowitz

METAQ has served us very well - allowing us to very efficiently use Titan and its successor
Summit (both at Oak Ridge Leadership Computing Facility (OLCF) @ ORNL)

METAQ was used to simultaneously run computations for these two projects
without METAQ - we would not have been able to run either, let alone both, at OLCF

Managing millions of tasks on heterogeneous architectures

LETTER
https://doi.org/10.1038/s41586-018-0161-8

A per-cent-level determination of the nucleon axial
coupling from quantum chromodynamics
C. C. Chang1,2, A. N. Nicholson1,3,4, E. Rinaldi1,5,6, E. Berkowitz6,7, N. Garron8, D. A. Brantley1,6,9, H. Monge-Camacho1,9,
C. J. Monahan10,11, C. Bouchard9,12, M. A. Clark13, B. Joó14, T. Kurth1,15, K. Orginos9,16, P. Vranas1,6 & A. Walker-Loud1,6*

The axial coupling of the nucleon, gA, is the strength of its coupling
to the weak axial current of the standard model of particle physics,
in much the same way as the electric charge is the strength of the
coupling to the electromagnetic current. This axial coupling dictates
the rate at which neutrons decay to protons, the strength of the
attractive long-range force between nucleons and other features of
nuclear physics. Precision tests of the standard model in nuclear
environments require a quantitative understanding of nuclear
physics that is rooted in quantum chromodynamics, a pillar of
the standard model. The importance of gA makes it a benchmark
quantity to determine theoretically—a difficult task because
quantum chromodynamics is non-perturbative, precluding known
analytical methods. Lattice quantum chromodynamics provides a
rigorous, non-perturbative definition of quantum chromodynamics
that can be implemented numerically. It has been estimated that a
precision of two per cent would be possible by 2020 if two challenges
are overcome1,2: contamination of gA from excited states must be
controlled in the calculations and statistical precision must be
improved markedly2–10. Here we use an unconventional method11
inspired by the Feynman–Hellmann theorem that overcomes these
challenges. We calculate a gA value of 1.271 ± 0.013, which has a
precision of about one per cent.

To demonstrate the efficacy of lattice quantum chromodynamics
(LQCD) for nuclear physics research, one must begin by demonstrating
control over the simplest quantities, such as gA. In addition to those
mentioned above, there are a number of challenges in using LQCD to
compute properties of nucleons and nuclei. The first challenge arises
from the non-perturbative features of quantum chromodynamics

(QCD) itself. QCD describes the interactions between quarks
and gluons, the basic constituents of nucleons, through the Lagrangian
density Ψ̄ Ψ= − / + ∑ +L G g D m(4) ()q q q qQCD

2 , where the quark fields,
Ψq, come in flavours q = {u, d, s, ...} with masses mq = {mu, md, ms, …}.
G2 describes the nonlinear gluon self-interactions and D includes the
quark–gluon interactions, both with a strength determined by the
coupling, g. Most of nuclear physics depends on only three or four input
parameters from QCD: g, the light-quark masses, mu and md, and in
some cases the strange-quark mass, ms. Once these parameters are
fixed, and electroweak corrections are added, all of nuclear physics—
from the kiloelectronvolt energy levels in nuclei to the energy densities
of the neutron star equation of state (a few hundred megaelectronvolts
per cubic fermi (fm), where 1 fm = 10−15 m)—can in principle be
predicted from QCD.

At short distances (high energies), such as those explored by the
Large Hadron Collider at CERN, QCD has been rigorously tested,
because in this energy regime g ≪ 1 and perturbative methods are
applicable. At long distances of approximately 1 fm (low energies),
which are characteristic of nuclear physics, g is large and perturbation
theory fails to converge. Consequently, quarks and gluons are confined
in protons, neutrons and other hadrons observed experimentally.
Fortunately, non-perturbative calculations can be carried out in the
strong-coupling regime using LQCD, the only first-principles approach
known to control all sources of systematic uncertainty.

LQCD is the formulation of QCD on a finite four-dimensional space-
time lattice, following the Feynman path-integral description. Monte
Carlo methods are used to sample the resulting high-dimensional inte-
grals stochastically. The values of the lattice spacing, a, and finite size,

1Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA. 2Interdisciplinary Theoretical and Mathematical Sciences (iTHEMS) Program, RIKEN, Saitama, Japan.
3Department of Physics, University of California, Berkeley, CA, USA. 4Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC, USA. 5RIKEN-BNL Research Center,
Brookhaven National Laboratory, Upton, NY, USA. 6Physics Division, Lawrence Livermore National Laboratory, Livermore, CA, USA. 7Institut für Kernphysik and Institute for Advanced Simulation,
Forschungszentrum Jülich, Jülich, Germany. 8Theoretical Physics Division, Department of Mathematical Sciences, University of Liverpool, Liverpool, UK. 9Department of Physics, The College
of William and Mary, Williamsburg, VA, USA. 10Physics Department and Astronomy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA. 11Institute for Nuclear Theory, University
of Washington, Seattle, WA, USA. 12School of Physics and Astronomy, University of Glasgow, Glasgow, UK. 13NVIDIA Corporation, Santa Clara, CA, USA. 14Scientific Computing Group, Thomas
Jefferson National Accelerator Facility, Newport News, VA, USA. 15NERSC, Lawrence Berkeley National Laboratory, Berkeley, CA, USA. 16Theory Center, Thomas Jefferson National Accelerator
Facility, Newport News, VA, USA. *e-mail: awalker-loud@lbl.gov

Fig. 1 | Feynman diagrams of gA. The decay of a neutron to a proton
occurs when one of the down quarks (d) in the neutron is converted to
an up quark (u) via the vector and axial components of the weak current.
Not depicted in these figures are the infinite set of diagrams describing
the coupling of gluons to the quarks and of gluons to gluons and the
dynamical production and annihilation of quark–anti-quark pairs.
Because of this infinite set of graphs, the use of a computational approach

to QCD is required. The time, t, refers to calculational details discussed in
the text. a, The standard method of computing gA relies on three different
times, the creation time, t = 0, the current insertion time, tins, and the
separation time, tsep. Controlling the excited state systematics requires
varying both tins and tsep. b, Our Feynman–Hellmann method11 sums
over all possible interaction times (tins) of the external weak axial current,
leading to an exponential enhancement of the signal.

u

Weak axial current

u

d
u

d

d

u

d
u

u

d

t = tins

Proton
t = tsep

Proton
t = tsep

Neutron
t = 0Neutron

t = 0

a b

d Feynman–Hellmann propagator

N A T U R E | www.nature.com/nature
© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

C. Chang et al (CalLat)
Nature 558 (2018) no.7708, 91-94 [arXiv:1805.12130] Heavy Physics Contributions to Neutrinoless Double Beta

Decay from QCD
A. Nicholson et al (CalLat)
Phys. Rev. Lett. 121, 172501 (2018) [arXiv:1805.02634]additional requirements

Ludicrously fast QUDA code (MDWF)
Free configs from MILC
Access to Titan/OLCF through INCITE

https://github.com/evanberkowitz/metaq
https://arxiv.org/abs/1805.12130
https://arxiv.org/abs/1805.02634

8

METAQ - https://github.com/evanberkowitz/metaq - Evan Berkowitz

At the same time, METAQ has short comings that are not addressable with bash

Managing tasks with bash means each MPI task requires an mpirun or equivalent call

This places significant strain on the service nodes that manage the compute nodes
(we have crashed both Titan and Summit with too many tasks being simultaneously run)

Desirable features:
Place tasks on neighboring nodes (don’t communicate across racks)
Place ranks on specific cores/GPUs of node
Simultaneously run GPU-intense and CPU-only tasks on same nodes
Dynamically assign priority of tasks
Flexible run “configurations” for the same task (try this or that if this isn’t possible)
Dynamically “shed” nodes in a job allocation
Collect node errors to identify problems (can’t talk to disk, can’t talk to GPU, slow fabric…)

Managing millions of tasks on heterogeneous architectures

https://github.com/evanberkowitz/metaq

9

MPI_JM - https://github.com/kenmcelvain/mpi_jm (temporarily private - license issue)

To support these more desirable features, we have created MPI Job Manager (MPI_JM)

C++/Python code

MPI_JM uses a single mpirun call to start job-allocation and manage all tasks

MPI_JM requires minimal interface to your code to work (normal running still works)

MPI_JM uses a second Python Library (user written) that instructs MPI_JM where to
collect yaml files that describe resource requirements. This library enables the user to
build generic types of jobs (propagator, baryon-block constructor, …)

MPI_JM is configured to know about a machine

user only needs to specify resource requirements

MPI_JM handles locking ranks to various parts of the node to optimize performance

MPI_JM

https://github.com/kenmcelvain/mpi_jm

10

MPI_JM
A job is launched with MPI_JM

MPI_JM carves up the nodes in “lumps” of size specified by the user

The lumps are all initialized concurrently (can bring up entire Summit in < 5 minutes)

MPI_JM begins to distribute tasks in each lump simultaneously

Tasks are located from user specified folders

User(s) can add more tasks during job (task list is refreshed regularly)

Multiple MPI_JM instances can work on the same list of tasks

Tasks are given user-specified priorities to help MPI_JM decide which jobs to run first

User can specify dependencies of tasks also

Tasks can have pre/post operations (check dependencies are ready - create dependent task)

11

MPI_JM
Example: 4096 nodes, 1 mpirun, 32 “blocks” of 256 nodes,
arbitrary number of “tasks” launched within blocks

Main communicator organizes nodes
in sorted list to keep nodes physically
local
User specifies “block size” (256) to
distribute master communicator over
all nodes

Multiple users can continuously feed
tasks to MPI_JM launch folder

Tasks are launched via
COMM_SPAWN
(failed task does not crash entire
allocation)

64 node CPU task ●
32 node GPU task ●

128 node CPU+GPU task ●

256
nodes

11

MPI_JM
Example: 4096 nodes, 1 mpirun, 32 “blocks” of 256 nodes,
arbitrary number of “tasks” launched within blocks

Main communicator organizes nodes
in sorted list to keep nodes physically
local
User specifies “block size” (256) to
distribute master communicator over
all nodes

Multiple users can continuously feed
tasks to MPI_JM launch folder

Tasks are launched via
COMM_SPAWN
(failed task does not crash entire
allocation)

64 node CPU task ●
32 node GPU task ●

128 node CPU+GPU task ●

256
nodes ● ● ● ●  

● ● ● ●

11

MPI_JM
Example: 4096 nodes, 1 mpirun, 32 “blocks” of 256 nodes,
arbitrary number of “tasks” launched within blocks

Main communicator organizes nodes
in sorted list to keep nodes physically
local
User specifies “block size” (256) to
distribute master communicator over
all nodes

Multiple users can continuously feed
tasks to MPI_JM launch folder

Tasks are launched via
COMM_SPAWN
(failed task does not crash entire
allocation)

64 node CPU task ●
32 node GPU task ●

128 node CPU+GPU task ●

256
nodes

● ● ● ●

● ● ● ●  
● ● ● ●

11

MPI_JM
Example: 4096 nodes, 1 mpirun, 32 “blocks” of 256 nodes,
arbitrary number of “tasks” launched within blocks

Main communicator organizes nodes
in sorted list to keep nodes physically
local
User specifies “block size” (256) to
distribute master communicator over
all nodes

Multiple users can continuously feed
tasks to MPI_JM launch folder

Tasks are launched via
COMM_SPAWN
(failed task does not crash entire
allocation)

64 node CPU task ●
32 node GPU task ●

128 node CPU+GPU task ●

256
nodes

● ● ● ● ● ● ● ●

● ● ● ●  
● ● ● ●

● ● ● ●  
● ● ● ●

11

MPI_JM
Example: 4096 nodes, 1 mpirun, 32 “blocks” of 256 nodes,
arbitrary number of “tasks” launched within blocks

Main communicator organizes nodes
in sorted list to keep nodes physically
local
User specifies “block size” (256) to
distribute master communicator over
all nodes

Multiple users can continuously feed
tasks to MPI_JM launch folder

Tasks are launched via
COMM_SPAWN
(failed task does not crash entire
allocation)

64 node CPU task ●
32 node GPU task ●

128 node CPU+GPU task ●

256
nodes

● ● ● ● ● ● ● ●

● ● ● ●  
● ● ● ●

● ● ● ●  
● ● ● ●

●

11

MPI_JM
Example: 4096 nodes, 1 mpirun, 32 “blocks” of 256 nodes,
arbitrary number of “tasks” launched within blocks

Main communicator organizes nodes
in sorted list to keep nodes physically
local
User specifies “block size” (256) to
distribute master communicator over
all nodes

Multiple users can continuously feed
tasks to MPI_JM launch folder

Tasks are launched via
COMM_SPAWN
(failed task does not crash entire
allocation)

64 node CPU task ●
32 node GPU task ●

128 node CPU+GPU task ●

256
nodes

● ● ● ● ● ● ● ●

● ● ● ●  
● ● ● ●

● ● ● ●  
● ● ● ●

●
● ●
● ● ● ●

11

MPI_JM
Example: 4096 nodes, 1 mpirun, 32 “blocks” of 256 nodes,
arbitrary number of “tasks” launched within blocks

Main communicator organizes nodes
in sorted list to keep nodes physically
local
User specifies “block size” (256) to
distribute master communicator over
all nodes

Multiple users can continuously feed
tasks to MPI_JM launch folder

Tasks are launched via
COMM_SPAWN
(failed task does not crash entire
allocation)

64 node CPU task ●
32 node GPU task ●

128 node CPU+GPU task ●

256
nodes

● ● ● ● ● ● ● ●

● ● ● ●  
● ● ● ●

● ● ● ●  
● ● ● ●

●
● ●
● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ●● ● ● ●

● ●

● ● ● ●

● ● ● ●  
● ● ● ●

● ● ● ●  
● ● ● ●

● ● ● ●  
● ● ● ●

● ● ● ●  
● ● ● ●

● ● ● ●  
● ● ● ●

● ● ● ●  
● ● ● ●

● ● ● ●  
● ● ● ●

● ● ● ●  
● ● ● ●

● ● ● ●  
● ● ● ●

● ● ● ●  
● ● ● ●

● ● ● ●  
● ● ● ●

● ● ● ●  
● ● ● ●

● ● ● ●  
● ● ● ●

● ● ● ●  
● ● ● ●

● ● ● ●  
● ● ● ●

● ● ● ●  
● ● ● ●

● ● ● ●  
● ● ● ●

● ● ● ●  
● ● ● ●

● ● ● ●  
● ● ● ●

● ● ● ●  
● ● ● ●

● ● ● ●  
● ● ● ●

● ● ● ●  
● ● ● ●

● ● ● ● ●● ●
● ●
● ● ● ●

● ●
● ● ● ●

● ●
● ● ● ●

●

12

Minimal Interface
Code that uses QMP can utilize
MPI_JM
(not yet in mainline QMP)

13

Performance monitoring

Improve overlapped use of distinct resources

Inter-job communication tasks

Dynamic task configuration

Enhance fault-tolerance and diagnosis

…

Known Future Features

14

Performance monitoring

User claims task will take 2 hours

MPI_JM will collect statistics on actual wall-clock time usage and use this to decide if a
task can complete before end of allocation

MPI_JM can monitor performance of blocks, not just job type, in case some blocks of
nodes are slower than others

Known Future Features

15

Improve overlapped use of distinct resources

After a task is finished, but needs to write I/O, the GPUs and CPUs for that task are
otherwise idle.

MPI_JM can be informed that the GPU-usage is complete, and a new GPU task can be
placed on the nodes while I/O is being performed from the previous task

Known Future Features

16

Inter-job communication tasks

Utilizing local NVME storage can be complicated for multi-node jobs with parallel I/O

Users can create “follow up” tasks/work with MPI_JM such that MPI_JM will launch a
helper task to collect the NVME from the individual nodes and build the complete file

Task 37 may require the data files from Tasks 0-7, which were all written to NVME.
MPI_JM can collect these and place them on the NVME that Task 37 will run on
(MPI_JM can decide ahead of time which nodes Task 37 will run on)

Known Future Features

17

Dynamic task configuration

The optimal number of nodes for task-A might be 4 (minimum required to fit job in
memory)

Towards the end of a job-allocation, there may be insufficient time to complete task-A on 4
nodes

But, with a performance loss, the job could run on 8-nodes in the remaining wallclock time

The user can pre-specify possible task-configurations that MPI_JM can try to fit in the
available resources, thus further reducing “wasted” time at the end of an allocation

One often observes 1000-3000 nodes available for only 45 minutes - with the optional run-
configurations, especially in bottom feeder mode - users could opt to utilize these nodes
that would otherwise be idle as the scheduler makes room for large jobs

Known Future Features

18

Enhance fault-tolerance and diagnosis

Even mature systems exhibit random trouble. eg. the GPUs on a node may take too long
to initialize, so the task aborts/times out, but the very next task will run successfully

MPI_JM can have a “re-try” option to catch such failures

MPI_JM can perform pretests of node health before launching the first task

Can the nodes see the file system?

Can the nodes see their NVME?

Can the nodes communicate via MPI? Is the MPI slower than it should be?

MPI_JM can detect if task is actually running (sometimes, failed I/O doesn’t cause task
to abort or time-out, MPI_JM could trigger a “kill” to this job)

All these errors/issues can be logged, ideally in some SQL database, that can be used to
help users and the sys-admins identify problematic nodes

Known Future Features

19

Conclusions
MPI_JM has worked great for running our LQCD calculations on Summit

While we haven’t succeeded in getting $ to bring it to full beta-stage - we are determined to
finally do it this Fall - and to share with anyone interested in trying it out

MPI_JM is not specific to LQCD - it works with any compute problem that requires MANY
individual tasks, and has dependencies etc.
Ken has been running nuclear equation of state calculations with it
Computation at one nuclear density can be used as initial guess for similar density

There are many known features that will improve running as well as I am sure many not-yet-
realized features

It would be great to get users to get more feedback

When it is ready - we’ll email latticenews to get volunteers

Thank You

