B-meson semileptonic decays with highly improved staggered quarks

Andrew Lytle University of Illinois @ Urbana-Champaign

> 10.08.22 Lattice 2022 Bonn, Germany

FNAL-MILC allhisq working group

Carleton DeTar Elvira Gámiz Steve Gottlieb William Jay Aida El-Khadra Andreas Kronfeld Jim Simone Alejandro Vaquero

Motivation

- Semileptonic decays are a rich source of information for determining CKM matrix elements.
- Relatively simple decay processes measured in accelerator experiments, require theoretical input from lattice QCD to extract fundamental parameters.
- Desire precise measurements of $|V_{xb}|$ from multiple decay processes to test the consistency of the Standard Model.

Stress-testing the CKM paradigm

- Inclusive/exclusive discrepancies for $|V_{ub}|$ and $|V_{cb}|$
- Also discrepancies from SM expectations in $R(D, D^*, J/\psi, K^*, ...)$ see e.g. Snowmass 2205.15373
- \bullet \to Want high accuracy SM predictions for sl decays

Experimental outlook - $\left|V_{cb}\right|$ and V_{ub}

- Belle II
 - $\delta |V_{cb}| \approx 2\% \to 1.4\%$ by ~ 2025 .
 - ▶ $\delta |V_{ub}| \approx 2\% \to 1.2\%$ by ~ 2025 .
- Increasing precision of measured R-ratios:

• New channels LHCb 2012.05143, 2001.03225:

$$|V_{cb}| = 42.3(8)_{\rm stat}(9)_{\rm syst}(12)_{\rm ext} \times 10^{-3}$$
 LHCb $B_s \to D_s^{(*)}$
 $|V_{cb}| = 38.3(3)_{\rm stat}(7)_{\rm syst}(6)_{\rm locd} \times 10^{-3}$ Belle total $B \to D^*$

Outline

- 1. Intro & Motivation.
- 2. Computational framework.
- 3. Status and preliminary results.
 - ► Two-point and three-point correlators.
 - ► Form factor results.
 - ► Renormalization.
- 4. Summary & Outlook.

Heavy quarks

Treatment of c and especially b quarks challenging in lattice simulation due to lattice artifacts which grow as $(am_h)^n$

- May use an effective theory framework to handle the b quark.
 - ► Fermilab method, RHQ, OK, NRQCD
 - ▶ Pros: Solves problem w/ am_h artifacts.
 - ► Cons: Requires matching, can still have *ap* artifacts.
- Also possible to use relativistic fermion provided a is sufficiently small $am_c \ll 1$, $am_b < 1$.
 - ▶ Use improved actions e.g. $\mathcal{O}(a^2) \to \mathcal{O}(\alpha_s a^2)$
 - Pros: Absolutely normalised current, straightforward continuum extrap.
 - ▶ Cons: Numerically expensive, extrapolate $m_h \to m_b$.

allhisq simulations

- Here we simulate all quarks with the HISQ action.
- Unified treatment for wide range of $B_{(s)}$ (and $D_{(s)}$) to pseudoscalar transitions:
 - $\blacktriangleright B_{(s)} \to D_{(s)}$
 - \triangleright $B_{(s)} \to K$
 - $ightharpoonup B o \pi$
- Ensembles with (HISQ) sea quarks down to physical at each lattice spacing.

See Will Jay's talk on $D_{(s)} \to \text{light transitions in this session.}$

- HISQ fermion action.
 - ▶ Discretization errors begin at $\mathcal{O}(\alpha_s a^2)$.
 - ▶ Designed for simulating heavy quarks (m_c and higher at current lattice spacings).
- Symanzik-improved gauge action, takes into account $\mathcal{O}(N_f \alpha_s a^2)$ effects of HISQ quarks in sea. [0812.0503]
- Multiple lattice spacings down to ~ 0.042 (now 0.03) fm.
- Effects of u/d, s, and c quarks in the sea.
- Multiple light-quark input parameters down to physical pion mass.
 - ► Chiral fits.
 - ► Reduce statistical errors.

all hisq b

- Use a heavy valence mass h as a proxy for the b quark.
- Work at a range of m_h , with $am_c < am_h \lesssim 1$ on each ensemble. On sufficiently fine ensembles, m_h is near to m_b (e.g. m_b at $am_h \approx 0.65$ on a = 0.03 fm).
- Map out physical dependence on m_h , remove discretisation effects $\sim (am_h)^{2n}$ using information from several ensembles. Extrapolate results $a^2 \to 0$, $m_h \to m_b$.

Two point functions

Consider $B_{(s)} \to D_{(s)}$ decays for a = 0.06 fm, $m_l/m_s = 0.1$.

• Compute $H_{(s)}$ mesons at a range of am_h values:

• $D_{(s)}$ mesons for a range of momenta:

Three point functions

- Generate three-point functions for scalar, vector, and tensor current insertions, $\langle D_{(s)}(T) J(t) H_{(s)}^{\dagger}(0) \rangle$.
- Fit simultaneously with two-point functions to extract the matrix elements of interest $\rightarrow \langle D_{(s)}|J|H_{(s)}\rangle$

• We use scalar (S), and vector (V^0, V^i) current insertions to extract the form factors f_0 and f_+ .

Extracting form factors

$$f_{0}(q^{2}) = \frac{m_{h} - m_{\ell}}{M_{H}^{2} - M_{L}^{2}} \langle L|S|H\rangle$$

$$f_{\parallel}(q^{2}) = Z_{V^{0}} \frac{\langle L|V^{0}|H\rangle}{\sqrt{2M_{H}}}$$

$$f_{\perp}(q^{2}) = Z_{V^{i}} \frac{\langle L|V^{i}|H\rangle}{\sqrt{2M_{H}}} \frac{1}{p_{L}^{i}},$$

$$f_{+} = \frac{1}{\sqrt{2M_{H}}} \left(f_{\parallel} + (M_{H} - E_{L})f_{\perp} \right).$$

$B_s \to D_s$: $f_0(q^2)$

- Good precision out to p = 400
- Rightmost points on figure have $m_h = m_b$

$B_s \to D_s$: $f_{\parallel}(q^2)$

- Good precision out to p = 400
- Rightmost points on figure have $m_h = m_b$

$B_s \to D_s$: $f_{\perp}(q^2)$

- Good precision out to p = 400
- Rightmost points on figure have $m_h = m_b$

$B_s \to K$: $f_0(q^2)$

- Good precision out to p = 300
- Rightmost points on figure have $m_h = m_b$
- Mild sea quark mass dependence

Normalization of vector currents

We renormalize the vector current by applying the partially conserved vector current (PCVC) relation directly to extracted matrix elements:

$$\partial_{\mu}V_{\mu}^{\rm cons} = (m_h - m_l)S$$

Applied to our lattice matrix elements,

$$Z_{V^0}(M_H - E_L)\langle L|V^0|H\rangle + Z_{V^i}\mathbf{q}\cdot\langle L|\mathbf{V}|H\rangle = (m_h - m_l)\langle L|S|H\rangle$$
,

where V^0 is local and V^i is a one-link current.

Renormalization - Z_{V_4}

- Z_{V4} determined from zero-momentum vector and scalar correlators.
- $Z_{V^0}(M_H E_L)\langle L|V^0|H\rangle = (m_h m_l)\langle L|S|H\rangle$

• Z-factors tend towards 1 as $a \to 0$, $am \to 0$.

Renormalization - Z_{V_i}

- Z_{V_i} determined from non-zero momentum correlators.
- Here use $\mathbf{p} = (3, 0, 0)$ data (need to fit/optimize).

• Z-factors tend towards 1 as $a \to 0$, $am \to 0$.

$B_s \to D_s$ - a simple $f_0(q_{\sf max}^2)$ fit

Basic fit parameterizing M_H dependence and heavy quark discretization. Chiral variation ignored.

$$f_0(q_{\text{max}}^2)[M_H, am_h] = \sum_{ij} c_{ij} \left(\frac{1}{M_H}\right)^i (am_h)^{2j}$$

Good precision obtained ($\sim 0.5\%$) at M_{B_s} .

Summary & Outlook

- Unified treatment for range of semileptonic decays.
- HISQ action used for all quarks.
- Good statistical precision (percent-level) achieved.
- Small discretization effects.
- Will permit interpolation in both m_l and m_h .

