B-meson semileptonic decays with highly improved staggered quarks

Andrew Lytle
University of Illinois @ Urbana-Champaign

10.08.22
Lattice 2022
Bonn, Germany

FNAL-MILC allhisq working group

Carleton DeTar
Elvira Gámiz
Steve Gottlieb
William Jay
Aida El-Khadra
Andreas Kronfeld
Jim Simone
Alejandro Vaquero

Motivation

- Semileptonic decays are a rich source of information for determining CKM matrix elements.
- Relatively simple decay processes - measured in accelerator experiments, require theoretical input from lattice QCD to extract fundamental parameters.
- Desire precise measurements of $\left|V_{x b}\right|$ from multiple decay processes to test the consistency of the Standard Model.

Stress-testing the CKM paradigm

- Inclusive/exclusive discrepancies for $\left|V_{u b}\right|$ and $\left|V_{c b}\right|$
- Also discrepancies from SM expectations in $R\left(D, D^{*}, J / \psi, K^{*}, \ldots\right)$ see e.g. Snowmass 2205.15373
- \rightarrow Want high accuracy SM predictions for sl decays

Experimental outlook - $\left|V_{c b}\right|$ and $V_{u b}$

- Belle II
- $\delta\left|V_{c b}\right| \approx 2 \% \rightarrow 1.4 \%$ by ~ 2025.
- $\delta\left|V_{u b}\right| \approx 2 \% \rightarrow 1.2 \%$ by ~ 2025.
- Increasing precision of measured R-ratios:

- New channels LHCb 2012.05143, 2001.03225:

$$
\begin{array}{lr}
\left|V_{c b}\right|=42.3(8)_{\text {stat }}(9)_{\text {syst }}(12)_{\mathrm{ext}} \times 10^{-3} & \text { LHCb } B_{s} \rightarrow D_{s}^{(*)} \\
\left|V_{c b}\right|=38.3(3)_{\text {stat }}(7)_{\text {syst }}(6)_{\mathrm{lqcd}} \times 10^{-3} & \text { Belle total } B \rightarrow D^{*}
\end{array}
$$

Outline

1. Intro \& Motivation.
2. Computational framework.
3. Status and preliminary results.

- Two-point and three-point correlators.
- Form factor results.
- Renormalization.

4. Summary \& Outlook.

Heavy quarks

Treatment of c and especially b quarks challenging in lattice simulation due to lattice artifacts which grow as $\left(a m_{h}\right)^{n}$

- May use an effective theory framework to handle the b quark.
- Fermilab method, RHQ, OK, NRQCD
- Pros: Solves problem w/ $a m_{h}$ artifacts.
- Cons: Requires matching, can still have ap artifacts.
- Also possible to use relativistic fermion provided a is sufficiently small $a m_{c} \ll 1, a m_{b}<1$.
- Use improved actions e.g. $\mathcal{O}\left(a^{2}\right) \rightarrow \mathcal{O}\left(\alpha_{s} a^{2}\right)$
- Pros: Absolutely normalised current, straightforward continuum extrap.
- Cons: Numerically expensive, extrapolate $m_{h} \rightarrow m_{b}$.

allhisq simulations

- Here we simulate all quarks with the HISQ action.
- Unified treatment for wide range of $B_{(s)}\left(\right.$ and $\left.D_{(s)}\right)$ to pseudoscalar transitions:
- $B_{(s)} \rightarrow D_{(s)}$
- $B_{(s)} \rightarrow K$
- $B \rightarrow \pi$
- Ensembles with (HISQ) sea quarks down to physical at each lattice spacing.

See Will Jay's talk on $D_{(s)} \rightarrow$ light transitions in this session.

- HISQ fermion action.
- Discretization errors begin at $\mathcal{O}\left(\alpha_{s} a^{2}\right)$.
- Designed for simulating heavy quarks (m_{c} and higher at current lattice spacings).
- Symanzik-improved gauge action, takes into account $\mathcal{O}\left(N_{f} \alpha_{s} a^{2}\right)$ effects of HISQ quarks in sea. [0812.0503]
- Multiple lattice spacings down to ~ 0.042 (now 0.03) fm.
- Effects of $u / d, s$, and c quarks in the sea.
- Multiple light-quark input parameters down to physical pion mass.
- Chiral fits.
- Reduce statistical errors.

- Use a heavy valence mass h as a proxy for the b quark.
- Work at a range of m_{h}, with $a m_{c}<a m_{h} \lesssim 1$ on each ensemble. On sufficiently fine ensembles, m_{h} is near to m_{b} (e.g. m_{b} at $a m_{h} \approx 0.65$ on $a=0.03 \mathrm{fm}$).
- Map out physical dependence on m_{h}, remove discretisation effects $\sim\left(a m_{h}\right)^{2 n}$ using information from several ensembles. Extrapolate results $a^{2} \rightarrow 0, m_{h} \rightarrow m_{b}$.

Preliminary results

Two point functions

Consider $B_{(s)} \rightarrow D_{(s)}$ decays for $a=0.06 \mathrm{fm}, m_{l} / m_{s}=0.1$.

- Compute $H_{(s)}$ mesons at a range of $a m_{h}$ values:

- $D_{(s)}$ mesons for a range of momenta:

Three point functions

- Generate three-point functions for scalar, vector, and tensor current insertions, $\left\langle D_{(s)}(T) J(t) H_{(s)}^{\dagger}(0)\right\rangle$.
- Fit simultaneously with two-point functions to extract the matrix elements of interest $\rightarrow\left\langle D_{(s)}\right| J\left|H_{(s)}\right\rangle$

- We use scalar (S), and vector $\left(V^{0}, V^{i}\right)$ current insertions to extract the form factors f_{0} and f_{+}.

Extracting form factors

$$
\begin{aligned}
& f_{0}\left(q^{2}\right)=\frac{m_{h}-m_{\ell}}{M_{H}^{2}-M_{L}^{2}}\langle L| S|H\rangle \\
& f_{\|}\left(q^{2}\right)=Z_{V^{0}} \frac{\langle L| V^{0}|H\rangle}{\sqrt{2 M_{H}}} \\
& f_{\perp}\left(q^{2}\right)=Z_{V^{i}} \frac{\langle L| V^{i}|H\rangle}{\sqrt{2 M_{H}}} \frac{1}{p_{L}^{i}}, \\
& f_{+}=\frac{1}{\sqrt{2 M_{H}}}\left(f_{\|}+\left(M_{H}-E_{L}\right) f_{\perp}\right) .
\end{aligned}
$$

$B_{s} \rightarrow D_{s}: f_{0}\left(q^{2}\right)$

- Good precision out to $\mathrm{p}=400$
- Rightmost points on figure have $m_{h}=m_{b}$

$$
B_{s} \rightarrow D_{s}: f_{\|}\left(q^{2}\right)
$$

$\begin{array}{ll}\text { 中 } & \mathrm{a}=0.088 \mathrm{fm}, \mathrm{ml}=\text { phys，} \mathrm{mh}=1.5 \mathrm{mc} \\ \text { 中 } & \mathrm{a}=0.088 \mathrm{fm}, \mathrm{ml}=\text { phys，} \mathrm{mh}=2.0 \mathrm{mc} \\ \text { 中 } & \mathrm{a}=0.088 \mathrm{fm}, \mathrm{ml}=\text { phys，} \mathrm{mh}=2.5 \mathrm{mc} \\ \text { 中 } & \mathrm{a}=0.088 \mathrm{fm}, \mathrm{ml}=0.1 \mathrm{~ms}, \mathrm{mh}=1.5 \mathrm{mc} \\ \text { 中 } & \mathrm{a}=0.088 \mathrm{fm}, \mathrm{ml}=0.1 \mathrm{~ms}, \mathrm{mh}=2.0 \mathrm{mc} \\ \text { 中 } & \mathrm{a}=0.088 \mathrm{fm}, \mathrm{ml}=0.1 \mathrm{~ms}, \mathrm{mh}=2.5 \mathrm{mc} \\ \text { 中 } & \mathrm{a}=0.057 \mathrm{fm}, \mathrm{ml}=0.2 \mathrm{~ms}, \mathrm{mh}=2.0 \mathrm{mc} \\ \text { 中 } & \mathrm{a}=0.057 \mathrm{fm}, \mathrm{ml}=0.2 \mathrm{~ms}, \mathrm{mh}=3.0 \mathrm{mc} \\ \text { 中 } & \mathrm{a}=0.057 \mathrm{fm}, \mathrm{ml}=0.2 \mathrm{~ms}, \mathrm{mh}=4.0 \mathrm{mc} \\ \text { 中 } & \mathrm{a}=0.042 \mathrm{fm}, \mathrm{ml}=0.2 \mathrm{~ms}, \mathrm{mh}=2.0 \mathrm{mc} \\ \text { 中 } & \mathrm{a}=0.042 \mathrm{fm}, \mathrm{ml}=0.2 \mathrm{~ms}, \mathrm{mh}=3.0 \mathrm{mc} \\ \text { 中 } & \mathrm{a}=0.042 \mathrm{fm}, \mathrm{ml}=0.2 \mathrm{~ms}, \mathrm{mh}=4.0 \mathrm{mc} \\ \text { 中 } & \mathrm{a}=0.042 \mathrm{fm}, \mathrm{ml}=0.2 \mathrm{~ms}, \mathrm{mh}=1.0 \mathrm{mb}\end{array}$
－Good precision out to $\mathrm{p}=400$
－Rightmost points on figure have $m_{h}=m_{b}$

- Good precision out to $\mathrm{p}=400$
- Rightmost points on figure have $m_{h}=m_{b}$

- Good precision out to $\mathrm{p}=300$
- Rightmost points on figure have $m_{h}=m_{b}$
- Mild sea quark mass dependence

Normalization of vector currents

We renormalize the vector current by applying the partially conserved vector current (PCVC) relation directly to extracted matrix elements:

$$
\partial_{\mu} V_{\mu}^{\text {cons }}=\left(m_{h}-m_{l}\right) S
$$

Applied to our lattice matrix elements,
$Z_{V^{0}}\left(M_{H}-E_{L}\right)\langle L| V^{0}|H\rangle+Z_{V^{i}} \mathbf{q} \cdot\langle L| \mathbf{V}|H\rangle=\left(m_{h}-m_{l}\right)\langle L| S|H\rangle$,
where V^{0} is local and V^{i} is a one-link current.

Renormalization - $Z_{V_{4}}$

- $Z_{V_{4}}$ determined from zero-momentum vector and scalar correlators.
- $Z_{V^{0}}\left(M_{H}-E_{L}\right)\langle L| V^{0}|H\rangle=\left(m_{h}-m_{l}\right)\langle L| S|H\rangle$

- Z-factors tend towards 1 as $a \rightarrow 0, a m \rightarrow 0$.

Renormalization - $Z_{V_{i}}$

- $Z_{V_{i}}$ determined from non-zero momentum correlators.
- Here use $\mathbf{p}=(3,0,0)$ data (need to fit/optimize).

	$\mathrm{a}=0.088 \mathrm{fm}, \mathrm{ml}=0.1 \mathrm{~ms}$,
	$\mathrm{a}=0.088 \mathrm{fm}, \mathrm{ml}=0.1 \mathrm{~ms}, \mathrm{mh}=$
	$\mathrm{a}=0.088 \mathrm{fm}, \mathrm{m}$
	. 08
	$\mathrm{a}=0.088 \mathrm{fm}, \mathrm{ml}=$ phys, $\mathrm{mh}=2.0$
	$\mathrm{a}=0.088 \mathrm{fm}, \mathrm{ml}=$ phys, $\mathrm{mh}=2.5 \mathrm{mc}$
	$\mathrm{a}=0.057 \mathrm{fm}, \mathrm{ml}=0.2 \mathrm{~ms}, \mathrm{mh}=2$
\square	$\mathrm{a}=0.057 \mathrm{fm}, \mathrm{ml}=0.2$
ゅ	$a=0$
	$\mathrm{a}=0.042 \mathrm{fm}, \mathrm{ml}=0.2$
	$\mathrm{a}=0.042 \mathrm{fm}, \mathrm{ml}=0.2$

- Z-factors tend towards 1 as $a \rightarrow 0, a m \rightarrow 0$.
$B_{s} \rightarrow D_{s}$ - a simple $f_{0}\left(q_{\max }^{2}\right)$ fit

Basic fit parameterizing M_{H} dependence and heavy quark discretization. Chiral variation ignored.

$$
f_{0}\left(q_{\max }^{2}\right)\left[M_{H}, a m_{h}\right]=\sum_{i j} c_{i j}\left(\frac{1}{M_{H}}\right)^{i}\left(a m_{h}\right)^{2 j}
$$

Good precision obtained $(\sim 0.5 \%)$ at $M_{B_{s}}$.

Summary \& Outlook

- Unified treatment for range of semileptonic decays.
- HISQ action used for all quarks.
- Good statistical precision (percent-level) achieved.
- Small discretization effects.
- Will permit interpolation in both m_{l} and m_{h}.

Thank you!

