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Motivation

® Semileptonic decays are a rich source of information for
determining CKM matrix elements.

® Relatively simple decay processes — measured in accelerator
experiments, require theoretical input from lattice QCD to

extract fundamental parameters.

® Desire precise measurements of |V, from multiple decay
processes to test the consistency of the Standard Model.
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Stress-testing the CKM paradigm

FIAG2021
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¢ Inclusive/exclusive discrepancies for |Vyp| and |V|

® Also discrepancies from SM expectations in
R(D,D*, J/v,K*,...) see e.g. Snowmass 2205.15373

® — Want high accuracy SM predictions for sl decays
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Experimental outlook - V4| and V,

® Belle 11
> 5|Vi| ~ 2% — 1.4% by ~ 2025.

> §|Vip| &~ 2% — 1.2% by ~ 2025.

® Increasing precision of measured R-ratios:

LHCb

0.1

Absolute opx)
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® New channels LHCb 2012.05143, 2001.03225:
V| = 42.3(8)stat (9)syst (12)exe x 1072 LHCb By — D)

|Veb| = 38.3(3)stat (7)syst (6)1ged X 1073 Belle total B — D*

5/25



Outline

1. Intro & Motivation.

2. Computational framework.

3. Status and preliminary results.
» Two-point and three-point correlators.

» Form factor results.

» Renormalization.

o

. Summary & Outlook.
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Heavy quarks

Treatment of ¢ and especially b quarks challenging in lattice
simulation due to lattice artifacts which grow as (amy)™

® May use an effective theory framework to handle the b
quark.
» Fermilab method, RHQ, OK, NRQCD
» Pros: Solves problem w/ amy, artifacts.
» Cons: Requires matching, can still have ap artifacts.

e Also possible to use relativistic fermion provided a is
sufficiently small am,. < 1, am; < 1.
» Use improved actions e.g. O(a?) — O(asa?)
» Pros: Absolutely normalised current, straightforward
continuum extrap.
» Cons: Numerically expensive, extrapolate my — my.
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allhisq simulations

® Here we simulate all quarks with the HISQ action.

® Unified treatment for wide range of B, (and D)) to
pseudoscalar transitions:

> By = D)
> B(s) - K

> B

¢ Ensembles with (HISQ) sea quarks down to physical at
each lattice spacing.

See Will Jay’s talk on D) — light transitions in this session.
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MILC ensembles [1004.0342, 1212.4768]

HISQ fermion action.
> Discretization errors begin at O(asa?).
» Designed for simulating heavy quarks (m. and higher at
current lattice spacings).

Symanzik-improved gauge action, takes into account
O(Nyasa?) effects of HISQ quarks in sea. [0812.0503]

Multiple lattice spacings down to ~ 0.042 (now 0.03) fm.

Effects of u/d, s, and ¢ quarks in the sea.

Multiple light-quark input parameters down to physical
pion mass.

» Chiral fits.
» Reduce statistical errors.
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MILC ensemble parameters 1712.09262
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all hisq b

® Use a heavy valence mass h as a proxy for the b quark.

® Work at a range of my, with am,. < amy < 1 on each
ensemble. On sufficiently fine ensembles, my, is near to my
(e.g. my at amyp, =~ 0.65 on a = 0.03 fm).

® Map out physical dependence on my,, remove discretisation
effects ~ (amy,)?" using information from several
ensembles. Extrapolate results a2 — 0, mj, — my.
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Preliminary results



Two point functions

Consider By — D(y decays for a = 0.06 fm, m;/mg = 0.1.

® Compute H,) mesons at a range of amy, values:
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Three point functions

® Generate three-point functions for scalar, vector, and
tensor current insertions, (D) (T) J(t) Hgs) (0)).

e Fit simultaneously with two-point functions to extract the
matrix elements of interest — (D g)[J|Hs))
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e We use scalar (9), and vector (V°, V%) current insertions
to extract the form factors fy

and f_|_ .
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Extracting form factors

2y Mp— My
fO(q ) M%I M/% (L‘S’H>

o, (LIVOH)
fi(a®) = Zyo e

o, (LIV'H) 1
fJ-(q ) - ZVZ \/m plLa

f+=

\/;TH (fi+ (Mg —Ep)fL) .
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Normalization of vector currents

We renormalize the vector current by applying the partially
conserved vector current (PCVC) relation directly to extracted
matrix elements:

OV = (mp, —my)S
Applied to our lattice matrix elements,

Zyo(Mp — EL)(LIV|H) + Zyiq - (LIV|H) = (my, —m)(L|S|H),

where V0 is local and V' is a one-link current.
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Renormalization - Zy,

® 7y, determined from zero-momentum vector and scalar

correlators.
* Zyo(My — EL)(LIV°|H) = (my, —my)(L|S|H)

1.10

1.081 P §

1.06 1

1.04 ¥

Zy,
88 66c <<

1.024 il

1.001 FNAL-MILC Preliminary

0.000 0002 0004 0006 0008  0.010
a® [fm?]

e 7-factors tend towards 1 as a — 0, am — 0.

a=0.088 fm, ml=0.1ms,
a=0.088 fm, ml=0.1ms,
a=0.088 fm, ml=0.1ms,
a=0.088 fm, ml=phys, mh=1.5mc
a=0.088 fm, ml=phys, mh=2.0mc
a=0.088 fm, ml=phys, mh=2.5mc
a=0.057 fm, ml=0.2ms,
a=0.057 fm, ml=0.2ms,
a=0.057 fm, ml=0.2ms,
h a=0.042 fm, ml=0.2ms,
a=0.042 fm, ml=0.2ms,

Ml a=0.042 fm, ml=0.2ms,
1] i a=0.042 fm, ml=0.2ms,

mh=1.5me
mh=2.0mc
mh=2.5me

mh=2.0me
mh=3.0mc
mh=4.0mec
mh=2.0mc
mh=3.0mc
mh=4.0mc
mh=1.0mb

21/ 25



Renormalization - Zy,

® Zy, determined from non-zero momentum correlators.
e Here use p = (3,0,0) data (need to fit/optimize).
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By — Dy, - a simple fy(g3,,) fit

Basic fit parameterizing My dependence and heavy quark
discretization. Chiral variation ignored.

ol M ] = 3 i (57 ) (amn)

)
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Good precision obtained (~ 0.5%) at Mp,.
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Summary & Outlook

Unified treatment for range of semileptonic decays.

HISQ action used for all quarks.

Good statistical precision (percent-level) achieved.

Small discretization effects.

Will permit interpolation in both m; and my,.
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Thank you!






