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Abstract

This poster reviews our recent calcuation of B+
c → D0`+ν and B+

c → D+
s `

+`−(ν̄ν) form factors [1]. We
comment on prospects for experimental measurement of B+

c → D(∗)0µ+νµ and implications for CKM matrix
elements.

Motivation

• Longstanding discrepancies in inclusive vs exclusive
determinations of CKM matrix elements |Vub| and
|Vcb|.
• LHCb can measure decays of the Bc meson, e.g. the
b → c decay B+

c → J/ψ µ+νµ.

• The production fraction of Bc mesons is not precisely
known, but cancels in ratios of decay rates.

• A measurement of the b → u decay B+
c → D0 µ+νµ

would provide a new determination of |Vub/Vcb|.

Figure 38: Summary of |Vub| and |Vcb| determinations. The black solid and dashed lines corre-
spond to 68% and 95% C.L. contours, respectively. The result of the global fit (which does not
include |Vub/Vcb| from baryon modes) is (|Vcb|, |Vub|) = (39.16 ± 0.67, 3.62 ± 0.14)⇥ 10�3 with
a p-value of 0.39. The lattice and experimental results that contribute to the various contours
are the following. B ! ⇡`⌫: lattice (FNAL/MILC [554] and RBC/UKQCD [555]) and ex-
periment (BaBar [648, 649] and Belle [650, 651]). B ! D`⌫: lattice (FNAL/MILC [604]
and HPQCD [605]) and experiment (BaBar [663] and Belle [662]). B ! D⇤`⌫: lattice
(FNAL/MILC [603]) and experiment (Belle [656]). B ! ⌧⌫: lattice (fB determinations
in Fig 27) and experiment (BaBar [526] and Belle [525]). Bs ! K`⌫/Bs ! Ds`⌫: lat-
tice (HPQCD [568], RBC/UKQCD [554], FNAL/MILC [571], HPQCD [610]) and experi-
ment (LHCb [665]). ⇤b ! p`⌫/⇤b ! ⇤c`⌫: lattice (Detmold 15 [514]) and experiment
(LHCb [632]). The inclusive determinations are taken from Refs. [165, 260, 664] and read
(|Vcb|, |Vub|)incl = (42.00 ± 0.64, 4.32 ± 0.29) ⇥ 10�3.
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Figure: Constraints on |Vcb| & |Vub|

Form factors

The differential decay rate for Bc → D`ν is given by

dΓ

dq2
= η2

EW|Vub|2
G 2
F

24π3

(
1− m2

`

q2

)2
|q|
[(

1 +
m2
`

2q2

)
|q|2f l+(q2)2 +

3m2
`

8q2

(M2
Bc
−M2

D)2

M2
Bc

f l0 (q2)2

]
.

The form factors parametrize the hadronic matrix elements of the weak decay operator
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For rare, FCNC decays such as Bc → Ds`

+`− we also need

〈Ds(p2)|T k0|Bc(p1)〉 =
2iMBc

pk2
MBc

+ MDs

f sT (mb; q2).

Ensembles

Table: Parameters for the MILC ensembles [2] (and earlier). The lattice spacing a is determined from the Wilson flow parameter
w0 [3]. The physical value w0 = 0.1715(9) fm was fixed from fπ in [4]. MπL and Mπ values for each lattice are given in [5]. We
give ncfg, the number of configurations used for each set. On each we used four different positions for the source to increase
statistics.

set handle w0/a N3
x × Nt MπL Mπ MeV ncfg amsea

l amsea
s amsea

c amval
l amval

s amval
c T

1 fine 1.9006(20) 323 × 96 4.5 316 500 0.0074 0.037 0.440 0.0074 0.0376 0.450 14, 17, 20
2 fine-physical 1.9518(17) 643 × 96 3.7 129 500 0.00120 0.0364 0.432 0.00120 0.036 0.433 14, 17, 20
3 superfine 2.896(6) 483 × 144 4.5 329 250 0.0048 0.024 0.286 0.0048 0.0245 0.274 22, 25, 28
4 ultrafine 3.892(12) 643 × 192 4.3 315 250 0.00316 0.0158 0.188 0.00316 0.0165 0.194 31, 36, 41

The adjustment for Ds is negligible, and this is also
expected to be the case for the Bc meson. The sizes of
the errors achieved in our calculations here are such that
effects from topological freezing (which could be of similar
size for form factors as those seen for decay constants) are
negligible, so we ignore them. In the future, more accurate
form factor calculations may need to incorporate adjust-
ments due to nonequilibrated topological charge distribu-
tions on the ultrafine and finer lattices.
The heavy-HISQ method sees all flavors of quarks

implemented with the HISQ [4] formalism. This is a fully
relativistic approach which involves calculations for a set of
quark masses on ensembles of lattices with a range of fine
lattice spacings, enabling a fit from which the physical
result at the b quark mass in the continuum can be
determined. In our heavy-HISQ method, we utilize a
valence HISQ quark with mass mh that takes values
between mc and mb. We describe this quark as “heavy.”
In the limit of physical quark masses, the heavy quark will
coincide with the b quark. Regarding the mesons that this

quark forms with a constituent charm, strange or light
quark, we adopt nomenclature for these mesons that is
similar to mesons with a constituent bottom quark. For
example, we label the low-lying heavy-charm pseudoscalar
meson as Hc. If we were to take mh ¼ mb, then this meson
would coincide with the Bc pseudoscalar meson.
This heavy-HISQ calculation uses bare heavy quark

masses amh ¼ 0.5, 0.65, 0.8 on all four sets in Table I. The
masses of the corresponding heavy-charm pseudoscalar
mesons Hc are plotted in Fig. 1. The mass of the heaviest
heavy-charm pseudoscalar meson is only 6% lighter than
the physical Bc meson.
Momentum is inserted only into the valence light

(strange) quark of the DlðsÞ meson; thus, the initial Hc
meson is always at rest on the lattice. The momentum
insertion is implemented through partially twisted boun-
dary conditions [29,30] in the ð 1 1 1 Þ direction. The
twists used on each set are given in Table II. The twist angle
θ is related to the three-momentum transfer q ¼ p1 − p2 by

jqj ¼ πθ
ffiffiffi
3

p

aNx
: ð5Þ

For example, zero twist (θ ¼ 0) corresponds to zero recoil
where q2 takes its maximum physical value, which we
denote as q2max. In previous studies, such as Fig. 3 in [6], it
has been observed that the continuum dispersion relation is
closely followed for mesons with staggered quarks, par-
ticularly on the finer lattices. The twists we use allow a
considerable proportion of the physical q2 range to be
probed. Most of the twists in Table II originate from a
variety of past calculations in which the corresponding
propagators were saved for future use.
Figure 2 shows the q2 realized by the twists in Table II.

The values of q2=q2max are given for each twist and heavy
quark mass for both Hc → Dl and Hc → Ds. Twists that
give negative q2 are unphysical but will nevertheless aid the
fits of the form factors across the physical range. For all of
the sets except one, all of the q2 range is covered for the
lightest heavy quark mass value amh ¼ 0.5 (recall that
Fig. 1 shows the corresponding mass of the heavy-charm
pseudoscalar mesons). For the finest lattice, set 4 in Table I,
Fig. 2 shows for the largest heavy quark mass, close to mb.

FIG. 1. The massMHc
of the heavy-charm pseudoscalar meson

is plotted against the lattice spacing squared for each of the values
amh ¼ 0.5, 0.65, 0.8 used in the heavy-HISQ calculation. Values
for MHc

are obtained from fitting the correlation functions as
described in Sec. II E. The continuum-physical point is denoted
by a cross at a ¼ 0 fm and MHc

¼ MBc
from experiment [28].

Data from sets 1–4 are denoted by the colors red, blue, green and
magenta, respectively. Data for amh ¼ 0.5, 0.65, 0.8 can be
identified by the diamond, triangle and circle markers, respec-
tively. These choices will be repeated in all subsequent plots.

TABLE II. Twists used for heavy-HISQ calculations on each of the four sets given in Table I. The twists are in the
ð 1 1 1 Þ direction and defined in Eq. (5). The corresponding values of q2 as a proportion of q2max are shown in
Fig. 2.

Set twists θ for Bc → Ds Twists θ for Bc → Dl

1 0, 0.4281, 1.282, 2.141, 2.570 0, 0.4281, 1.282, 2.141, 2.570
2 0, 0.8563, 2.998, 5.140 0, 3.000, 5.311
3 0, 1.261, 2.108, 3.624, 4.146 0, 1.261, 2.108, 2.666
4 0, 0.706, 1.529, 2.235, 4.705 0, 0.706, 1.529, 2.235, 4.705
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C. Extracting form factors from matrix elements

The conserved HISQ vector current is given explicitly in
Appendix A of [31]. It takes the form of a complicated
linear combination of multilink point-split operators. While
the conserved current has the advantage that it does not
require a multiplicative renormalization factor, its form is
unwieldy for lattice computations. Hence, we elect to use
simple local currents that are not conserved and determine
the corresponding renormalizations.
Our calculation uses HISQ quarks exclusively. In par-

ticular, since we use HISQ for both the parent heavy quark
and the daughter light or strange quark, we can use the
partially conserved vector current Ward identity to relate
matrix elements of the renormalized local vector current
ZVV

μ
local with matrix elements of the local scalar density

through

qμhDlðsÞjVμ
localjHciZV ¼ ðmh −mlðsÞÞhDlðsÞjSlocaljHci: ð6Þ

This holds since the mass and scalar density multiplicative
renormalization factors Zm and ZS satisfy ZmZS ¼ 1. Using
Eq. (6) to determine ZV is a fully nonperturbative strategy.
Up to discretization effects, the renormalization factor is
independent of q2, so it is sufficient to deduce its value at
zero recoil (q ¼ 0 and maximum q2). Using different
staggered “tastes” of mesons in Eq. (6) will contribute a

discretization error that is accounted for when fitting the
lattice form factor data. At zero recoil, Eq. (6) only features
matrix elements of the scalar density and the temporal
component of the vector current, so we do not compute
matrix elements of the spatial components of the vector
current (though they will be considered in Sec. IV B as part
of our investigation towards future improvements).
Combining Eqs. (6) and (1) yields

flðsÞ0 ðq2Þ ¼ hDlðsÞjSlocaljHci
mh −mlðsÞ

M2
Hc

−M2
DlðsÞ

: ð7Þ

We use Eq. (7) to extract f0 from the given combination of
quark masses, meson masses and the matrix element of the
scalar density.
Equation (1) for μ ¼ 0 can be trivially rearranged to

yield

flðsÞþ ðq2Þ¼
ZVhDlðsÞjV0

localjHci−q0flðsÞ0 ðq2Þ
M2

Hc
−M2

DlðsÞ
q2

p0
2þp0

1−q0
M2

Hc
−M2

DlðsÞ
q2

: ð8Þ

At zero recoil, the denominator vanishes so fþ cannot be
extracted here. In practice, using Eq. (8) near zero recoil is
problematic since both the numerator and denominator
approach 0 as q2 increases towards its maximum value at
zero recoil. This is discussed further in Appendix B. [In
Sec. IV B, we consider an alternative extraction of fþ by
using Eq. (1) with μ ≠ 0.]
Finally, the tensor form factor is obtained through

fsTðq2Þ ¼
ZThDsjT1;0

localjHciðMHc
þMDs

Þ
2iMHc

p1
2

; ð9Þ

where T1;0
local is the local tensor operator and ZT is its

multiplicative renormalization factor that takes the lattice
tensor current to the MS scheme. We use values of the
associated multiplicative renormalization factor ZT
obtained using the RI-SMOM intermediate scheme. We
give these values in Table III. Values in the RI-SMOM
scheme at scale 3 GeVare converted to scale 4.8 GeV in the

FIG. 2. The q2 values on each set as a proportion of the
maximum value q2max ¼ ðMHc

−MDlðsÞ Þ
2. From top to bottom,

data from sets 1–4 are displayed (see Table I). For different amh
on a given set, the same twists were used. As described in the
caption for Fig. 1, data from sets 1–4 and heavy quark masses
amh are denoted by different colors and marker styles. Values
used here for the masses of the initial and final mesons are found
from fits of correlation functions (to be discussed in Sec. II E).

TABLE III. Values used for the multiplicative renormalization
factor ZT of the tensor operator obtained from Tables VIII and IX
in [32] at scalemb in the MS scheme. The set handles correspond
to those given in Table I. The top row gives the mean values of
ZT , and the rows beneath give the covariance matrix scaled by a
factor of 105.

Sets 1 and 2 Set 3 Set 4

0.9980 1.0298 1.0456
0.6250 0.6242 0.6059

0.6250 0.6057
0.6250
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Figure: Range of heavy masses at each lattice spacing.

Correlation functions

MS scheme. Nonperturbative (condensate) artifacts in ZT
in the RI-SMOM scheme are removed using the analysis of
the J=ψ tensor decay constant [32].

D. Euclidean correlation functions on the lattice

We obtain the matrix elements discussed in Sec. II C
from correlation functions on the lattice with ensembles
and parameters specified in Sec. II B. We now describe the
construction of these correlation functions.
To ensure that nonvanishing correlation functions are

obtained when exclusively using staggered propagators in a
heavy-HISQ calculation, operators at the source, sink and
current insertion must be carefully selected so that the
overall correlator is a taste singlet. As we detail in Sec. II E,
matrix elements of the scalar density, vector current and
tensor operator are extracted from three-point correlation
functions whose constructions we now describe.
Our choice of operators used in the three-point corre-

lation functions that we compute are given in Table IV and
shown in Fig. 3. The operators are expressed in the
staggered spin-taste basis. Note that the scalar density,
temporal vector current and tensor operator all take the
form Γ ⊗ Γ for some combination of gamma matrices Γ;
thus, they are all local operators as discussed in Sec. II C.

To extract the overlaps of the Hc and DðsÞ interpolators
used in the three-point functions onto the low-lying
pseudoscalar meson states, we compute the relevant two-
point functions, namely, Hc with γ5 ⊗ γ5 and γ5γt ⊗ γ5γt
at both the source and sink, and DðsÞ with γ5 ⊗ γ5 and
γ5 ⊗ γ5γx at both the source and sink. TheDðsÞ interpolator
γ5 ⊗ γ5γx is the only nonlocal interpolator that we use.
We calculate the correlation functions needed to study

the form factors for Bc → Dl and Bc → Ds together since
the calculations share gluon field configurations and other
lattice objects. From a computational perspective, these
processes are similar since they both involve a charm quark
which spectates a bottom quark that changes flavor. Hence,
we are able to construct lattice correlation functions such
that sequential b quark propagators, i.e., the combined
bottom and charm propagator object, can be utilized in both
calculations, thus saving us a computational expense.

E. Fitting correlation functions

The correlation functions are fit to the following forms
using the corrfitterpackage [33]. The fit seeks tominimize an
augmented χ2 as described in [34–36].1 We simultaneously
fit all of the two-point and three-point correlation functions at
all twists and heavy quark masses to account for all possible
correlations between the fit parameters. We use singular
value decomposition (SVD) cuts in our fits; thus, the
χ2=d:o:f: values from our fits of correlation functions do
not have a straightforward interpretation in the sense of
frequentist statistics. More discussions and details can be
found in Appendix A 1. This includes details of our priors
and a variety of tests of the stability of our fits.
The two-point correlator data are fit to the functional

form

C2ptðtÞ ¼
XNn

i

ðan;iÞ2fðEn;i; tÞ −
XNo

i

ðao;iÞ2ð−1ÞtfðEo;i; tÞ

ð10Þ

FIG. 3. Diagrammatic representations of the three-point func-
tions we calculate on the lattice. The top two diagrams are
relevant for extracting matrix elements of the scalar density and
temporal vector current, and the bottom diagram is calculated for
the case Bc → Ds and the tensor current. Each operator insertion
is shown by a cross and is labeled by its description given in the
spin-taste basis, while the lines represent lattice quark propa-
gators. The heavy quark propagator is represented by the line,
labeled by the flavor h, between the leftmost operator and
the insertion. The daughter quark propagator is represented by
the line, labeled by the flavor lðsÞ, between the insertion and the
rightmost operator. The remaining quark propagator is the
spectator quark, labeled by the flavor c.

TABLE IV. Summary of the interpolators used in the all-HISQ
three-point correlation functions. The interpolators are given in the
spin-taste basis.Matrix elements of the scalar density, vector current
and tensor operator are extracted from the correlation functions
constructed from the first, second and third rows of interpolators,
respectively. The relevant form factor is given in the first column.
The tensor form factor is calculated for Bc → Ds only here.

Hc DlðsÞ Insertion

f0 γ5 ⊗ γ5 γ5 ⊗ γ5 I ⊗ I
fþ γ5γt ⊗ γ5γt γ5 ⊗ γ5 γt ⊗ γt
fT γ5γt ⊗ γ5γt γ5 ⊗ γ5γx γxγt ⊗ γxγt

1In the limit of high statistics the results from this method are
equivalent to those from Bayesian inference.
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Figure: Illustration of the three-point correlation functions
calculated.

Form factors from correlator amplitudes use the
Ward identity

qµ 〈Dl(s)|V µ
local|Hc〉ZV = (mh −ml(s)) 〈Dl(s)|Slocal|Hc〉

So we have
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Fit form

We fit the form factors, with a pole term removed, to the following form

P(q2)f (q2) = L
Nn∑
n=0

Nr∑
r=0

Nj∑
j=0

Nk∑
k=0

A(nrjk)ẑ (n,Nn)
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Λ

MHl(s)
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)2j (amc

π

)2k
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where L contains the chiral logarithms

L = 1 +

(
ζ(0) + ζ(1) Λ

MHl

+ ζ(2) Λ2

M2
Hl

)
xπ log xπ

The Ω(n) factors are given by

Ω(n) = 1 + ρ(n) log

(
MHl(s)

MDl(s)

)
.

Ω(n) allows for heavy quark mass dependence that appears as a prefactor to the expansion in inverse powers of
the heavy mass. From HQET this prefactor could include fractional powers of the heavy quark mass and/or
logarithmic terms which vary in different regions of q2 [6]. We allow for this with a logarithmic term with a
variable coefficient that depends on the form factor and the power of z in the z-expansion. We take priors for the
ρ(n) of 0(1). The mistuning terms are given by
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Form factor results

III. RESULTS

A. Form factors

We use the correlation function fits on each set indicated
in Table IX of Appendix A 4. The energies and matrix
elements on each set are stored (with all correlations) in the
ancillary file corrfit_results.tar [10]. We fit the
subsequent form factor data to the form described in
Sec. II F 2. Fitting with noise added to both the data and
priors, as demonstrated in [48] to compensate for the
reduced χ2=d:o:f: from fitting with a SVD cut, we find
χ2=d:o:f: ¼ 0.65 and χ2=d:o:f: ¼ 0.43 for the cases Bc →
Dl and Bc → Ds, respectively.
We check that our priors are sensible and conservative by

performing empirical Bayes analyses [34]. We use the
lsqfit.empbayes_fit function to test the width of
the parameters in the following two sets: ρðnÞ and Aðnr00Þ,
and AðnrjkÞ for jþ k > 0. The widths of each parameter in
these sets are varied simultaneously by a common multi-
plicative factor w. The empirical Bayes analyses show that
the values for w are around 0.5, so our priors are moderately
conservative.
In Fig. 4, we present our form factors in the limit of

vanishing lattice spacing and physical quark masses across

the entire physical range of q2. Details of the fits of the
correlation functions and lattice form factors from which
Fig. 4 is derived are given in Appendixes A and B.
Appendix C provides details of our form factors in the
limit of vanishing lattice spacing and physical quark
masses.
Figure 5 shows the form factors fl;s0;þ on the same plot.

This figure shows how the form factors vary as the daughter
quark mass changes from ms to ml ¼ ms=27.4. We plot
each form factor from q2 ¼ 0 up to the zero-recoil point
where q2 ¼ ðMBc

−MDðsÞ Þ, which depends on the daughter
quark mass. The form factors for the strange daughter quark
are larger than those for the light daughter quark at all q2

values. This mirrors what is seen, for example, in the
comparison of D → π and D → K form factors [49].
For the case Bc → Ds, we show in Fig. 6 the ratio

fTðmbÞ=fþ across the entire range of q2. Large energy
effective theory (LEET) [41] expects this ratio near q2 ¼ 0

FIG. 4. Fit functions for the Bc → Dl and Bc → Ds form
factors fl0;þ and fs0;þ;T , respectively, tuned to the continuum
limit with physical quark masses. The tensor form factor is at the
scale 4.8 GeV.

FIG. 5. Fit functions for the four form factors fl;s0;þ tuned to the
continuum limit with physical quark masses.

FIG. 6. Ratio of the tensor and vector form factors of Bc → Ds
across the entire range of physical q2. The behavior is in
agreement with LEET [41], which predicts a constant ratio
ðMBc

þMDs
Þ=MBc

.
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to take the value ðMBc
þMDs

Þ=MBc
¼ 1.31 [28] in the

limit mb → ∞, ignoring renormalization corrections. This
follows from the spatial-temporal tensor and spatial vector
matrix elements coinciding in the limits mb → ∞ and
q2 → 0, and the definitions of fþ and fT in Eqs. (8)
and (9). We find that the ratio fT=fþ near q2 ¼ 0 is
consistent with LEET and that this ratio does not change
significantly as q2 is varied.
We use the gvar package [50] to propagate correlations

throughout our calculation. The package also allows us to
decompose the uncertainty on the form factors and resulting
branching fractions to create an error budget. We plot a
particular breakdown of the errors in Figs. 7 and 8 for the
form factors fl0;þ and fs0;þ, respectively. We find that
statistical errors contribute substantially to the final error.
Of a similar size are the uncertainties from the coefficients
Aðn0jkÞ in the fit form inEq. (16). The fit function inEq. (16) is
complicated since the coefficients AðnrjkÞ responsible
for the extrapolations amh → 0, amc → 0 and Λ=MHlðsÞ →
Λ=MBlðsÞ are mixed to allow for all possible effects. Terms in
the fit form with r ¼ 0 are associated with discretization
effects of the leadingorder term in theHQETexpansion. This
error could be decreased by including the exafine lattice
(a ≈ 0.03 fm) so that amh can be taken smaller to further

constrain the limitamh → 0. Also,b quarks, at their physical
mass, can be directly simulated on the exafine lattice since
amb is well below 1.We investigate the impact of adding the
exafine lattice in Sec. IVA.
Regarding the ζ and ρ parameters in Eq. (16), only ζð0Þ

and ðρl;sÞð0Þ are determined accurately by the fit. We
find ζð0Þ ¼ −0.66ð24Þ, ðρl0;þÞð0Þ ¼ −0.544ð76Þ, ðρs0;þÞð0Þ ¼
−0.579ð64Þ and ðρsTÞð0Þ ¼ −0.676ð92Þ.

B. Observables for B+
c → D0l+ νl

We plot the differential decay rate η−2EWjVubj−2dΓðBþ
c →

D0lþνlÞ=dq2 derived from our form factors as a function
of q2 in Fig. 9. The form of the decay rate is given in
Eq. (2). We integrate this function (using gvar.ode.in-
tegral in the gvar package [50]) to find η−2EWjVubj−2Γ.
This is then combined with ηEW, the CKM matrix element
Vub ¼ 3.82ð24Þ × 10−3 [51] (an average of inclusive and
exclusive determinations), and the lifetime of the Bc meson
to obtain the branching ratios in Table VI. At present, errors
from our lattice calculation dominate those associated with
the lifetime of the Bc meson and are comparable with those

FIG. 7. Errors on the form factors fl0;þ. The black curve shows
the total error, and the other lines show a particular partition of the
error. When added in quadrature, these contributions yield the
black curve. The dashed curves show uncertainties from the fit
coefficients in Eq. (16). The solid blue curve shows the statistical
errors resulting from our fits of correlation functions. The solid
red curve represents the contribution to the final error from the
determinations of the quark mass mistunings on each lattice
[see Eq. (20)].

FIG. 8. Errors on the form factors fs0;þ;T . The curves are labeled
similarly to Fig. 7.
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Figure: Results for the form factors in the continuum, physical mass limit.

B+
c → D0`+ν decay rates

from the CKM element Vub. For the ratio of widths with τ
and μ in the final state, we find that

ΓðBþ
c → D0τþντÞ

ΓðBþ
c → D0μþνμÞ

¼ 0.682ð37Þ: ð30Þ

Much of the error on our form factors cancels in this ratio,
and we achieve an uncertainty of 7%.
We compare our results with those for the decay mode

Bþ
c → J=ψlþνl. We take the form factors for this decay

from HPQCD’s lattice QCD calculation in [3]. We combine
these form factors with those for Bþ

c → D0lþνl computed
in this study to find the ratios

!!!!
Vcb

Vub

!!!!
2 ΓðBþ

c → D0μþνμÞ
ΓðBþ

c → J=ψμþνμÞ
¼ 0.257ð36Þð18Þ;

!!!!
Vcb

Vub

!!!!
2 ΓðBþ

c → D0τþντÞ
ΓðBþ

c → J=ψτþντÞ
¼ 0.678ð69Þð45Þ: ð31Þ

The first error comes from our form factors for
Bþ
c → D0μþνμ, and the second error comes from the form

factors for Bþ
c → J=ψμþνμ in [3]. We treat the form factors

for Bþ
c → J=ψμþνμ as uncorrelated to the Bþ

c → D0lþνl
form factors (a conservative strategy). In Fig. 10, we plot
the ratio of dΓ=dq2 for the two processes for m2

l < q2 <
ðMBc

−MJ=ψÞ2 and each of the cases l ¼ μ, τ. Note that
the ratio plotted is the inverse of the one used in Eq. (31).
A possible method for determining the ratio of

jVcsj=jVubj is to determine the ratio of branching fractions
for the Bc decay to D0eþνe and Bseþνe. Using our form
factors for Bc → D and the form factors for Bc → Bs from
[7], we find

jVubj2

jVcsj2
BðBþ

c → B0
seþνeÞ

BðBþ
c → D0eþνeÞ

¼ 5.95ð84Þð19Þ × 10−3: ð32Þ

References [53,54] point out that the weak matrix
elements for Bc → D and Bc → Bs have a simple ratio
at the zero-recoil point in the limit ofmb ≫ mc ≫ ΛQCD. In
this limit, the Bc meson is a pointlike particle, and the weak
matrix elements factorize into a factor that depends on the
daughter meson decay constant and a factor that depends
on the Bc wave function, which is the same in both
processes. Thus, the ratio of weak matrix elements becomes

hDjVμjBci
hBsjVμjBci

!!!!
zero−recoil

¼ MDfD
MBs

fBs

: ð33Þ

Using the decay constants from [24], the rhs evaluates to
0.32. We expect an uncertainty on this value of size
ΛQCD=mc (∼30%) since the HQET result relies on
mc ≫ ΛQCD. By using our form factors for Bc → D and
those for Bc → Bs from [7], we find that the lhs evaluates to
0.571(17)(8), much larger than the prediction from HQET.
We conclude that HQET is not a reliable guide here.
Calculations from three-point sum rules [54] give 0.5(2).

FIG. 9. Differential decay rate η−2EWjVubj−2dΓðBþ
c →

D0lþνlÞ=dq2 as a function of q2 for the cases l ¼ μ in blue
and l ¼ τ in red.

TABLE VI. For Bþ
c → D0lþνl, we give values for the branch-

ing ratios (BR) for each of the cases l ¼ e, μ, τ. We take the
lifetime of the Bc meson to be 513.49(12.4) fs [52]. The errors
from the lifetime and the CKM matrix element Vub are shown
explicitly. The error from ηEW is negligible. We ignore uncer-
tainties from long-distance QED contributions since the meson
D0 in the final state is neutral.

Decay mode BR × 105

Bþ
c → D0eþνe 3.37ð48Þlatticeð8ÞτBc ð42ÞCKM

Bþ
c → D0μþνμ 3.36ð47Þlatticeð8ÞτBc ð42ÞCKM

Bþ
c → D0τþντ 2.29ð23Þlatticeð6ÞτBc ð29ÞCKM

FIG. 10. We plot the ratio of dΓ=dq2 for each of the processes
Bþ
c → J=ψlþνl and Bþ

c → D0lþνl for the q2 range of the Bþ
c →

J=ψlþνl decay. The decay width for the former process is
derived from form factors found in [3], and the decay width of the
latter process is derived from form factors determined in this
study. The case l ¼ μ is shown in blue, and the case l ¼ τ is
shown in red.
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Bþ
c → J=ψlþνl and Bþ

c → D0lþνl for the q2 range of the Bþ
c →

J=ψlþνl decay. The decay width for the former process is
derived from form factors found in [3], and the decay width of the
latter process is derived from form factors determined in this
study. The case l ¼ μ is shown in blue, and the case l ¼ τ is
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Figure: Differential decay rates of B+
c → D0µ+νµ and B+

c → D0τ+ντ (left) and ratio of differential decay rates normalized by
B+
c → J/ψ `+ν`.

Experimental prospects for B+
c → D(∗)0`+ν

LHCb is in the progress of analyzing B+
c → D(∗)0µ+ν decays [7]. These b → u decays are CKM-suppressed

compared to b → c decays of the B+
c , so the first measurements are likely to come from the semi-exclusive

combination of the pseudoscalar D0 and vector D∗0 final states. In order to cancel experimental uncertainties
associated with Bc-production, the branching fraction is normalized to that for the decay B+

c → J/π µ+νµ.

B(B+
c → D(∗)0µ+νµ)

B(B+
c → J/ψ µ+νµ)

∝ |Vub|2
|Vcb|2

In order to use such a measurement, form factors for Bc → D∗`ν are needed, in addition to the Bc → D form
factors presented here and Bc → J/ψ form factors published in Ref. [8].

B+
c → D+

s `
+`−(ν̄ν) decay rates

On integrating with respect to q2, we report the ratio

Rl1
l2
ðq2low; q2highÞ ¼

R q2high
q2low

dq2dBl1=dq
2

R q2high
q2low

dq2dBl2=dq
2

ð36Þ

for different choices of final-state lepton l1;2 and integra-
tion limits q2low, q

2
high. We find that

Rμ
eð4m2

μ; q2maxÞ ¼ 1.00203ð47Þ; ð37Þ

Rμ
eð1 GeV2; 6 GeV2Þ ¼ 1.00157ð52Þ; ð38Þ

Rμ
eð14.18 GeV2; q2maxÞ ¼ 1.0064ð12Þ; ð39Þ

Rτ
eð14.18 GeV2; q2maxÞ ¼ 1.34ð13Þ; ð40Þ

Rτ
μð14.18 GeV2; q2maxÞ ¼ 1.33ð13Þ; ð41Þ

where q2max ¼ ðMBc
−MDs

Þ2. The latter three ratios above
involve the differential decay widths above the veto region
associated with the resonance from ψð2SÞ. The ratio in
Eq. (38) lies beneath the J=ψ veto region and above q2 ≲
1 GeV2 where effects from uū resonances could have an
impact; these are not included in our calculation. We give in
Table VII integrals of differential branching fractions for
these ranges of q2. As in the case Bþ

c → D0lþνl, the ratio
of widths with l ¼ τ and l ¼ μ in the final state,

ΓðBþ
c → Dþ

s τþτ−Þ
ΓðBþ

c → Dþ
s μþμ−Þ

¼ 0.245ð20Þ; ð42Þ

has reduced error.
In the low-q2 region 1 GeV2 to 6 GeV2, we find that the

ratio of integrated branching fractions for Bþ
c → Dþ

s μþμ−

and Bþ
c → J=ψμþνμ is

R
6 GeV2

1 GeV2 dq2
dBðBþ

c →Dþ
s μþμ−Þ

dq2
R
6 GeV2

1 GeV2 dq2
dBðBþ

c →J=ψμþνμÞ
dq2

¼ 6.31ð90Þð65Þ × 10−6: ð43Þ

The first error is from the numerator, and the second error is
from the denominator, which we compute using the form
factors for Bþ

c → J=ψμþνμ from [3]. As in [3], we take
jVcbj ¼ 41.0ð1.4Þ × 10−3 [65] from an average of inclusive
and exclusive determinations, scaling the uncertainty by 2.4
to allow for their inconsistency.
Next, we show in Fig. 13 the “flat term” Fl

H, first
introduced in [66] in the context of B → K. This term
appears as a constant in the angular distribution of the
decay width. Taking the same parametrization of the decay
width as in Eq. (34), then performing the integration with
respect to q2, we have

1

Γl

dΓlðcosθÞ
dcosθ

¼ 3

4
ð1−Fl

HÞð1− cos2θÞþ1

2
Fl
HþAl

FB cosθ

ð44Þ

where

FIG. 12. Plot of the Bþ
c → Dþ

s lþl− differential branching ratio
for l ¼ μ (top) and l ¼ τ (bottom) in the final state. The yellow
bands show regions where charmonium resonances (not included
in our calculation) could have an impact. The grey band is
between the two yellow regions labeling the charmonium
resonances. Through the yellow and gray bands, we interpolate
the function dBμ=dq2 linearly when integrating to find the
branching fraction and related quantities.

TABLE VII. For Bþ
c → Dþ

s lþl−, we give values for dB=dq2 ×
107 integrated with respect to q2 over the given ranges
ðq2low; q2highÞ in GeV2 for each of the cases l ¼ e, μ, τ. We take
the lifetime of the Bc meson to be 513.49(12.4) fs [52]. Note that
these results do not include effects from charmonium or uū
resonances.

Decay mode (4m2
l, q

2
max) (1,6) (14.18, q2max)

Bþ
c → Dþ

s eþe− 1.00(11) 0.285(41) 0.146(22)
Bþ
c → Dþ

s μþμ− 1.00(11) 0.286(41) 0.147(22)
Bþ
c → Dþ

s τþτ− 0.245(18) … 0.195(14)
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involve the differential decay widths above the veto region
associated with the resonance from ψð2SÞ. The ratio in
Eq. (38) lies beneath the J=ψ veto region and above q2 ≲
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in our calculation) could have an impact. The grey band is
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the function dBμ=dq2 linearly when integrating to find the
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TABLE VII. For Bþ
c → Dþ

s lþl−, we give values for dB=dq2 ×
107 integrated with respect to q2 over the given ranges
ðq2low; q2highÞ in GeV2 for each of the cases l ¼ e, μ, τ. We take
the lifetime of the Bc meson to be 513.49(12.4) fs [52]. Note that
these results do not include effects from charmonium or uū
resonances.
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FB ¼ 1

Γl

Z
q2max

q2min

dq2blðq2Þ; ð45Þ

Fl
H ¼ 2

Γl

Z
q2max

q2min

dq2ðalðq2Þ þ clðq2ÞÞ; ð46Þ

and we define

Fl
Hðq2Þ ¼

2ðalðq2Þ þ clðq2ÞÞ
2alðq2Þ þ 2

3 clðq
2Þ

: ð47Þ

The flat term Fl
H may be sensitive to contributions from

new physics since it is small according to the Standard
Model. This quantity is a ratio of combinations of the form
factors, and uncertainties are much less than those exhibited
by the raw form factors or branching fractions.
We determine the differential branching fraction for

Bþ
c → Dþ

s νν̄ using the expressions for the B → Kνν̄ case
in [13,14]. The differential branching fraction, summing
over the three neutrino flavors, is

dBðBþ
c → Dþ

s νν̄Þ
dq2

¼ τBc
jVtbV%

tsðdÞj
2 G

2
Fα

2

32π5
X2
t

sin4θW
× jqj3f2þðq2Þ ð48Þ

which we plot in Fig. 14. We take Xt ¼ 1.469ð17Þ [67] and
α−1ðMZÞ ¼ 127.952ð9Þ [65]. Integrated from q2 ¼ 0 to
q2max, we find the branching fraction

BðBþ
c → Dþ

s νν̄Þ ¼ 8.23ð85Þ × 10−7: ð49Þ

There are no issues from charmonium resonances or
nonfactorizable pieces in this case. Since mτ > MDs

, there
is also no long-distance contribution for the τ case (unlike
for B → Kντν̄τ). We find the ratio of branching fractions

BðBþ
c → Dþ

s νν̄Þ
BðBþ

c → J=ψμþνμÞ
¼ 5.49ð57Þð55Þ × 10−5: ð50Þ

The first error is from the numerator, and the second error is
from the denominator, which we compute using the form
factors for Bþ

c → J=ψμþνμ from [3].

FIG. 13. From top to bottom, we show plots of the flat terms Fl
H

for each of l ¼ e, μ, τ, respectively. We use a log scale for the
cases l ¼ e, μ. Error bands are presented, though the errors are
small due to the correlations in the construction of the flat term.

FIG. 14. Differential branching fraction for Bþ
c → Dþ

s νν̄ as a
function of q2.
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Figure: Decay rates respectively for Bc → Ds µ
+µ−/Ds τ

+τ−/Ds ν̄ν
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