MPI Job Manager (MPI_JM

Lattice 2022

André Walker-L.oud

\ ~ .!'

fffrfnfrn 1|

MPI Job Manager

O Ken McElvain (architect), André Walker-l.oud, [Evan Berkowitz]

O What 1s the 1ssue that this code 1s addressing?
O How does 1t work? (high level)
O What are tuture teatures?

O How and when can you get 1t?

Whatis the issue?
O'l'he “measurement” stage ot lattice QGD calculations requires the execution of millions of
independent MPI tasks
O'|'he tasks have mixed resource needs on heterogeneous systems
OGPU-intense, GPU-only, heavy 1/0
O'|'he tasks often have chained/nested dependencies

OA coherent sequential propagator for a 3-pt function can require 8 previous propagators to
make a coherent sink

OA team may desire to run multiple projects with the same computing allocation with
dynamic priorities (project A 1s higher priority generally, but you need results for project B for
an upcoming seminar/conference...)

O Running this “swarm” ot millions of MPI tasks as individual computations on “leadership
computing facilities” 1s not tolerable by the supercomputing centers

Jargon

Oj0b

a resource allocation on the compute cluster

Otask

an iIndependent MPI task that could be run as a single job, or in a bundle on a larger job

Managing millions of tasks on heterogencous architectures

O Computing Genters often distavor many small jobs
O We often bundle similar jobs into larger jobs
OOn heterogeneous architectures, ditterent jobs may have very different resource needs

O Even with similar jobs - significant waste can happen as fast/regular jobs wait tfor slow ones

256

224 -

192 -

160 -

128 -

Nodes

96 -

64 -

32 -

OFr

| |

Hours after job start

Managing millions of tasks on heterogencous architectures

OMETAQ - https://github.com/evanberkowitz/metaq - Evan Berkowitz

OOur first solution is a set of configurable bash scripts that can manage many different types
of tasks and backfill idle nodes

O Difterent colors represent jobs with different resource needs
(on average, 30%0 wasted 1dle nodes reduced to ~5% wasted 1dle nodes)

256

256 -

224 - 204 |

192 - 192

160 - 160 -

128 - 128 |

Nodes
Nodes

96 - 96 -

64 - 64 -

32 - 30

O+

|

OFr

| |

Hours after job start Hours after job start

https://github.com/evanberkowitz/metaq

Managing millions of tasks on heterogencous architectures

OMETAQ - https://github.com/evanberkowitz/metaq - Evan Berkowitz

OMETAQ has served us very well - allowing us to very ethciently use '11tan and 1ts successor

Summit (both at Oak Ridge Leadership Computing Facility (OLCF) (@ ORNL)

OMETAQ was used to simultaneously run computations for these two projects

without METAQ - we would not have been able to run either, let alone both, at OLCF
LETTER

https://doi.org/10.1038/s41586-018-0161-8

Physmal Review Letters

A per-cent-level determination of the nucleon axial
coupling from quantum chromodynamics D

e

1oving physics forward

C. Chang et al (CalLat) . _ - ——

\i —

Nature 558 (2018) no.7708, 91-94 [arXiv:1805.12130] Heavy Physics Contributions to Neutrinoless Double Beta
Decay from QCD

A. Nicholson et al (CalLat)

Phys. Rev. Lett. 121, 172501 (2018) [arXiv:1805.02634]

Oadditional requirements

O Ludicrously tast QUDA code (MDWF)
OFree configs from MILC
O Access to Titan/OLCF through INCITE :

https://github.com/evanberkowitz/metaq
https://arxiv.org/abs/1805.12130
https://arxiv.org/abs/1805.02634

Managing millions of tasks on heterogencous architectures

OMETAQ - https://github.com/evanberkowitz/metaq - Evan Berkowitz

OAt the same time, METAQ has short comings that are not addressable with bash

OManaging tasks with bash means each MPI task requires an mp1run or equivalent call

O'|'his places significant strain on the service nodes that manage the compute nodes
(we have crashed both Titan and Summit with too many tasks being simultaneously run)

O Desirable features:

O Place tasks on neighboring nodes (don’t communicate across racks)

O Place ranks on specific cores/GPUSs of node

OSimultaneously run GPU-intense and GPU-only tasks on same nodes

O Dynamically assign priority ot tasks

OFlexible run “configurations™ for the same task (try this or that if this 1sn’t possible)

O Dynamically “shed” nodes 1n a job allocation

O Collect node errors to 1dentify problems (can’t talk to disk, can’t talk to GPU, slow fabric...)

8

https://github.com/evanberkowitz/metaq

MP1_JM

OMPI_JM - https://github.com/kenmcelvain/mpi jm (temporarily private - license issue)
O'lo support these more desirable features, we have created MP1 Job Manager (MPI_JM)
OC++/Python code

OMPI_JM uses a single mp1run call to start job-allocation and manage all tasks

OMPI_JM requires mimimal interface to your code to work (normal running still works)

OMPI_JM uses a second Python Library (user written) that instructs MPI_JM where to
collect yaml files that describe resource requirements. This library enables the user to
build generic types of jobs (propagator, baryon-block constructor, ...)

OMPI_JM 1s configured to know about a machine
Ouser only needs to specity resource requirements

OMPI_JM handles locking ranks to various parts of the node to optimize pertormance

https://github.com/kenmcelvain/mpi_jm

MP1_JM

OA job 1s launched with MPI_JM
OMPI_JM carves up the nodes in “lumps” of size specified by the user

O''he lumps are all imitialized concurrently (can bring up entire Summit in < 5 minutes)
OMPI_JM begins to distribute tasks in each lump simultaneously

Ol asks are located from user specified tolders

O User(s) can add more tasks during job (task list 1s retreshed regularly)

O Multiple MPI_JM 1nstances can work on the same list of tasks

O'lasks are given user-specified priorities to help MPI_JM decide which jobs to run first
O User can specity dependencies of tasks also

O'lasks can have pre/post operations (check dependencies are ready - create dependent task)

10

MP1_JM

Example: 4096 nodes, 1 mpirun, 32 “blocks” of 256 nodes,
arbitrary number of “tasks” launched within blocks

o Main communicator organizes nodes

rz,izes in sorted list to keep nodes physically
local
o User specifies “block size” (256) to
distribute master communicator over
all nodes
o Multiple users can continuously feed
tasks to MPI JM launch folder
04 node CPU task e 128 node CPU+GPU task
32 node GPU task e 0 Tasks are launched via

COMM SPAWN
(failed task does not crash entire
allocation)

ETITEA

ol [[

i

MP1_JM

Example: 4096 nodes, 1 mpirun, 32 “blocks” of 256 nodes,
arbitrary number of “tasks” launched within blocks

o Main communicator organizes nodes

ﬁiﬁes °cooo0 in sorted list to keep nodes physically
e local
o User specifies “block size” (256) to
distribute master communicator over
all nodes
o Multiple users can continuously feed
tasks to MPI JM launch folder
04 node CPU task e 128 node CPU+GPU task
32 node GPU task e 0 Tasks are launched via

COMM SPAWN
(failed task does not crash entire
allocation)

ETITEA

il Pl

i

MP1_JM

Example: 4096 nodes, 1 mpirun, 32 “blocks” of 256 nodes,
arbitrary number of “tasks” launched within blocks

e °°°° o Main communicator organizes nodes
nodes [®®® ® in sorted list to keep nodes physically
— local
o User specifies “block size” (256) to
distribute master communicator over
all nodes
o Multiple users can continuously feed
tasks to MPI JM launch folder
04 node CPU task e 128 node CPU+GPU task
32 node GPU task e 0 Tasks are launched via

COMM SPAWN
(failed task does not crash entire
allocation)

ETITEA

il Pl

i

MP1_JM

Example: 4096 nodes, 1 mpirun, 32 “blocks” of 256 nodes,
arbitrary number of “tasks” launched within blocks

e P " o Main communicator organizes nodes
nodes ([®®eecee in sorted list to keep nodes physically
O 00000 00
local
o User specifies “block size” (256) to
distribute master communicator over
all nodes
o Multiple users can continuously feed
tasks to MPIl JM launch folder
04 node CPU task e 128 node CPU+GPU task
32 node GPU task e 0 Tasks are launched via

COMM SPAWN
(failed task does not crash entire
allocation)

““llﬁ il

[

Iy '

i

MP1_JM

Example: 4096 nodes, 1 mpirun, 32 “blocks” of 256 nodes,
arbitrary number of “tasks” launched within blocks

e P " o Main communicator organizes nodes
nodes ([®®eecee in sorted list to keep nodes physically
O 00000 00
local
o User specifies “block size” (256) to
distribute master communicator over
all nodes
o Multiple users can continuously feed
tasks to MPIl JM launch folder
04 node CPU task e 128 node CPU+GPU task
32 node GPU task e 0 Tasks are launched via

COMM SPAWN
(failed task does not crash entire
allocation)

““llﬁ il

[

Iy '

i

MP1_JM

Example: 4096 nodes, 1 mpirun, 32 “blocks” of 256 nodes,
arbitrary number of “tasks” launched within blocks

g PP Y o Main communicator organizes nodes
nodes [®*®®®®eee in sorted list to keep nodes physically
[BN BN BN NI BN BN BN _
local
o User specifies “block size” (256) to
distribute master communicator over
all nodes
o0 | : ;
e ee a Multiple users can continuously feed
tasks to MPIl JM launch folder
04 node CPU task e 128 node CPU+GPU task
32 node GPU task e 0 Tasks are launched via

COMM SPAWN
(failed task does not crash entire
allocation)

““llﬁ il

[

Iy '

i

MP1_JM

Example: 4096 nodes, 1 mpirun, 32 “blocks” of 256 nodes,
arbitrary number of “tasks” launched within blocks

O AR B M
256 o000 o0oo0ooeoooeooo0ooeo0oooo0
nodes [®®®e0eeeeececcecceocccoscccoecee

TR X Ry rnmmMmmx
TR R I N I rrrnmmx
AR R R I xr Iy mmraryrmmx
TR R I X rmmryrrrImmyynmx
TR R R I I Iy Iy
000000000000 00c0c 000000000000 oe
000000000000 0000 0000000000000
XX
TEEEE o0 o0 o0
X EEREIEEXIXXX XK, XX

04 node CPU task e
32 node GPU task e

128 node CPU+GPU task

.‘:'

| il g o\

[

o Main communicator organizes nodes
in sorted list to keep nodes physically

local
' User specifies “block size” (256) to
distribute master communicator over

all nodes

J

o Multiple users can continuously feed
tasks to MPIl JM launch folder

o Tasks are launched via

COMM SPAWN

(failed task does not crash entire
allocation)

i

Minimal Interface

% callat-gcd / gmp | Public <% Edit Pins ~ ®Unwatch 3 ~ % Fork 14 v %y Star 0 v

forked from usqcd-software/gmp

0 Code that uses QMP can utilize

<> Code 19 Pullrequests (») Actions [Projects [OJ Wiki) Security |~ Insights 3 Settings M PI JM

¥ mpi_jm.no_call... + gmp/lib / mpi / QMP_init_mpi.c Go to file (n Ot yet i n m a i n I i n e QM P)

. walkloud merging... Latest commit c2505cb on Jan 21, 2019) History

A2 6 contributors ‘ E, ﬁ\’ . @

135 lines (117 sloc) 3.18 KB Raw Blame /s ~ B U
#include <stdio.h>
#include <string.h> void
#include <stdlib.h> QMP_finalize_msg_passing_mpi (void)
#include <ctype.h> {
#include <stdarg.h> int flag;

MPI_Finalized(&flag);

#include "gmp_config.h"

#include "QMP_P_COMMON.h" if (!flag) {
MPI_Finalize();

#ifdef QMP_MPI_JM }

#include "jm.h" #ifdef QMP_MPI_JIM

#endif jm_finish(@, "QMP MPI finalized.");
#endif
}
void

#ifdef QMP_MPI_JM
jm_parent_handshake(argc, argv);
#endif

QMP_abort_mpi (int error_code)

{

#i1fdef QMP_MPI_JM
/* try to do clean shutdown instead of ABORT x/
/* BETTER: should really ask jm_master to kill job %/
jm_finish(error_code, QMP_error_string(error_code));
MPI_Finalize();//this seems out of step with the change made to QMP with the &flag and finalize above
exit(error_code);

#else
MPI_Abort(MPI_COMM_WORLD, error_code);

#endif

}

Known Future Features

O Performance monitoring

O Improve overlapped use of distinct resources
OInter-job communication tasks

O Dynamic task configuration

O Enhance fault-tolerance and diagnosis

Ll

15

Known Future Features

O Performance monitoring
O User claims task will take 2 hours

OMPI_JM will collect statistics on actual wall-clock time usage and use this to decide 1f a
task can complete betore end of allocation

OMPI_JM can monitor performance ot blocks, not just job type, in case some blocks of
nodes are slower than others

14

Known Future Features

O Improve overlapped use ot distinct resources

O After a task 1s finished, but needs to write 1/0, the GPUs and CPUs for that task are

otherwise 1dle.

OMPI_JM can be informed that the GPU-usage 1s complete, and a new GPU task can be

placed on the nodes while 1/0 1s being performed from the previous task

15

Known Future Features

OInter-job communication tasks

O Utlizing local NVME storage can be complicated for multi-node jobs with parallel I/0

O Users can create “follow up” tasks/work with MPI_JM such that MPI_JM will launch a
helper task to collect the NVME trom the individual nodes and build the complete file

O'lask 37 may require the data files from lasks 0-7, which were all written to NVMLE.
MPI_JM can collect these and place them on the NVME that Task 37 will run on
(MPI_JM can decide ahead of time which nodes 'lask 37 will run on)

16

Known Future Features

O Dynamic task configuration

O''he optimal number of nodes for task-A might be 4 (minimum required to fit job 1n
memory)

O lowards the end of a job-allocation, there may be mnsutficient time to complete task-A on 4
nodes

O But, with a performance loss, the job could run on 8-nodes 1in the remaining wallclock time

O'|'he user can pre-specity possible task-configurations that MPI_]JM can try to fit in the
available resources, thus further reducing “wasted” time at the end ot an allocation

OOne often observes 1000-3000 nodes available tor only 45 minutes - with the optional run-
configurations, especially in bottom feeder mode - users could opt to utilize these nodes
that would otherwise be 1dle as the scheduler makes room for large jobs

17

Known Future Features

O Enhance tault-tolerance and diagnosis

O Even mature systems exhibit random trouble. eg. the GPUs on a node may take too long
to mmitialize, so the task aborts/times out, but the very next task will run successtully

OMPI_JM can have a “re-try” option to catch such tailures

OMPI_JM can perform pretests of node health betore launching the first task
O Can the nodes see the file system?
O Can the nodes see their NVME?
O Can the nodes communicate via MPI? Is the MPI slower than it should be?

OMPI_JM can detect 1t task 1s actually running (sometimes, tailed /0O doesn’t cause task
to abort or time-out, MPI_]JM could trigger a “kill” to this job)

OAll these errors/issues can be logged, 1deally in some SQL. database, that can be used to
help users and the sys-admins identify problematic nodes

18

Conclusions

OMPI_JM has worked great for running our LQCD calculations on Summit

OWhile we haven’t succeeded 1n getting $ to bring it to full beta-stage - we are determined to
finally do 1t this Fall - and to share with anyone interested 1n trying it out

OMPI_JM 1s not specific to LQCD - 1t works with any compute problem that requires MANY
individual tasks, and has dependencies etc.
Ken has been running nuclear equation of state calculations with it
Computation at one nuclear density can be used as mitial guess for similar density

O '|'here are many known features that will improve running as well as I am sure many not-yet-
realized features

01t would be great to get users to get more teedback

OWhen it 1s ready - we’ll email latticenews to get volunteers

19

